
CSE 250: Data Structures
Course Reference

Chapter 0 Contents
1. Introduction .. 4
1.1. What to get out of this Data Structures class? ... 4
1.1.1. An intuition for data structures ... 4
1.1.2. Practice with formal proofs and recursion .. 4
1.2. What this class is not. .. 4
1.3. A word on Lies and Trickery ... 4
2. Math Refresher ... 6
3. Asymptotic Runtime Complexity .. 7
3.1. Some examples of asymptotic runtime complexity .. 7
3.2. Asymptotic Analysis in General ... 7
3.3. Runtime Growth Functions .. 8
3.4. Complexity Classes .. 8
3.4.1. Example .. 9
3.5. Formal Notation .. 10
3.5.1. Polynomials and Dominant Terms .. 11
3.5.2. Θ in mathematical formulas ... 12
3.6. Code Complexity .. 12
3.7. Complexity Bounds .. 13
3.8. Big-𝑂 and Big-Ω ... 14
3.9. Formalizing Big-𝑂 .. 16
3.9.1. Proving a function has a specific Big-𝑂 bound .. 17
3.9.2. Proving a function does not have a specific Big-𝑂 bound .. 18
3.10. Formalizing Big-Ω .. 18
3.11. Formalizing Big-Θ .. 18
3.12. Tight Bounds ... 19
3.13. Which Variable? .. 20
3.13.1. Related Variables ... 20
3.14. Summary .. 20
3.14.1. Formal Definitions .. 21
3.14.2. Interpreting Code .. 21
3.14.3. Simple Complexity Classes ... 22
3.14.4. Dominant Terms .. 22
3.14.5. Multiclass Asymptotics .. 22
4. The Sequence and List ADTs ... 24
4.1. What is an ADT? .. 24
4.2. The Sequence ADT ... 24
4.2.1. Sequences by Rule ... 25
4.2.2. Arbitrary Sequences ... 26
4.2.3. Arrays ... 27
4.2.3.1. Array Runtime Analysis ... 27
4.2.3.2. Side Note: Memory Allocation .. 28
4.2.3.3. Arrays In Java .. 28
4.2.4. Mutable Sequences .. 29
4.2.4.1. Mutable Array ... 29

4.2.5. Array Summary ... 30
4.3. The List ADT .. 30
4.3.1. A simple Array as a List ... 31
4.4. Linked Lists .. 32
4.4.1. Side Note: How Java uses Memory ... 33
4.4.2. A Linked List as a List .. 33
4.4.2.1. Linked List get .. 34
4.4.2.2. Linked List update ... 36
4.4.2.3. Linked List add .. 37
4.4.2.4. Aside: Invariants and Rule Preservation ... 39
4.4.2.5. Linked List add runtime .. 39
4.4.2.6. Linked List size (Take 1) .. 40
4.4.2.7. Aside: Loop Invariants .. 42
4.4.2.8. Linked List size (Take 1) runtime .. 42
4.4.2.9. Linked List size (Take 2) .. 43
4.5. Iterators ... 44
4.6. Doubly Linked Lists ... 44

Chapter 1. Introduction
Data Structures classes often have a mixed reception. One of the most common things I hear from
students is that it’s hard to see how the concepts they learn get deployed into practice: We don’t solve
specific problems. Although we will try to map many of the ideas we discuss to specific problems that
you’ll encounter as a computer scientist, it’s also important to think about the content you learn in this
class in a more general sense: as a set of tools for your toolbox.

This class will introduce you to the hammers, wrenches, and screwdrivers of computer science. We’ll
show you how to decide whether a phillips-head or a flathead screwdriver is better for your use case;
when to use a socket wrench or a crescent wrench.

A bit less metaphorically, this class will present a set of organizational strategies (data structures)
suitable for different use cases (abstract data types). We’ll also introduce asymptotic complexity, a way
to quickly summarize the performance characteristics of data structures (and a tool for thinking about
algorithms).

1.1. What to get out of this Data Structures class?

1.1.1. An intuition for data structures
We’ll talk about the material at a precise, formal level, but we honestly hope that you learn the material
to a point where you internalize it. If, after this class, you never again consciously think about the fact
that prepending to a linked list is 𝑂(1), that’s fine. What we care about is that you develop the intuition
• … that you develop an instinct for which data structure is right for a given situation.
• … that you get a little cringe in the back of your brain when you see in the documentation that a

method you need to call repeatedly is 𝑂(𝑁).
• … that you get a little cringe in the back of your brain when you see a doubly nested loop, or another

piece of 𝑂(𝑁2) or worse code.

1.1.2. Practice with formal proofs and recursion
By the time you take this class, you should have already taken a discrete math class and gotten your
first exposure to proofs and recursive thinking. This class is intended to develop those same skills:
• We’ll review an assortment of proofs regarding algorithm runtimes using specific data structures.
• We’ll discuss specific strategies you can use while proving things.
• We’ll review recursion and discuss approaches to identifying problems that can be solved through

recursion and how to use recursion as a problem solving technique.

1.2. What this class is not.
In contrast to many data structures classes, which introduce C programming, memory management,
and other related concepts, UB’s 250 is intended as a concepts/theory-style class. To be clear, we will
use code. Example code will be given in Java (or some cases Python), and we’ll make extensive use of
Java’s class inheritance model. We will use code code to reinforce and motivate concepts that you will
learn throughout the class. However, the primary focus of this class is on understanding asymptotic
analysis and adding the standard suite of data structures to your toolbox.

1.3. A word on Lies and Trickery
“All models are wrong, but some are useful”

This is an introductory text. As such, you should expect that many of the things we say are simplified
for the purposes of presentation. Some assertions (e.g., array accesses are constant-time) will be
outright lies with respect to code running on modern computers. Nevertheless, these simplifications are
here for a reason. It will be far easier to first grok the simpler model of code and data organization,
before delving into the more nuanced details and special cases.

In general, we highlight some of the more blatant lies with footnotes that also hint at some of the
nuanced details. In a few cases (e.g., constant time array accesses), we’ll peel back the lies later on in
the book.

That being said, these footnotes are primarily here for the pedants and excessively curious among you.
You should still be able to understand the rest of the book even if you ignore every single footnote in
the text.

Chapter 2. Math Refresher

Chapter 3. Asymptotic Runtime Complexity
Data Structures are the fundamentals of algorithms: How efficient an algorithm is depends on how the
data is organized. Think about your workspace: If you know exactly where everything is, you can get to
it much faster than if everything is piled up randomly. Data structures are the same: If we organize data
in a way that meets the need of an algorithm, the algorithm will run much faster (remember the array
vs linked list comparison from earlier)?

Since the point of knowing data structures is to make your algorithms faster, one of the things we’ll
need to talk about is how fast the data structure (and algorithm) is for specific tasks. Unfortunately,
“how fast” is a bit of a nuanced comparison. I could time how long algorithms A and B take to run, but
what makes a fair comparison depends on a lot of factors:
• How big is the data that the algorithm is running on?

‣ A might be faster on small inputs, while B might be faster on big inputs.
• What computer is running the algorithm?

‣ A might be much faster on one computer, B might be much faster on a network of computers.
‣ A might be especially tailored to Intel x86 CPUs, while B might be tailored to the non-uniform

memory latencies of AMD x86 CPUs.
• How optimized is the code?

‣ Hand-coded optimizations can account for multiple orders of magnitude in algorithm performance.

In short, comparing two algorithms requires a lot of careful analysis and experimentation. This is
important, but as computer scientists, it can also help to take a more abstract view. We would like to
have a shorthand that we can use to quickly convey the 50,000-ft view of “how fast” the algorithm is
going to be. That shorthand is asymptotic runtime complexity.

3.1. Some examples of asymptotic runtime complexity
Look at the documentation for data structures in your favorite language’s standard library. You’ll see
things like:
• The cost of appending to a Linked List is 𝑂(1)
• The cost of finding an element in a Linked List is 𝑂(𝑁)
• The cost of appending to an Array List is 𝑂(𝑁), but amortized 𝑂(1)
• The cost of inserting into a Tree Set is 𝑂(log 𝑁)
• The cost of inserting into a Hash Map is Expected 𝑂(1), but worst case 𝑂(𝑁)
• The cost of retrieving an element from a Cuckoo Hash is always 𝑂(1)

These are all examples of asymptotic runtimes, and they give you a quick at-a-glance idea of how well
the data structure handles specific operations. Knowing these facts about the data structures involved
can help you plan out the algorithms you’re writing, and avoid picking a data structure that tanks the
performance of your algorithm.

3.2. Asymptotic Analysis in General
Although our focus in this book is mainly on asymptotic runtime complexity, asymptotic analysis is a
general tool that can be used to discuss all sorts of properties of code and algorithms. For example:
• How fast is an algorithm?
• How much space does an algorithm need?
• How much data does an algorithm read from disk?
• How much network bandwidth will an algorithm use?

• How many CPUs will a parallel algorithm need?

3.3. Runtime Growth Functions
Let’s start by talking about Runtime Growth Functions. A runtime growth function looks like this:

T(N)

Here, 𝑇 is the name of the function (We usually use 𝑇 for runtime growth functions, and 𝑁 is the size
of the input.

You can think of this function as telling us “For an input of size 𝑁 , this algorithm will take 𝑇 (𝑁)
seconds to run” This is a little bit of an inexact statement, since the actual number of seconds it takes
depends on the type of computer, implementation details, and more. We’ll eventually generalize, but for
now, you can assume that we’re talking about a specific implementation, on a specific computer (like
e.g., your computer).

We call this a growth function because it generally has to follow a few rules:

• For all 𝑁 ≥ 0, it must be the case that 𝑇 (𝑁) ≥ 0
‣ The algorithm can’t take negative time to run.

• For all 𝑁 ≥ 𝑁 ′, it must be the case that 𝑇 (𝑁) ≥ 𝑇(𝑁 ′)
‣ It shouldn’t be the case that the algorithm runs faster on a bigger input¹.

¹In practice, this is not actually the case. We’ll see a few examples of functions who’s runtime can sometimes be faster
on a bigger input. Still, for now, it’s a useful simplification.

3.4. Complexity Classes
Before we define the idea of asymptotic runtimes precisely, let’s start with an intuitive idea. We’re
going to take algorithms (including algorithms that perform specific operations on a data structure),
and group them into what we call Complexity Classes².

²To be pedantic, what we’ll be describing is called “simple complexity classes”, but throughout this book, we’ll refer to
them as just complexity classes.

Graph 1 shows three different runtime growth functions: Green (dashed), Red (solid), and Blue (dash-
dotted). For an input of size 𝑁 = 2, the green dashed function appears to be the best, while the blue
dash-dotted function appears the worst. By the time we get to 𝑁 = 10, the roles have reversed, and the
blue dash-dotted function is the best.

Size of Input (𝑁)
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Ru
nt

im
e

(𝑇
(𝑁

))

2
4
6
8

10
12
14
16
18
20

Graph 1: Different types of growth functions

So let’s talk about these lines and what we can say about them. First, in this book, we’re going to ignore
what happens for “small” inputs. This isn’t always the right thing to do, but we’re taking the 50,000 ft
view of algorithm performance. From this perspective, the blue dot-dashed line is the “best”.

But why is it better? If we look closely, both the green dashed and the red solid line are straight lines.
The blue dot-dashed line starts going up faster than both the other two lines, but bends downward. In
short, the blue dot-dashed line draws a function of the form 𝑎 log(𝑁) + 𝑏, while the other two lines
draw functions of the form . For “big enough” values of 𝑁 , any function of the form 𝑎 log(𝑁) + 𝑏 will
always be smaller than any function of the form 𝑎 · 𝑁 + 𝑏. On the other hand, the value of any two
functions of the form 𝑎 · 𝑁 + 𝑏 will always “look” the same. No matter how far we zoom out, those
functions will always be a constant factor different.

Our 50,000 foot view of the runtime of a function (in terms of 𝑁 , the size of its input) will be to look at
the “shape” of the curve as we plot it against 𝑁 .

3.4.1. Example
Try the following code in python:

from random import randrange
from datetime import datetime
N = 10000
TRIALS = 1000

BEGIN INITIALIZE data
data = []
for x in range(N):
 data += [x]
data = list(data)
END INITIALIZE data

contained = 0
start_time = datetime.now()
for x in range(TRIALS):
 if randrange(N) in data:
 contained += 1
end_time = datetime.now()

time = (end_time - start_time).total_seconds() / TRIALS

print(f"For N = {N}, that took {time} seconds per lookup")

This code creates a list of N elements, and then does TRIALS checks to see if a randomly selected value is
somewhere in the list. This is a toy example, but see what happens as you increase the value of N. In
most versions of python, you’ll find that every time you multiply N by a factor of, for example 10, the
total time taken per lookup grows by the same amount.

Now try something else. Modify the code so that the data variable is initialized as:

BEGIN INITIALIZE data
data = []
for x in range(N):
 data += [x]

data = set(data)
END INITIALIZE data

You’ll find that now, as you increase N, the time taken per lookup grows at a much smaller rate.
Depending on the implementation of python you’re using, this will either grow as log 𝑁 or only a tiny
bit. The set data structure is much faster at checking whether an element is present than the list data
structure.

Complexity classes are a language that we can use to capture this intuition. We might say that set’s
implementation of the in operator belongs to the logarithmic complexity class, while list’s
implementation of the operator belongs to the linear complexity class. Just saying this one fact about
the two implementations makes it clear that, in general, set’s version of in is much better than list’s.

3.5. Formal Notation
Sometimes it’s convenient to have a shorthand for writing down that a runtime belongs in a complexity
class. We write:

𝑔(𝑁) ∈ Θ(𝑓(𝑛))

… to mean that the mathematical function 𝑔(𝑁) belongs to the same asymptotic complexity class as
𝑓(𝑁). You may also see this written as an equality. For example

𝑇 (𝑁) = Θ(𝑁)

… means that the runtime function 𝑇 (𝑁) belongs to the linear complexity class. Continuing the
example above, we would use our new shorthand to describe the two implementations of Python’s in
operator as:

• 𝑇set ∈ Θ(log 𝑁)
• 𝑇list ∈ Θ(𝑁)

Formalism: A little more formally, Θ(𝑓(𝑁)) is the set of all mathematical functions 𝑔(𝑁) that belong
to the same complexity class as 𝑓(𝑁). So, writing 𝑔(𝑁) ∈ Θ(𝑓(𝑁)) is saying that 𝑔(𝑁) is in (∈) the set
of all mathematical functions in the same complexity class as 𝑓(𝑁)³.

³We are sweeping something under the rug here: We haven’t precisely defined what it means for two functions to be in
the same complexity class yet. We’ll get to that shortly, after we introduce the concept of complexity bounds.

Here are some of the more common complexity classes that we’ll encounter throughout the book:
• Constant: Θ(1)
• Logarithmic: Θ(log 𝑁)
• Linear: Θ(𝑁)
• Loglinear: Θ(𝑁 log 𝑁)
• Quadratic: Θ(𝑁2)
• Cubic: Θ(𝑁3)
• Exponential Θ(2𝑁)

Figure 1: Θ(𝑓(𝑁)) is the set of all mathematical functions including 𝑓(𝑁) and everything
that has the same “shape”, represented in the chart above as a highlighted region around each

line.

Complexity classes are given in order. The later they appear in the list, the faster they grow. Any
function that has a linear shape, will always be smaller (for big enough values of 𝑁) than a function
with a loglinear shape.

3.5.1. Polynomials and Dominant Terms
What complexity class does 10𝑁 + 𝑁2 fall into? Let’s plot it and see:

Size of Input (𝑁)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Ru
nt

im
e

(𝑇
(𝑁

))

40
80

120
160
200
240
280
320
360
400
440
480
520
560

Graph 2: Comparing 𝑁 (solid red), 𝑁2 (dashed green), and 10𝑁 + 𝑁2 (dash-dotted blue)

Graph 2 compares these three functions. Observe that the dash-dotted blue line starts off very similar to
the solid red line. However, as 𝑁 grows, its shape soon starts resembling the dashed green 𝑁2 more
than the solid red 10𝑁 .

This is a general pattern. In any polynomial (a sum of mathematical expressions), for really big values
of 𝑁 , the complexity class of the “biggest” term starts to win out once we get to really big values of 𝑁 .

In general, for any sum of mathematical functions:

𝑔(𝑁) = 𝑓1(𝑁) + 𝑓2(𝑁) + … + 𝑓𝑘(𝑁)

The complexity class of 𝑔(𝑁) is the greatest complexity class of any 𝑓𝑖(𝑁)

For example:
• 10𝑁 + 𝑁2 ∈ Θ(𝑁2)
• 2𝑁 + 4𝑁 ∈ Θ(2𝑁)
• 1000 · 𝑁 log(𝑁) + 5𝑁 ∈ Θ(𝑁 log(𝑁))

3.5.2. Θ in mathematical formulas
Sometimes we’ll write Θ(𝑔(𝑁)) in regular mathematical formulas. For example, we could write:

Θ(𝑁) + 5𝑁

You should interpret this as meaning any function that has the form:

𝑓(𝑁) + 5𝑁

… where 𝑓(𝑁) ∈ Θ(𝑁).

3.6. Code Complexity
Let’s see a few examples of how we can figure out the runtime complexity class of a piece of code.

def userFullName(users: List[User], id: int) -> str:
 user = users[id]
 fullName = user.firstName + " " + user.lastName
 return fullName

The userFullName function takes a list of users, and retrieves the idth element of the list and generates
a full name from the user’s first and last names. For now, we’ll assume that looking up any element of
any array (users[id]), string concatenation (user.firstName + " " + user.lastName), assignment
(user = ..., and fullName), and returns are all constant-time operations⁴.

⁴Array lookups being constant-time is a huge simplification, called the RAM model, that we’ll roll back at the end of
the book.

Under these assumptions, the first, second, and third lines can each be evaluated in constant time Θ(1).
The total runtime of the function is the time required to run each line, one at a time, or:

𝑇userFullName(𝑁) = Θ(1) + Θ(1) + Θ(1)

Recall above, that Θ(1) in the middle of an arithmetic expression can be interpreted as 𝑓(𝑁) where
𝑓(𝑁) ∈ Θ(1) (it is a constant). That is, 𝑓(𝑁) = 𝑐. So, the above expression can be rewritten as⁵:

⁵There’s another simplification here. Technically, 𝑓(𝑁) is always within a bounded factor of a constant 𝑐1, and likewise
for 𝑔(𝑁), but we’ll clarify this when we get to complexity bounds below.

𝑇userFullName(𝑁) = 𝑐1 + 𝑐2 + 𝑐3

Adding three constant values together (even without knowing what they are, exactly) always gets us
another constant value. So, we can say that 𝑇userFullName(𝑁) ∈ Θ(1).

def updateUsers(users: List[User]) -> None:
 x = 1
 for user in users:
 user.id = x
 x += 1

The updateUsers function takes a list of users and assigns each user a unique id. For now, we’ll assume
that the assignment operations (x = 1 and user.id), and the increment operation (x += 1) all take
constant (Θ(1)) time. So, we can model the total time taken by the function as:

𝑇updateUsers(𝑁) = 𝑂(1) + ∑user(𝑂(1) + 𝑂(1))

Simplifying as above, we get

𝑇updateUsers(𝑁) = 𝑐1 + ∑user(𝑐2 + 𝑐3)

Recalling the rule for summation of a constant, using 𝑁 as the total number of users, and then the rule
for sums of terms, we get:

𝑇updateUsers(𝑁) = 𝑐1 + 𝑁 · (𝑐2 + 𝑐3) = Θ(𝑁)

3.7. Complexity Bounds
Not every mathematical function fits neatly into a single complexity class. Let’s go to our python code
example above. The in operator tests to see whether a particular value is present in our data. If data is
a list, then the implementation checks every position in the list, in order. Internally, Python
implements the expression target in data with something like:

def __in__(data, target):
 N = len(data)
 for i in range(N):
 if data[i] == target:
 return True
 return False

In the best case, the value we’re looking for happens to be at the first position data[0], and the code
returns after a single check. In the worst case, the value we’re looking for is at the last position
data[N-1] or is not in the list at all, and we have to check every one of the N positions. Put another
way, the best case behavior of the function is constant (exactly one check), while the worst case
behavior is linear (𝑁 checks). We can write the resulting runtime using a case distinction:

𝑇in(𝑁) =

⎩{
{⎨
{{
⎧𝑎·1+𝑏 𝐢𝐟 𝚍𝚊𝚝𝚊[𝟶] = 𝚝𝚊𝚛𝚐𝚎𝚝

𝑎·2+𝑏 𝐢𝐟 𝚍𝚊𝚝𝚊[𝟷] = 𝚝𝚊𝚛𝚐𝚎𝚝
...
𝑎·(𝑁−1)+𝑏 𝐢𝐟 𝚍𝚊𝚝𝚊[𝙽-𝟸] = 𝚝𝚊𝚛𝚐𝚎𝚝

𝑎·𝑁+𝑏 𝐢𝐟 𝚍𝚊𝚝𝚊[𝙽-𝟷] = 𝚝𝚊𝚛𝚐𝚎𝚝

We don’t know the runtime exactly, as it is based on the computer and version of python we are using.
However, we can model it, in general in terms of some upfront cost 𝑏 (e.g., for computing N =
len(data)), and some additional cost 𝑎 for every time we go through the loop (e.g., for computing
data[i] == target). Since we don’t know where the target is, exactly,

Let’s do a quick experiment. The code below is like our example above, but measures the time for one
lookup at a time. Each point it prints out is the runtime of a single lookup as the list gets bigger and
bigger.

from random import randrange
from datetime import datetime

N = 100000
TRIALS = 400

STEP = int(N/TRIALS)

data = list()

for i in range(TRIALS):
 # Increase the list size by STEP
 for j in range(STEP):
 data += [i * STEP + j]
 start = datetime.now()
 # Measure how long it takes to look up a random element
 if randrange(i * STEP + STEP) in data:
 pass
 end = datetime.now()
 # Print out the total time in microseconds
 microseconds = (end - start).total_seconds() * 1000000
 print(f"{i}, {microseconds}")

Size of Input (𝑁)
40 80 120 160 200 240 280 320 360

Ru
nt

im
e

(𝑇
(𝑁

))

100
200
300
400
500
600
700
800
900

Graph 3: Scaling the list lookup.

Graph 3 shows the output of one run of the code above. You can see that it looks a lot like a triangle.
The worst case (top of the triangle) looks a lot like the linear complexity class (Θ(𝑁), or an angled
line), but the best case (bottom of the triangle) looks a lot more like a flat line, or the constant
complexity class (Θ(1), or a flat line). The runtime is at least constant, and at most linear: We can
bound the runtime of the function between two complexity classes.

3.8. Big-𝑂 and Big-Ω
We capture this intuition of bounded runtime by introducing two new concepts: Worst-case (upper, or
Big-𝑂) and Best-case (lower, or Big-Ω) bounds. To see these in practice, let’s take the linear complexity
class as an example:

We write 𝑂(𝑁) to mean the set of all mathematical functions that are no worse than Θ(𝑁). This
includes:
• all mathematical functions in Θ(𝑁) itself
• all mathematical functions in lesser (slower-growing) complexity classes (e.g., Θ(1))
• any mathematical function that never grows faster than 𝑂(𝑁) (e.g., the runtime of each individual

lookup in our Python example above)

The figure below illustrates Θ(𝑁) (the dotted region) and all lesser complexity classes. Note the
similarity to Graph 3.

Similarly, we write Ω(𝑁) to mean the set of all mathematical functions that are no better than Θ(𝑁).
This includes:
• all functions in Θ(𝑁) itself
• all greater (faster-growing) complexity classes (e.g., Θ(𝑁2)), and anything in between.

To summarize, we write:
• 𝑓(𝑁) ∈ 𝑂(𝑔(𝑁)) to say that 𝑓(𝑁) is in Θ(𝑔(𝑁)) or a lesser complexity class.
• 𝑓(𝑁) ∈ Ω(𝑔(𝑁)) to say that 𝑓(𝑁) is in Θ(𝑔(𝑁)) or a greater complexity class.

3.9. Formalizing Big-𝑂
Before we formalize our bounds, let’s first figure out what we want out of that formalism.

Let’s start with the basic premise we outlined above: For a function 𝑓(𝑁) to be in the set 𝑂(𝑔(𝑁)), we
want there to be some function in Θ(𝑔(𝑁)) that is always bigger than 𝑓(𝑁).

The first problem we run into with this formalism is that we haven’t really defined what exactly
Θ(𝑔(𝑁)) is yet, so we need to pin down something first. Let’s start with the same assumption we made
earlier: we can scale 𝑔(𝑁) by any constant value without changing its complexity class. Formally:

Formally: ∀𝑐 : 𝑐 ⋅ 𝑔(𝑁) ∈ Θ(𝑔(𝑁))

That is, for any constant 𝑐 (∀ means ‘for all’), the product 𝑐 ⋅ 𝑔(𝑁) is in Θ(𝑔(𝑁)) (remember that ∈
means is in). This isn’t meant to be all-inclusive: There are many more functions in Θ(𝑔(𝑁)), but this
gives us a pretty good range of functions that, at least intuitively, belong in 𝑔(𝑁)’s complexity class.

Now we have a basis for formalizing Big-𝑂: We can say that 𝑓(𝑁) ∈ 𝑂(𝑔(𝑁)) if there is some
multiple of 𝑔(𝑁) that is always bigger than 𝑓(𝑁). Formally:

∃𝑐 > 0, ∀𝑁 : 𝑓(𝑁) ≤ 𝑐 ⋅ 𝑔(𝑁)

That is, there exists (∃ means there exists) some positive constant 𝑐, such that for each value of 𝑁 , the
value of 𝑓(𝑁) is smaller than the corresponding value of 𝑐 ⋅ 𝑔(𝑁).

Let’s look at some examples:

Example: 𝑓(𝑁) = 2𝑁 vs 𝑔(𝑁) = 𝑁

Can we find a 𝑐 and show that for this 𝑐, for all values of 𝑁 , the Big-𝑂 inequality holds for 𝑓 and 𝑔?

• 𝑓(𝑁) ≤ 𝑐 ⋅ 𝑔(𝑁)
• 2𝑁 ≤ 𝑐 ⋅ 𝑁
• 2 ≤ 𝑐

We start with the basic inequality, substitute in the values of 𝑓(𝑁) and 𝑔(𝑁), and then divide both
sides by 𝑁 . So, the inequality is always true for any value of 𝑐 ≥ 2.

Example: 𝑓(𝑁) = 100𝑁2 vs 𝑔(𝑁) = 𝑁2

Can we find a 𝑐 and show that for this 𝑐, for all values of 𝑁 , the Big-𝑂 inequality holds for 𝑓 and 𝑔?

• 𝑓(𝑁) ≤ 𝑐 ⋅ 𝑔(𝑁)
• 100𝑁2 ≤ 𝑐 ⋅ 𝑁2

• 100 ≤ 𝑐

We start with the basic inequality, substitute in the values of 𝑓(𝑁) and 𝑔(𝑁), and then divide both
sides by 𝑁 . So, the inequality is always true for any value of 𝑐 ≥ 100.

Example: 𝑓(𝑁) = 𝑁 vs 𝑔(𝑁) = 𝑁2

Can we find a 𝑐 and show that for this 𝑐, for all values of 𝑁 , the Big-𝑂 inequality holds for 𝑓 and 𝑔?

• 𝑓(𝑁) ≤ 𝑐 ⋅ 𝑔(𝑁)
• 𝑁 ≤ 𝑐 ⋅ 𝑁2

• 1 ≤ 𝑐 ⋅ 𝑁

Uh-oh! For 𝑁 = 0, there is no possible value of 𝑐 that we can plug into that inequality to make it true
(0 ⋅ 𝑐 is never bigger than 1 for any 𝑐).

Attempt 2: So what went wrong? Well, we mainly care about how 𝑓(𝑁) behaves for really big values
of 𝑁 . In fact, for the example, for any 𝑁 ≥ 1 (and 𝑐 ≥ 1), the inequality is satisfied! It’s just that pesky
𝑁 = 0!⁶.

⁶Recall that we’re only allowing non-negative input sizes (i.e., 𝑁 ≥ 0), so negative values of 𝑁 aren’t a problem.

So, we need to add one more thing to the formalism: the idea that we only care about “big” values of N.
Of course, that leaves the question of how big is “big”? Now, we could pick specific cutoff values, but
any specific cutoff we picked would be entirely arbitrary. So, instead, we just make the cutoff definition
part of the proof: When proving that 𝑓(𝑁) ∈ 𝑂(𝑔(𝑁)), we just need to show that some cutoff exists,
beyond which 𝑓(𝑁) ≤ 𝑐 ⋅ 𝑔(𝑁). The formal definition of Big-𝑂 is:

𝑓(𝑁) ∈ 𝑂(𝑔(𝑁)) ⇔ ∃𝑐 > 0, 𝑁0 ≥ 0 : ∀𝑁 ≥ 𝑁0 : 𝑓(𝑁) ≤ 𝑐 ⋅ 𝑔(𝑁)

This is the same as our first attempt, with only one thing added: 𝑁0. In other words, 𝑓(𝑁) ∈ 𝑂(𝑔(𝑁))
if we can pick some cutoff value (∃𝑁0 ≥ 0) so that for every bigger value of 𝑁 (𝑁 ≥ 𝑁0), 𝑓(𝑁) is
smaller than 𝑐 ⋅ 𝑔(𝑁).

3.9.1. Proving a function has a specific Big-𝑂 bound
To show that a mathematical function is in 𝑂(𝑔(𝑁)), we need to find a 𝑐 and an 𝑁0 for which we can
prove the Big-𝑂 inequality. A generally useful strategy is:

1. Write out the Big-O inequality
2. “plug in” the values of 𝑓(𝑁) and 𝑔(𝑁)
3. “Solve for” 𝑐, putting it on one side of the inequality, with everything else on the other side.
4. Try a safe default of 𝑁0 = 1.
5. Use the 𝐴 ≤ 𝐵 and 𝐵 ≤ 𝐶 imply 𝐴 ≤ 𝐶 trick (transitivity of inequality) to replace any term

involving 𝑁 with 𝑁0

5. Use the resulting inequality to find a lower bound on 𝑐

Continuing the above example:

• 𝑓(𝑁) ≤ 𝑐 ⋅ 𝑔(𝑁)
• 𝑁 ≤ 𝑐 ⋅ 𝑁2

• 1
𝑁 ≤ 𝑐

For that last step, we have 𝑁0 ≤ 𝑁 , or 1 ≤ 𝑁 , so dividing both sides by 𝑁 , we get 1
𝑁 ≤ 1. So, if we

pick 1 ≤ 𝑐, then 1
𝑁 ≤ 1 ≤ 𝑐, and 1

𝑁 ≤ 𝑐.

3.9.2. Proving a function does not have a specific Big-𝑂 bound
To show that a mathematical function is not in 𝑂(𝑔(𝑁)), we need to prove that there can be no 𝑐 or
𝑁0 for which we can prove the Big-𝑂 inequality. A generally useful strategy is:

1. Write out the Big-O inequality
2. “plug in” the values of 𝑓(𝑁) and 𝑔(𝑁)
3. “Solve for” 𝑐, putting it on one side of the inequality, with everything else on the other side.
4. Simplify the equation on the opposite side and show that it is strictly growing. Generally, this means

that the right-hand-side is in a complexity class at least 𝑁 .

Flipping the above example:

• 𝑓(𝑁) ≤ 𝑐 ⋅ 𝑔(𝑁)
• 𝑁2 ≤ 𝑐 ⋅ 𝑁
• 𝑁 ≤ 𝑐

𝑁 is strictly growing: for bigger values of 𝑁 , it gets bigger. There is no constant that can upper bound
the mathematical function 𝑁 .

3.10. Formalizing Big-Ω
Now that we’ve formalized Big-𝑂 (the upper bound), we can formalize Big-Ω (the lower bound) in
exactly the same way:

𝑓(𝑁) ∈ 𝑂(𝑔(𝑁)) ⇔ ∃𝑐 > 0, 𝑁0 ≥ 0 : ∀𝑁 ≥ 𝑁0 : 𝑓(𝑁) ≥ 𝑐 ⋅ 𝑔(𝑁)

The only difference is the direction of the inequality: To prove that a function exists in Big-Ω, we need
to show that 𝑓(𝑁) is bigger than some constant multiple of 𝑔(𝑁).

3.11. Formalizing Big-Θ
Although we started with an intuition for Big-Θ, we haven’t yet formalized it. To understand why, let’s
take a look at the following runtime:

𝑇 (𝑁) = 10𝑁 + rand(10)

Here rand(10) means a randomly generated number between 0 and 10 for each call. If the function
were just 10𝑁 , we’d be fine in using our intuitive definition of Θ(𝑁) being all multiples of 𝑁 .
However, this function still “behaves like” 𝑔(𝑁) = 𝑁… just with a little random noise added in. For big
values of 𝑁 (e.g., 1010), the random noise is barely perceptible. Although we can’t say that 𝑇 (𝑁) is
equal to some multiple 𝑐 ⋅ 𝑁 , we can say that it is close to that multiple (in fact, it’s always between
10𝑁 and 10𝑁 + 10). In other words, we can bound it from both above and below!

Let’s try proving this with the tricks we developed for Big-𝑂 and Big-Ω:

• 𝑇 (𝑁) ≤ 𝑐upper ⋅ 𝑁
• 10𝑁 + rand(10) ≤ 𝑐upper ⋅ 𝑁 (plug in 𝑇 (𝑁))
• 10 + rand(10)

𝑁 ≤ 𝑐upper (divide by 𝑁)

Looking at this formula, we can make a few quick observations. First, by definition rand(10) is never
bigger than 10. Second, if 𝑁0 = 1, 1

𝑁 can never be bigger than 1. In other words, rand(10)
𝑁 can not be

bigger than 10. Let’s prove that to ourselves.

Taking the default 𝑁0 = 1 we get:
• 1 ≤ 𝑁 (plug in 𝑁0)
• 10 ≤ 10𝑁 (multiply by 10)
• rand(10) ≤ 10 ≤ 10𝑁 (transitivity with rand(10) ≤ 10)
• rand(10)

𝑁 ≤ 10 (divide by 𝑁)
• 10 + rand(10)

𝑁 ≤ 10 + 10 (add 10)

So, if we pick 𝑐upper ≥ 20, we can show (again, by transitivity):

10 + rand(10)
𝑁 ≤ 𝑐upper

Which gets us 𝑇 (𝑁) ≤ 𝑐upper ⋅ 𝑁 for all 𝑁 > 𝑁0.

Now let’s try proving a lower (Big-Ω) bound:

• 𝑇 (𝑁) ≥ 𝑐lower ⋅ 𝑁
• 10𝑁 + rand(10) ≥ 𝑐lower ⋅ 𝑁 (plug in 𝑇 (𝑁))
• 10 + rand(10)

𝑁 ≥ 𝑐lower (divide by 𝑁)
• 10 ≥ 𝑐lower (By transitivity: 10 ≥ 10 + rand(10)

𝑁)

This inequality holds for any 10 ≥ 𝑐lower > 0 (recall that 𝑐 has to be strictly bigger than zero).

So, we’ve shown that 𝑇 (𝑁) ∈ 𝑂(𝑁) and 𝑇 (𝑁) ∈ Ω(𝑁). The new thing is that we’ve shown that the
upper and lower bounds are the same. That is, we’ve shown that 𝑇 (𝑁) ∈ 𝑂(𝑔(𝑁)) and 𝑇 (𝑁) ∈
Ω(𝑔(𝑁)) for the same mathematical function 𝑔. If we can prove that an upper and lower bound for
some mathematical function 𝑓(𝑁) that is the same mathematical function 𝑔(𝑁), we say that 𝑓(𝑁) and
𝑔(𝑁) are in the same complexity class. Formally, 𝑓(𝑁) ∈ Θ(𝑔(𝑁)) if and only if 𝑓(𝑁) ∈ 𝑂(𝑔(𝑁)) and
𝑓(𝑁) ∈ Ω(𝑔(𝑁)).

3.12. Tight Bounds
In the example above, we said that rand(10) ≤ 10. We could have just as easily said that rand(10) ≤
100. The latter inequality is just as true, but somehow less satisfying; yes, the random number will
always be less than 100, but we can come up with a “tighter” bound (i.e., 10).

Similarly Big-𝑂 and Big-Ω are bounds. We can say that 𝑁 ∈ 𝑂(𝑁2) (i.e., 𝑁 is no worse than 𝑁2). On
the other hand, this bound is just as unsatisfying as rand(10) ≤ 100, we can do better.

If it is not possible to obtain a better Big-𝑂 or Big-Ω bound, we say that the bound is tight. For
example:

• 10𝑁2 ∈ 𝑂(𝑁2) and 10𝑁2 ∈ Ω(𝑁2) are tight bounds.
• 10𝑁2 ∈ 𝑂(2𝑁) is correct, but not a tight bound.

• 10𝑁2 ∈ Ω(𝑁) is correct, but not a tight bound.

Note that since we define Big-Θ as the intersection of Big-𝑂 and Big-Ω, all Big-Θ bounds are, by
definition tight. As a result, we sometimes call Big-Θ bounds “tight bounds”.

3.13. Which Variable?
We define asymptotic complexity bounds in terms of some variable, usually the size of the collection
𝑁 . However, it’s also possible to use other bounds. For example, consider the function, which computes
factorial:

public int factorial(int idx)
{
 if(idx <= 0){ return 0; }
 int result = 1;
 for(i = 1; i <= idx; i++) { result *= i; }
 return result
}

The runtime of this loop depends on the input parameter idx, performing one math operation for each
integer between 1 and idx. So, we could give the runtime as Θ(idx).

When the choice of variable is implicit, it’s customary to just use 𝑁 , but this is not always the case. For
example, when we talk about sequences and lists, the size of the sequence/list is most frequently the
variable of interest. However, there might be other parameters of interest:
• If we’re searching the list for a specific element, what position to we find the element at?
• If we’re looking through a linked list for a specific element, what index are we looking for?
• If we have two or more lists (e.g., in an Edge List data structure), each list may have a different size.

In these cases, and others like them, it’s important to be clear about which variable you’re talking
about.

3.13.1. Related Variables
When using multiple variables, we can often bound one variable in terms of another. Examples include:

• If we’re looking through a linked list for the element at a specific index, the index must be
somewhere in the range [0, 𝑁), where 𝑁 is the size of the list. As a result, we can can always replace
𝑂(index) with 𝑂(𝑁) and Ω(index) with Ω(1), since index is bounded from above by a linear
function of 𝑁 and from below by a constant.

• The number of edges in a graph can not be more than the square of the number of vertices. As a
result, we can always replace 𝑂(edges) with 𝑂(vertices2) and Ω(edges) with Ω(1).

Note: Even though 𝑂(index) in the first example may be a tighter bound than 𝑂(𝑁), the 𝑂(𝑁) bound
is still tight in terms of 𝑁 : We can not obtain a tighter bound that is a function only of 𝑁 .

3.14. Summary
We defined three ways of describing runtimes (or any other mathematical function):

• Big-𝑂: The worst-case complexity:
‣ 𝑇 (𝑁) ∈ 𝑂(𝑔(𝑁)) means that the runtime 𝑇 (𝑁) scales no worse than the complexity class of

𝑔(𝑁)

• Big-Ω: The best-case complexity
‣ 𝑇 (𝑁) ∈ Ω(𝑔(𝑁)) means that the runtime 𝑇 (𝑁) scales no better than the complexity class of

𝑔(𝑁)
• Big-Θ: The tight complexity

‣ 𝑇 (𝑁) ∈ Θ(𝑔(𝑁)) means that the runtime 𝑇 (𝑁) scales exactly as the complexity class of 𝑔(𝑁)

We’ll introduce amortized and expected runtime bounds later on in the book; Since these bounds are
given without qualifiers, and so are sometimes called the Unqualified runtimes.

3.14.1. Formal Definitions
For any two functions 𝑓(𝑁) and 𝑔(𝑁) we say that:

• 𝑓(𝑁) ∈ 𝑂(𝑔(𝑁)) if and only if ∃𝑐 > 0, 𝑁0 ≥ 0 : ∀𝑁 > 𝑁0 : 𝑓(𝑁) ≤ 𝑐 ⋅ 𝑔(𝑁)
• 𝑓(𝑁) ∈ Ω(𝑔(𝑁)) if and only if ∃𝑐 > 0, 𝑁0 ≥ 0 : ∀𝑁 > 𝑁0 : 𝑓(𝑁) ≥ 𝑐 ⋅ 𝑔(𝑁)
• 𝑓(𝑁) ∈ Θ(𝑔(𝑁)) if and only if 𝑓(𝑁) ∈ 𝑂(𝑔(𝑁)) and 𝑓(𝑁) ∈ Ω(𝑔(𝑁))

Note that a simple Θ(𝑔(𝑁)) may not exist for a given 𝑓(𝑁), specifically when the tight Big-𝑂 and Big-
Ω bounds are different.

3.14.2. Interpreting Code
In general⁷, we will assume that most simple operations: basic arithmetic, array accesses, variable
access, string operations, and most other things that aren’t function calls will all be Θ(1).

⁷All of these are lies. The cost of basic arithmetic is often 𝑂(log 𝑁), array access runtimes are affected by caching (we’ll
address that later in the book), and string operations are proportional to the length of the string. However, these are all
useful simplifications for now.

Other operations are combined as follows…

Sequences of instructions

{
 op1;
 op2;
 op3;
}
...

Sum up the runtimes. 𝑇 (𝑁) = 𝑇op1(𝑁) + 𝑇op2(𝑁) + 𝑇op3(𝑁) + …

Loops

for(i = min; i < max; i++)
{
 block;
}

Sum up the runtimes for each iteration. Make sure to consider the effect of the loop variable on the
runtime of the inner block. 𝑇 (𝑁) = ∑max

𝑖=min 𝑇block(𝑁, 𝑖)

As a simple shorthand, if (i) the number of iterations is predictable (e.g., if the loop iterates 𝑁 times)
and (ii) the complexity of the loop body is independent of which iteration the loop is on (i.e., 𝑖 does not
appear in the loop body), you can just multiply the complexity of the loop by the number of iterations.

Conditionals

if(condition){
 block1;
} else {
 block2;
}

The total runtime is the cost of either block1 or block2, depending on the outcome of condition. Make
sure to add the cost of evaluating condition.

𝑇 (𝑁) = 𝑇condition(𝑁) + {𝑇block1(𝑁) if condition is true

𝑇block2(𝑁) otherwise

The use of a cases block is especially important here, since if 𝑇block1(𝑁) and 𝑇block2(𝑁) belong to
different asymptotic complexity classes, the overall block of code belongs to multiple classes (and thus
does not have a simple Θ bound).

3.14.3. Simple Complexity Classes
We will refer to the following specific complexity classes:
• Constant: Θ(1)
• Logarithmic: Θ(log 𝑁)
• Linear: Θ(𝑁)
• Loglinear: Θ(𝑁 log 𝑁)
• Quadratic: Θ(𝑁2)
• Cubic: Θ(𝑁3)
• Exponential Θ(2𝑁)

These complexity classes are listed in order.

3.14.4. Dominant Terms
In general, any function that is a sum of simpler functions will be dominated by one of its terms. That
is, for a polynomial:

𝑓(𝑁) = 𝑓1(𝑁) + 𝑓2(𝑁) + … + 𝑓𝑘(𝑁)

The asymptotic complexity of 𝑓(𝑁) (i.e., its Big-𝑂 and Big-Ω bounds, and its Big-Θ bound, if it exists)
will be the greatest complexity of any individual term 𝑓𝑖(𝑁)⁸.

⁸Note that this is only true when 𝑘 is fixed. If the number of polynomial terms depends on 𝑁 , we need to consider the
full summation.

Remember: If the dominant term in a polynomial belongs to a single simple complexity class, then the
entire polynomial belongs to this complexity class, and the Big-𝑂, Big-Ω, and Big-Θ bounds are all the
same.

3.14.5. Multiclass Asymptotics
A mathematical function may belong to multiple simple classes, depending on an unpredictable input
or the state of a data structure. Generally, multiclass functions arise in one of two situations. First, the
branches of a conditional may have different complexity classes:

𝑇 (𝑁) = {𝑇1(𝑁) if a thing is true 𝑇2(𝑁) otherwise

If 𝑇1(𝑁) and 𝑇2(𝑁) belong to different complexity classes, then 𝑇 (𝑁) as a whole belongs to either
class. In this case, we can only bound the runtime 𝑇 (𝑁). Specifically, if Θ(𝑇1(𝑁)) > Θ(𝑇2(𝑁)), then:
• 𝑇 (𝑁) ∈ Ω(𝑇2(𝑁))
• 𝑇 (𝑁) ∈ 𝑂(𝑇1(𝑁)).

Second, the number of iterations of a loop may depend on an input that is bounded by multiple
complexity classes. For example, if idx ∈ [1, 𝑁] (idx is somewhere between 1 and 𝑁 , inclusive), then
the following code does not belong to a single complexity class:

for(i = 0; i < idx; i++){ do_a_thing(); }

In this case, we can bound the runtime based on idx. Assuming do_a_thing() is Θ(1), then 𝑇 (𝑁) ∈
Θ(idx). However, since we can’t bound idx in terms of 𝑁 , then we can only provide weaker bounds
with respect to 𝑁 :
• 𝑇 (𝑁) ∈ Ω(1)
• 𝑇 (𝑁) ∈ 𝑂(𝑁)

Remember that if we can not obtain identical, tight upper and lower bounds in terms of a given input
variable, there is no simple Θ-bound in terms of that variable.

Chapter 4. The Sequence and List ADTs
Now that we have the right language to talk about algorithm runtimes (asymptotic complexity), we can
start talking about actual data structures that these algorithms can use. Since the choice of data
structure can have a huge impact on the complexity of an algorithm, it’s often useful to group specific
data structures together by the roles that they can fulfill in an algorithm. We refer to such a grouping as
an abstract data type or ADT.

4.1. What is an ADT?
An ADT is, informally, a contract that states what we can expect from a data structure. Take, for
example, a Java interface like the following:

public interface Narf<T>
{
 public void foo(T poit, int zort);
 public T bar(int zort);
 public int baz();
}

This interface states that any class that implements Moof must provide foo, bar, and baz methods,
with arguments and return values as listed above. This is not especially helpful, since it doesn’t give us
any idea of what these methods are supposed to do. Contrast Moof with the following interface:

public interface MutableSequence<T>
{
 public void update(int index, T element);
 public T get(int index);
 public int size();
}

Sequence is semantically identical to Narf, but far more helpful. Just by reading the names of these
methods, you get some idea of what each method does, and how it interacts with the state represented
by a Sequence. You can build a mental model of what a Sequence is from these names.

An Abstract Data Type is:
1. A mental model of some sort of data (a data type)
2. One or more operations for accessing or modifying that state (an interface)
3. Any other rules for the state (constraints)

For most ADTs discussed in this book, the ADT models sort of collection of elements. The difference
between them is how you’re allowed to interact with the data.

A data structure is a specific strategy for organizing the data modeled by an ADT. We say that the data
structure implements (or conforms to) an ADT if:
1. The data structure stores the same type of data as the ADT
2. Each of the operations required by the ADT can be implemented on the data structure
3. We can prove that the operation implementation is guaranteed to respect the rules for the ADT’s

state.

4.2. The Sequence ADT
A very common example of an ADT is a sequence. Examples include:

• The English alphabet (‘A’, ‘B’, …, ‘Z’)
• The Fibonacci Sequence (1, 1, 2, 3, 5, 8, …)
• An arbitrary collection of numbers (42, 19, 86, 23, 19)

What are some commonalities in these examples?

• Every sequence is a collection of elements of some type T (integer, character, etc…)
• The same element may appear multiple times.
• Every sequence has a size (that may be infinite). We often write 𝑁 to represent this size.
• Every element (or occurrence of an element) is assigned to an index: 0 ≤ index < 𝑁 .
• Every index in the range 0 ≤ index < 𝑁 has exactly one element assigned to it.

What kind of operations can we do on a sequence⁹?

⁹Note: Although several of the ADTs and data structures we’ll present throughout this book correspond to actual Java
interfaces and classes, Sequence is not one of them. However, it serves as a useful simplification of the List interface that
we’ll encounter later on.

public interface Sequence<T>
{
 /** Retrieve the element at a specific index or throw an IndexOutOfBounds exception if
index < 0 or index >= size() */
 public T get(int index);
 /** Obtain the size of the sequence */
 public int size();
}

To recap, we have a mental model, and a series of rules:
• A sequence contains 𝑁 elements.
• Every index 𝑖 from 0 ≤ 𝑖 < 𝑁 identifies exactly one element (no more, no less).

The get method returns the element identified by index, and the size method returns 𝑁 .

4.2.1. Sequences by Rule
For some of the example sequences listed above, we can implement this interface directly. For example,
for the English alphabet:

public class Alphabet implements Sequence<Character>
{
 /** Retrieve the element at a specific index */
 public Character get(int index)
 {
 if(index == 0){ return 'A'; }
 if(index == 1){ return 'B'; }
 /* ... */
 if(index == 25){ return 'Z'; }
 throw IndexOutOfBoundsException("No character at index "+index)
 }
 /** Obtain the size of the sequence */
 public int size()
 { return 26; }
}

Is this a sequence?

• size: There are 𝑁 = 26 elements.
• get: Every element from 0 ≤ 𝑖 < 26 is assigned exactly one value.

Similarly, we can implement the Fibonacci sequence according to the Fibonacci rule Fib(𝑥) = Fib(𝑥 −
1) + Fib(𝑥 − 2):

public class Fibonacci implements Sequence<Int>
{
 /** Retrieve the element at a specific index */
 public Int get(int index)
 {
 if(index < 0){
 throw IndexOutOfBoundsException("Invalid index: "+index)
 }
 if(index == 0){ return 0; }
 if(index == 1){ return 1; }
 return get(index-1) + get(index-2);
 }
 /** Obtain the size of the sequence */
 public int size()
 { return INFINITY; }
}

Is this a sequence?
• size: There are 𝑁 = ∞ elements.
• get: Every element from 0 ≤ 𝑖 < ∞ is assigned exactly one value derived from the value of

preceding elements of the sequence as Fib(𝑖 − 1) + Fib(𝑖 − 2)¹⁰.

¹⁰If you’re paying attention, you might notice that we’re waving our hands a bit with this proof. Specifically, how do
we convince ourselves that there is exactly one value at index 𝑖, and not zero (can Fib(𝑖) return
IndexOutOfBoundsException for 𝑖 ≥ 0), or more than 1 (will Fib(𝑖) always return the same value)? Proving either of
these will require a technique called induction that we’ll come back to later in the book.

4.2.2. Arbitrary Sequences
Often, however, we want to represent an sequence of arbitrary elements. We won’t have simple rule
we can use to translate the index into a value. Instead, we need to store the elements somewhere if we
want to be able to retrieve them. The easiest way to store a sequence, when we know the size of the
sequence upfront is called an array.

Let’s take a brief diversion into the guts of a computer. Most computers store data in a component
called RAM¹¹. You can think of RAM as being a ginormous sequence of bits (0s and 1s). Folks who work

¹¹What you’re about to read is called the RAM model of computing. It is a blatant lie: The way computers store and
access data involves multiple levels of caches, disks, and networked storage. However, the RAM model is quite useful as a
starting point. We’ll walk the lie back when we introduce the External Memory model towards the end of the book.

on computers have, over the course of many years, come to agree on some common guidelines for how
to represent other types of information in bit sequences. The details of most of these guidelines (e.g.,
Little- vs Big-endian, Floating-point encodings, Characters and strings, etc…) are usually covered in a
computer organization or computer architecture class. However, there’s a few details that are really
helpful for us to review.

First, we group every 8 bits into a ‘byte’. A byte can take on 28 = 256 different possible values. It turns
out that this is enough to represent most simple printable characters. Similarly, bytes can be grouped

together into 2, 4, or 8 bytes, allowing us to represent more complex data like emoji, larger integers,
negative numbers, or floating point numbers. Strings are a special case that we’ll come back to in a
moment.

For example, the ASCII character encoding¹² forms the basis for most character representations we use
today, and assigns each of the letters of the English alphabet (upper and lower case, and a few other
symbols) to a particular sequence of 8 bits (one byte).

¹²The American Standard Code for Information Interchange forms the basis for most modern character ‘encodings’.
More recent encodings (e.g. UTF-8, UTF-16) extend the ASCII code, and sometimes require more than one byte per
printable character.

Most modern computers are ‘byte-addressable’, meaning that every byte is given its own address. The
first byte is at address 0000, followed by address 0001, then address 0002, and so forth. If we want to
represent a value that takes up multiple bytes (e.g., a 4-byte integer), we typically point at the address
of the first byte of the value.

4.2.3. Arrays
Let’s say we have a series of values we want to store. For example, let’s say we wanted to store the
sequence ‘H’, ‘e’, ‘l’, ‘l’, ‘o’. The ASCII code for ‘H’ is hexadecimal 0x48, or binary 01001000. We could
store that value at one specific address in RAM. The value takes up one byte of space, so we could put
the second value in the sequence ‘e’ (hexadecimal 0x65, or binary 10101001) in the byte right after it.
We then similarly store the remaining three elements of the sequence, each in the byte after the
previous one.

Figure 5: RAM (1) can be viewed as a sequence of bits (2). We can break these bits up into
fixed size chunks (3). Each fixed size chunk can be used to identify some value, like for

example a character (4). Thus a sequence of characters can be stored somewhere in RAM (5).

This arrangement, where we just concatenate elements side by side in memory is really useful, if each
element always uses up the same number of bytes. Specifically, if we want to retrieve the 𝑖th element of
the sequence, we need only two things:
1. The position of the 0th element in RAM (Let’s call this 𝑆)
2. The number of bytes that each element takes up (Let’s call this 𝐸).

The the 𝑖th element’s 𝐸 bytes will always start at byte 𝑆 + 𝑖 ⋅ 𝐸 (with 0 being the first element).

4.2.3.1. Array Runtime Analysis
In order to retrieve the 𝑖’th element of an array, we need one multiplication, and one addition. This is
true regardless of how big the array is. If the array has a thousand, or a million, or a trillion elements,
we can still obtain the address of the 𝑖th element with one multiplication and one addition. Given the

address, we can then obtain the value in a single access to memory. In other words, the cost of
retrieving an element from an array is constant (i.e., Θ(1))¹³.

¹³If you’re paying close attention, you might note that we still need to retrieve 𝐸 bytes, and so technically the cost of
an array access is Θ(𝐸). However, we’re mainly interested in how runtime scales with the size of the collection, as 𝐸 is
fixed upfront, and usually very small. So, more precisely, with respect to 𝑁 , the cost of retrieving an element from an
array is Θ(1). The even more attentive reader might be aware of things like caches, which as previously mentioned, we’re
going to ignore for now.

4.2.3.2. Side Note: Memory Allocation
Most operating systems provide a way to allocate contiguous regions of memory (in C, this operation is
called malloc, in Java it is called new). Eventually, when the data is no longer necessary (C’s free
operation, or based on Java’s automatic ‘garbage collector’), the allocated memory is returned to the
general pool of ‘free’ memory. We will assume that both allocating and freeing memory are constant-
time (Θ(1)) operations¹⁴

¹⁴Again, this is a lie. Depending on the operating system’s implementation (e.g., if it allocates pages lazily or not),
allocating memory may require linear time in the size of the allocation, or non-constant (e.g., logarithmic or linear) time
in the number of preceding allocations. Nevertheless, for the rest of the book, we’ll treat it as being constant

It’s important to note that once memory is allocated, it has a fixed size. It is not generally possible to
simply resize a previously allocated chunk of memory, since that memory is located at a specific
position in RAM, and it is possible that the space immediately following the array may already be in-
use¹⁵.

¹⁵C provides a realloc operation that opportunistically tries to extend an allocated chunk of memory if space exists for
it. However, if this is not possible, the entire allocation will be copied byte-for-byte to a new position in memory where
space does exist. As we’ll emphasize shortly, copying an array is a linear (Θ(𝑁)) operation.

4.2.3.3. Arrays In Java
Java provides a convenient shorthand for creating and accessing arrays using square brackets. To
instantiate an array, use new:

int[] myArray = new int[100];

Note that the type of an integer array is int[]¹⁶, and the number of elements in the array must be
specified upfront (100 in the example above). To access an element of an array use array[index].

¹⁶Java sort of allows you to store variable size objects in an array. For example, String[] is a valid array type. The trick
to this is that Java allocates the actual string somewhere else in RAM called the heap. What it stores in the actual array is
the address of the string (also called a pointer).

myArray[10] = 29;
int myValue = myArray[10];
assert(myValue == 29);

Java arrays are bounds-checked. That is, Java stores the size of the array as part of the array itself. The
array actually starts 4 bytes after the official address of the array; these bytes are used to store the size
of the array. Whenever you access an array element, Java checks to make sure that the index is greater
than or equal to zero and less than the size. If not, it throws an IndexOutOfBounds exception otherwise.
As a convenient benefit, bounds checking means we can get the array size from Java.

int size = myArray.size
assert(size == 100)

Since the size is stored at a known location, we can always retrieve it in constant (𝑂(1)) time.

To prove to ourselves that the Array implements the Sequence ADT, we can implement its methods:

public class ArraySequence<T> implements Sequence<T>
{
 T[] data;

 public ArraySequence(T[] data){ this.data = data; }
 public T get(int index) { return data[index]; }
 public int size() { return data.size; }
}

The ArraySequence, initialized by an array, follows the rules for a Sequence:
• size: There are 𝑁 =data.size elements in the array
• get: The ith element of the sequence is data[i].

4.2.4. Mutable Sequences
The Fibonacci sequence and the English alphabet are examples of immutable sequences. Immutable
sequences are pre-defined and can not be changed; We can’t arbitrarily decide that the 10th Fibonacci
number should instead be 3. However, if the sequence is given explicitly (e.g., as an array), then it’s
physically possible to just modify the bytes in the array to a new value. To accommodate such edits, we
can make our Sequence ADT a little more general by adding a way to modify its contents. We’ll call the
resulting ADT a MutableSequence¹⁷.

¹⁷Note: Like Sequence, the MutableSequence is not a native part of Java. Its role is subsumed by List, which we’ll
discuss shortly.

public interface MutableSequence<T> extends Sequence<T>
{
 public void update(int index, T element)
}

The extends keyword in java can be used to indicate that an interface takes in all of the methods of the
extended interface, and potentially adds more of its own. In this case MutableSequence has all of the
methods of Sequence, plus its own update method.

A Mutable Sequence introduces one new rule:
• After we call update(i, value) with a valid index (i.e., 0 ≤ 𝑖 < 𝑁), every following call to get(i)

for the same index will return the value passed to update (until the next time index i is updated).

4.2.4.1. Mutable Array
To prove to ourselves that the array implements the MutableSequence ADT, we can implement its
methods:

public class MutableArraySequence<T> implements MutableSequence<T>
{
 T[] data;

 public ArraySequence(int size){ this.data = new T[size]; }
 public void update(int index, T element) { data[index] = value; }
 public T get(int index) { return data[index]; }
 public int size() { return data.size; }
}

As before, we can show that the array satisfies the rules on get and size, leaving the new rule:
• update: Calling update overwrites the array element at data[index] with value, which is the value

returned by get(index).

4.2.5. Array Summary
Observe that each of the three MutableSequence methods are implemented in a single, primitive
operation. Thus:

• get: Retrieving an element of an Array (i.e., array[index]) is Θ(1)
• update: Updating an element of an array (i.e., array[index] = ...) is Θ(1)
• size: Retrieving the array’s size (i.e., array.size) is Θ(1)

Recall that size accesses a pre-computed value, stored with the array in Java.

4.3. The List ADT
Although we can change the individual elements of an array, once it’s allocated, the size of the array is
fixed. This is reflected in the MutableSequence ADT, which does not provide a way to change the
sequence’s size. Let’s design our next ADT by considering how we might want to change an array’s
size:

• Inserting a new element at a specific position
• Removing an existing element at a specific position

It’s also useful to treat inserting at/removing from the front and end of the sequence as special cases,
since these are both particularly common operations.

We can summarize these operations in the List ADT¹⁸:

¹⁸See Java’s List interface for the full list of operations supported on Lists. Most of these operations are so-called
syntactic sugar on top of these basic operations, offering cleaner code, but no new functionality.

public interface List<T> extends MutableSequence<T>
{
 /** Append an element to the end of a list */
 public void add(T element);
 /** Insert an element at an arbitrary position */
 public void add(int index, T element);
 /** Remove an element at a specific index */
 public void remove(int index);

 // ... and more operations that are not relevant to us for now.
}

List brings with it a new set of rules:
• After calling add(index, element) with a valid 0 ≤ index ≤ 𝑁 (note that 𝑁 is an allowable index):

‣ Every element previously at an index 𝑖 ≥ index will be moved to index 𝑖 + 1
‣ The value element will be the new element at index index,
‣ size() will increase by 1.

• After calling remove(index) with a valid 0 ≤ index < 𝑁 :
‣ Every element previously at an index 𝑖 > index will be moved to index 𝑖 − 1
‣ The value previously at index index will be removed

https://docs.oracle.com/javase/8/docs/api/java/util/List.html

‣ size() will decrease by 1.

Note that calling add(element) is the same as calling add(element, size()).

4.3.1. A simple Array as a List
We can still use Arrays to implement the List ADT. However, recall that it’s not (generally) possible to
resize a chunk of memory once it’s been allocated. Since we can’t change the size of an Array once it’s
allocated¹⁹, we’ll need to allocate an entirely new array to store the updated list. Once we allocate the
new array, we’ll need to copy over everything in our original array to the new array.

¹⁹Again, the C language has a method called realloc that can sometimes change the size of an array… if you’re lucky
and the allocator happens to have some free space right after the array. However, in this book we try to avoid relying
purely on unconstrained luck.

public class SimpleArrayAsList<T> extends MutableArraySequence implements List<T>
{
 // data, get, update, size() inherited from MutableArraySequence

 public void add(T element){ add(size(), element); }
 public void add(int index, T element)
 {
 // Skipped: Check that index is in-bounds.
 T[] newData = new data[size() + 1];
 for(i = 0; i < newData.size; i++){
 if(i < index){ newData[i] = data[i]; }
 else if(i == index){ newData[i] = element; }
 else { newData[i] = data[i-1]; }
 }
 data = newData;
 }
 public void remove(int index)
 {
 // Skipped: Check that index is in-bounds.
 T[] newData = new data[size() - 1];
 for(i = 0; i < newData.size; i++){
 if(i < index){ newData[i] = data[i]; }
 else { newData[i] = data[i+1]; }
 }
 }
}

Does this satisfy our rules?
• add: newData is one larger, elements at positions index and above are shifted right by one position,

and element is inserted at position index.
• remove: newData is one smaller, and elements at positions index and above are shifted left by one

position.

Let’s look at the runtime of the add method:
• We’ll assume that memory allocation is constant-time (Θ(1))²⁰.
• We already said that array updates and math operations are constant-time (Θ(1))

²⁰Lies! Lies and trickery! Memory allocation may require zeroing pages, multiple calls into the kernel, page faults, and a
whole mess of other nonsense that scale with the size of the memory allocated. Still, especially for our purposes here, it’s
usually safe to assume that the runtime of memory allocation is a bounded constant.

So, we can view the the add method as

public void add(int index, T element)
{
 /* Theta(1) */
 for(i = 0; i < newData.size; i++)
 {
 if(/* Theta(1) */){ /* Theta(1) */ }
 else if(/* Theta(1) */){ /* Theta(1) */ }
 else { /* Theta(1) */ }
 }
}

Since every branch of the if inside the loop is the same, we can simplify the loop body to just Θ(1).

Recalling how we use Θ bounds in an arithmetic expression, we can rewrite the runtime and simplify it
as:

• 𝑇add(𝑁) = Θ(1) + ∑newData.size
𝑖=0 Θ(1)

• = Θ(1) + ∑𝑁+1
𝑖=0 Θ(1) (newData is one bigger than the original 𝑁)

• = Θ(1) + (𝑁 + 2) ⋅ Θ(1) (Plugging in the formula for summation of a constant)
• = Θ(1 + 𝑁 + 2) (Merging Θs)
• = Θ(𝑁) (Dominant term)

If you analyze the runtime of the remove method similarly, you’ll likewise get Θ(𝑁).

4.4. Linked Lists
Θ(𝑁) is not a particularly good runtime for simple “building block” operations like add and remove.
Since these will be called in loops, the Array data structure is not ideal for situations where a List is
required.

The main difficulty with the Array is that the entire list is stored in the same memory allocation. A
single chunk of memory holds all elements in the list. So, instead of allocating one chunk for the entire
list, we can go to the opposite extreme and give each element its own chunk.

Giving each element its own chunk of memory means that we can allocate (or free) space for new
elements without having to copy existing elements around. However, it also means that the elements of
the list are scattered throughout RAM. If we want to be able to find the 𝑖th element of the list (which
we need to do to implement get), we need some way to keep track of where the elements are stored.
One approach would be to keep a list of all 𝑁 addresses somewhere, but this brings us back to our
original problem: we need to be able to store a variable-size list of 𝑁 elements.

Another approach is to use the chunks of memory as part of our lookup strategy: We can have each
chunk of memory that we allocate store the address of (i.e., a pointer to) the next element in the list.
That way, we only need to keep track of a single address: the position of the first element of the list
(also called the list head). The resulting data structure is called a linked list. Figure 6 contrasts the
linked list approach with an Array.

Figure 6: Instead of allocating a fixed unit of memory like an array, a linked list consists of
chunks of memory scattered throughout RAM. Each element gets one chunk that has a

pointer to the next (and/or previous) element in the sequence.

4.4.1. Side Note: How Java uses Memory
Java represents chunks of memory as classes, so we can implement a linked list by defining a new class
that contains a value, and a reference to the next node on the list.

It’s important here to take a step back and think about how Java represents chunks of memory.
Specifically, primitive values (int, long, float, double, byte, and char) are stored by value. This
means that if you have a variable with type long, that variable directly stores a number. If you assign
the value to a new variable, the new variable stores a copy of the number.

long x = 12;
long y = x;
x = x + 5;
System.out.println(x); // prints 17
System.out.println(y); // prints 12

On the other hand, objects (anything that extends Object) and arrays are stored by reference. This
means that what you’re storing is the address of the actual object value (aka a pointer). When you
assign the object to a new variable, what you’re really doing is copying the address of the object or
array; both variables will now point to the same object.

int[] x = new [1, 2, 3, 4, 5];
int[] y = x;
x[2] = 10;
System.out.println(y[1]); // prints 2
System.out.println(y[2]); // prints 10
System.out.println(y[3]); // prints 4

4.4.2. A Linked List as a List
We refer to the chunk of memory that we allocate for each element of a linked list as a Node. In java, we
can allocate Node objects if we define them as a class, here storing the element represented by the Node,
and a reference (pointer) to the next Node. We use java’s Optional type to represent situations where a
Node is not present²¹

²¹An Optional extends existing types to indicate that the value may be present or absent (empty). Although java
already allows for object variables to take a null value, using Optional instead makes it easier for people writing code to
know when it’s necessary to explicitly check for a missing value (e.g., value.isPresent()). Since Optional was added to

java, it’s been considered bad practice to use null. As a further side note, Optional can actually be viewed as a
MutableSequence. Implementing this is left as an exercise for the reader.

A simple linked list, also known as a ‘singly’ linked list, is just a reference to a head node (which is
empty if the list is empty). The last element of the list has an empty next.

public class SinglyLinkedList<T> implements List<T>
{
 class Node
 {
 T value;
 Optional<Node> next = Optional.empty();
 public this(T value) { this.value = value; }
 }
 /** The first element of the list, or None if empty */
 Optional<Node> head = Option.none();

 /* method implementations */
}

To help us convince ourselves that we’re actually creating a list, let’s state some rules for this structure
we’re building:
1. If the list is empty then head.isEmpty().
2. If the list is non-empty, then head refers to the 0th node.
3. The 𝑥th node stores the 𝑥th element of the list.

• Corrolary: There are 𝑁 nodes.
4. If the 𝑥th node is the last node (i.e., 𝑥 = 𝑁 − 1), then the node’s next.isEmpty().
5. If the 𝑥th node is not the last node, then the node’s next points to the 𝑥 + 1th node.

Rules about how a data structure should behave are often called invariants. When writing your own
code and/or data structures, a great way to avoid bugs is to write down the invariants that you expect
your code to follow, and then proving that your code follows the rules (“preserves the invariant”).

4.4.2.1. Linked List get

HEAD M o p .

0 1 2

3

Figure 7: Retrieving the character at index 2 from a linked list representing the list ['M', 'o', 'p',
'.']

To retrieve a specific element 𝑖 of the list, we need to find the 𝑖th node. Since all we have to start is the
0th node (the head; step ⓪), we can start there. If that’s the node we’re looking for, great, we’re done;
Otherwise, the only other place we can go is the 1st node (step ①). We repeat this process, moving from
node to node until we get to the 𝑖th node (step ②), and return the corresponding value (step ③).

 public T get(int index)
 {
 if(index < 0){ throw new IndexOutOfBoundsException() }
 Option<Node> currentNode = head;

 for(i = 0; i < index; i++){
 if(currentNode.isNone){ throw new IndexOutOfBoundsException() }
 currentNode = currentNode.get().next;
 }
 if(currentNode.isNone){ throw new IndexOutOfBoundsException() }
 return currentNode.get().value;
 }

Note that, if the rules we set for ourselves are being followed, we can prove to ourselves that this
implementation is correct. Recall that we said get(index) is correct if it returns the indexth element of
the list.

1. We start with currentNode assigned to head; By the rules we set for ourselves, this is the 0th node.
2. The 𝑖th node has a pointer to the (𝑖 + 1)th node, which we follow 𝑖 times.
3. After 𝑖 steps, currentNode has been reassigned to the 0 + 1 + … + 1⏟⏟⏟⏟⏟

𝑖 times

= 0 + ∑𝑖 1 = 𝑖th node.

4. It follows from step 4 and the fact that the loop iterates index times that after the loop, currentNode
is the indexth node.

5. It follows from step 5 and the rule that the 𝑖th node (if it exists) contains the 𝑖th element (if it exists),
that the value in currentNode which get returns is the indexth node

6. Since a correct get is one that returns the indexth node, we can conclude that get is correct.

As usual, we can figure out the runtime of a snippet of code, starting by replacing every primitive
operation with Θ(1)

 public T get(int index)
 {
 if(/* Theta(1) */){ throw /* Theta(1) */ }
 /* Theta(1) */
 for(i = 0; i < index; i++){
 if(/* Theta(1) */){ throw /* Theta(1) */ }
 /* Theta(1) */
 }
 if(/* Theta(1) */){ throw /* Theta(1) */ }
 return /* Theta(1) */
 }

Before the for loop, we have only constant-time operations. Similarly, we have only constant-time
operations inside the body of the loop. Both can be simplified to Θ(1) Let’s start by figuring out the
runtime of what’s inside the for loop.

∑index−1
𝑖=0 Θ(1) = ((index − 1) − 0 + 1) ⋅ Θ(1) = index ⋅ Θ(1) = Θ(index)

Since this is only the body of the for loop, we can add back the constant time operations before and
after the loop to get the total runtime of get:

𝑇get(index) = Θ(1) + Θ(index) + Θ(1) = Θ(index).

The Θ(index) runtime is a little unusual: With arrays, most costs were expressed in terms of the size of
the array itself. That is, our asymptotic runtime complexity was given in terms of 𝑁 , while here, it’s

given in terms of index. However, we know that 0 ≤ index < 𝑁 , and we we can use that fact to create
an analogous bound on the runtime of get²².

²²The proof here is given only for valid inputs. For values of index less than zero, the function aborts immediately, and
we can prove to ourselves (based on the rule that the last element in the list has an empty next node) that we will never
go through the loop more than 𝑁 times. Strictly speaking, the runtime should be, Θ(min(𝑁, index)). However, this
added complexity makes no immediate impact on our discussion, and so we omit it.

Since index < 𝑁 , get is at worst linear in the size of the array, and so we get the upper bound:
𝑇get(𝑁) = 𝑂(𝑁)

Similarly, since index ≥ 0, so get could be constant time (e.g., get(0) requires only constant time), and
we get the lower bound: 𝑇get(𝑁) = Ω(1)

4.4.2.2. Linked List update

HEAD M o p .

0 1 2

3
‘o’

Figure 8: Updating the character at index 2 to 'o', on the linked list representing the list ['M',
'o', 'p', '.']. After the update, the linked list represents the list ['M', 'o', 'o', '.']

To update the 𝑖th element of a linked list, just like get, we need to first find the 𝑖th element. As a result,
the code for update is almost exactly the same as get, except for the very last line.

 public void update(int index, T element)
 {
 if(index < 0){ throw new IndexOutOfBoundsException() }
 Option<Node> currentNode = head;
 for(i = 0; i < index; i++){
 if(currentNode.isNone){ throw new IndexOutOfBoundsException() }
 currentNode = currentNode.get().next;
 }
 if(currentNode.isNone){ throw new IndexOutOfBoundsException() }
 currentNode.get().value = element;
 }

Using our Linked List invariants, we can similarly prove that our implementation of update follows the
rules that we set out for List’s update operation. Remember that update(index, element) is
supposed to change the linked list so that the next time we call get(index), we get element instead of
what was there before.

1. We start with currentNode assigned to head; By the rules we set for ourselves, this is the 0th node.
2. The 𝑖th node has a pointer to the (𝑖 + 1)th node, which we follow 𝑖 times.
3. After 𝑖 steps, currentNode has been reassigned to the 0 + 1 + … + 1⏟⏟⏟⏟⏟

𝑖 times

= 0 + ∑𝑖 1 = 𝑖th node.

4. It follows from step 4 and the fact that the loop iterates index times that after the loop, currentNode
is the indexth node.

5. It follows from step 5 and the rule that the 𝑖th node (if it exists) contains the 𝑖th element (if it exists),
that the value in currentNode which update changes is the indexth node

6. Since any subsequent calls to get will return the indexth node, we can conclude that update is
correct.

Side Note: Observe how the proof for update is almost exactly the same as the proof for get.

As usual we can figure out the runtime by replacing every primitive operation with Θ(1)

 public void update(int index, T element)
 {
 if(/* Theta(1) */){ throw /* Theta(1) */ }
 /* Theta(1) */
 for(i = 0; i < index; i++){
 if(/* Theta(1) */){ throw /* Theta(1) */ }
 /* Theta(1) */
 }
 if(/* Theta(1) */){ throw /* Theta(1) */ }
 /* Theta(1) */
 }

Once we replace all primitive operations with Θ(1), update and get are exactly the same. Taking the
same steps gets us to a runtime of Θ(index), or 𝑂(𝑁).

4.4.2.3. Linked List add

HEAD M o o .

f0 1 2
3

Figure 9: Inserting the character 'f' at index 3, on the linked list representing the list ['M', 'o',
'o', '.']. After the add, the linked list represents the list ['M', 'o', 'o', 'f', '.'] (the call of the noble

dogcow).

Unlike the array, where we manually need to copy over every element of the array to a new position, in
a linked list, the position of each node is given relative to the previous node. If we insert a new node by
redirecting the next value of the previous node, we automatically shift every subsequent node by one
position to the right.

 public void add(int index, T element)
 {
 if(index < 0){ throw new IndexOutOfBoundsException() }
 Node newNode = new Node(element);
 if(head.isEmpty){ /* Case 1: Initially empty list */
 head = Optional.of(newNode);
 } else if(index == 0){ /* Case 2: Insertion at head */
 newNode.next = head;
 head = Optional.of(newNode);
 } else { /* Case 3: Insertion elsewhere */
 Option<Node> currentNode = head;
 for(i = 0; i < index-1; i++){
 if(currentNode.isNone){ throw new IndexOutOfBoundsException() }
 currentNode = currentNode.get().next;
 }
 if(currentNode.isNone){ throw new IndexOutOfBoundsException() }
 newNode.next = currentNode.get().next;

 currentNode.get().next = Optional.of(newNode);
 }
 }

Let’s prove to ourselves that this code is correct, and start by recalling our rules for how add is
supposed to behave:
1. The size of the List grows by 1.
2. The value element will be the new element at index index.
3. Every element previously at an index 𝑖 ≥ index will be moved to index 𝑖 + 1.

Let’s set aside the size rule for the moment and focus on the other two rules. We have our original list
(𝐿old of size 𝑁old), and the list we get after calling add (𝐿new of size 𝑁new = 𝑁old + 1). Collectively, the
latter two rules give us four cases for what will happen if we call 𝐿new.get(𝑖):
1. If 0 ≤ 𝑖 < index: 𝐿new.get(𝑖) = 𝐿old.get(𝑖)
2. If 𝑖 = index: 𝐿new.get(𝑖) = element
3. If 𝑁new > 𝑖 > index: 𝐿new.get(𝑖) = 𝐿old.get(𝑖 − 1)
4. If 𝑖 ≥ 𝑁new: 𝐿new.get(𝑖) throws an exception

We’ll want to show that after calling add, any subsequent call to get(𝑖) will return the correct value. We
already proved that get is correct if the linked list follows the rules we set forth for ourselves, so we
need to show that the new linked list is correct for the updated list. In other words, we want to show
that:
1. All nodes at position 0 ≤ 𝑖 < index are left unchanged.
2. The newly created node (at position index) is pointed to by the node at position index−1, or by

head if index = 0.
3. All nodes previously at positions index ≤ 𝑖 < 𝑁old are now at position 𝑖 + 1.
4. The node at position 𝑁new − 1 has an empty next.

The code has three cases that we’ll look at individually.

Case 1: Initially empty list: Going down the list of things we need to prove:
1. There are no other nodes, so nothing changes.
2. The newly created node is at position 0, and so is correctly pointed to by head after the code runs.
3. There are no other nodes, so nothing needs to change.
4. Since 𝑁new = 1, we need the node at position 𝑁new − 1 = 0 to have an empty next. Since this is the

node we just created, this is true.

Case 2: Insertion at head: Going down the list of things we need to prove:
1. Since index = 0, there can be no nodes at positions before index, so nothing changes.
2. The newly created node is at position 0, and so is correctly pointed to by head after the code runs.

For the remaining two rules, consider the fact that the (newly created) 0th node’s next field now points
at the node that used to be the head.
• By our rules for linked lists, this means that the old 0th element is now the 1st element (correct).
• The new 1st element is pointing at what used to be the 1st element, but is now the 2nd element (also

correct).
• The new 2nd element is pointing at what used to be the 2nd element, but is now the 3rd element

(also correct).

• The new 3rd element is pointing at what used to be the 3rd element, but is now the 4th element (also
correct).

This pattern continues: The new 𝑖th element is pointing at what used to be the 𝑖th element, but is now
the 𝑖 + 1th element (still correct), up until we get to the 𝑁new − 1th element, which used to be the
𝑁old − 1th element, which still (correctly) has an empty next.

Case 3: Insertion anywhere else: Going down the list of things we need to prove:
1. The code finds the node at position index−1, skipping over all preceding nodes. These are

unchanged.
2. The newly created node is pointed to by the node at position index−1, putting it at position index.

For the remaining two rules, we want to consider what happens to the node previously at position
index, but also need to consider the possibility that there was no node at this index to begin with (if
index = 𝑁old). If the node exists, then as in Case 2, the node at position index moves to position index
+1, likewise repositioning every following node, including the final one. If the node doesn’t exist, then
the newly created node’s next field is assigned an empty value, (correctly) making it the last node in
the list.

4.4.2.4. Aside: Invariants and Rule Preservation
It’s worth taking a step back at this point and reviewing what we just did and why. We defined the
expected state of the linked list (in terms of the behavior of get and our rules for a correct linked list)
after the update, but we did so relatively to its state before the update. Specifically, we showed that, if
the list was correct before we called update, it would still be correct (for the new list) after we called
update, or in other words, we showed that update preserves the invariants we defined for the linked
list.

Invariants are an extremely useful debugging technique for data structures (and other code). If you can
precisely define one or more rules (invariants) for your data structure, you can check to see whether
your code follows the rules: If you get a correct data structure as input to your function, is it always the
case that you get a correct data structure as an output (keeping in mind that the function may change
the definition of correctness).

4.4.2.5. Linked List add runtime
The runtime of add follows a pattern very similar to that of update:

 public void add(int index, T element)
 {
 if(/* Theta(1) */){ /* Theta(1) */ }
 /* Theta(1) */
 if(/* Theta(1) */){ /* Case 1: Initially empty list */
 /* Theta(1) */
 } else if(/* Theta(1) */){ /* Case 2: Insertion at head */
 /* Theta(1) */
 } else { /* Case 3: Insertion elsewhere */
 /* Theta(1) */
 for(i = 0; i < index-1; i++){
 /* Theta(1) */
 }
 if(/* Theta(1) */){ /* Theta(1) */ }

 /* Theta(1) */
 }
 }

Based on the the outer if statement, we have three cases:

𝑇add(index) =
⎩{
⎨
{⎧Θ(1) if case 1

Θ(1) if case 2

Θ(1)+ ∑index−1
𝑖=0 (Θ(1)) if case 3

Simplifying the third case, we get:
• Θ(1) + ∑index−1

𝑖=0 (Θ(1))
• Θ(1) + (index − 1 + 0 + 1)(Θ(1))
• Θ(1) + index ⋅ Θ(1)
• Θ(1) + Θ(index)
• Θ(index)

So… 𝑇add(index) =
⎩{
⎨
{⎧Θ(1) if case 1

Θ(1) if case 2

Θ(index) if case 3

Since index = 0 in cases 1 and 2, we can further simplify to

𝑇add(index) =
⎩{
⎨
{⎧Θ(index) if case 1

Θ(index) if case 2

Θ(index) if case 3
= Θ(index)

As before, Θ(index) ∈ 𝑂(𝑁) and Θ(index) ∈ Ω(1)

4.4.2.6. Linked List size (Take 1)
The size of the list is the number of elements. Thinking back to our rules, the last node is the node with
an empty next pointer, so we need to figure out where this node is located

 public int size()
 {
 Option<Node> currentNode = head;
 int count = 0;
 while(! currentNode.isEmpty()){
 currentNode = currentNode.get().next
 count += 1
 }
 return count
 }

Let’s see if we can prove that this code is correct. This code is a bit harder to think about than get and
update, since in both of those cases we had a nice handy for loop to keep track of how many ‘steps’ we
take through the list. Here, the while loop just keeps going until currentNode.isEmpty(). When trying
to tackle a tricky proof like this, it can often help to break down the proof into cases.

Let’s start with the simplest case: What happens if the list is empty (𝑁 = 0)?
1. count starts off at 0.
2. If the list is empty, then by our rules for linked lists head is empty, so we start off with currentNode

empty as well.
3. Since currentNode is empty from the start, we skip the while loop’s body entirely.

4. count is never modified, and we correctly return 0.

Let’s tackle the next simplest case next: What happens if the list only has 1 element (𝑁 = 1)
1. count starts off at 0.
2. head points to the 0th element of the list, so currentNode starts off pointing to the 0th node.
3. Since currentNode is not empty, we enter the body of the while loop.
4. We increment count to 1, and update currentNode from the 0th node to its next reference.
5. By our rules for linked lists, since the list has only 1 element, the 0th node’s next reference is empty,

so currentNode is now empty and we exit the while loop.
6. We correctly return count= 1,

Moving on, let’s see what happens if the list has 2 elements (𝑁 = 2)
1. count starts off at 0.
2. head points to the 0th element of the list, so currentNode starts off pointing to the 0th node.
3. Since currentNode is not empty, we enter the body of the while loop, increment count, and update

currentNode to its next reference.
4. We increment count to 1, and update currentNode from the 0th node to its next reference, the 1st

node.
5. We increment count to 2, and update currentNode from the 1st node to its next reference.
6. By our rules for linked lists, since the list has only 2 elements, the 1st node’s next reference is

empty, so currentNode is now empty and we exit the while loop.
7. We correctly return count= 2,

Moving on, let’s try a list with 3 elements (𝑁 = 3)
1. count starts off at 0.
2. head points to the 0th element of the list, so currentNode starts off pointing to the 0th node.
3. Since currentNode is not empty, we enter the body of the while loop, increment count, and update

currentNode to its next reference.
4. We increment count to 1, and update currentNode from the 0th node to its next reference, the 1st

node.
5. We increment count to 2, and update currentNode from the 1st node to its next reference, the 2nd

node.
6. We increment count to 3, and update currentNode from the 2nd node to its next reference.
7. By our rules for linked lists, since the list has only 3 elements, the 2st node’s next reference is

empty, so currentNode is now empty and we exit the while loop.
8. We correctly return count= 3,

Although the proof is different for each case, you might notice a pattern forming. For a list of any size,
we can come up with a similar proof by adding a bunch of lines into the middle, all from the template:

We increment count to 𝑖, and update currentNode from the 𝑖 − 1th node to its next reference, the 𝑖th
node.

In other words, it looks like the code ties the values of count and currentNode together. We can use
this intuition to define a rule for ourselves: If currentNode is not empty, it always points to the count
node of the list. This is true at the start of the loop, since count= 0 and by our rules for linked lists,
currentNode points at the 0th node. Now, if we know that currentNode (if non-empty) points to the

count node of the linked list when we start the loop body, we can show that it’s still true at the end of
the loop body:
1. If currentNode points to the 𝑖th node of the list, by our rules for linked lists, its next element points

to the 𝑖 + 1th node.
2. If count is 𝑖 to start, then incrementing it sets it to 𝑖 + 1
3. From lines 1 and 2, after the loop body, count= 𝑖 + 1 and currentNode is the 𝑖 + 1th node, and

we’re still following the rule.

Since the rule holds at the start of the loop, and since the loop body preserves the rule, we know that
the rule is also followed at the end of the loop. We call a rule that is satisfied at the start of a loop and
preserved by the loop body, a loop invariant.

The loop ends at the very first point where currentNode becomes empty. This happens in one of two
cases:
• head is empty.
• The next element of currentNode is empty.

By our rules for linked lists, the first case happens only when the list is empty, and we’ve already
shown that size is correct in this case. Similarly, by our rules for linked lists, the second case happens
only when currentNode points to the last (i.e., 𝑁 − 1th) node of the linked list. From that, and our loop
invariant, it must be the case that count is 𝑁 − 1. Since count gets incremented one last time on the
2nd line of the loop body, when the loop ends count= 𝑁 , which is also correct.

4.4.2.7. Aside: Loop Invariants
Once again, let’s take a quick moment to review what we just did, because it’s very useful trick for
debugging loops in your code²³. We started by trying to prove that our code was correct for a couple of

²³Although it’s a bit too early to use the term in the main body of the text, loop invariants are a specific example of a
proof trick called “induction”. We’ll come back to induction as a more general technique next chapter, when we talk about
recursion.

simple example cases. From those simple example cases, we found a pattern in the proof: a rule that our
code seemed to obey throughout our proof. We then set up a loop invariant based on that pattern and
showed that (i) it held at the start of the loop, and (ii) each line of the loop preserved the rule. Because
we could show that the invariant held at the start of the loop, and each loop iteration preserved the
invariant, we inferred that the invariant had to be true at the end of the loop as well. We used the fact
that the invariant was true at the end of the loop to prove that size was correct.

When debugging code with loops, try tracing through the loop manually for a few iterations. You’ll
often start noticing patterns and relationships between elements of the code. Try to pin down exactly
what that pattern is (like currentNode always points to the count node in our example), and write
down the loop invariant. Then, try to prove to yourself that (i) the pattern holds at the start of the loop,
(ii) the pattern is preserved by the loop body.

4.4.2.8. Linked List size (Take 1) runtime
As usual, we can replace all primitive operations with Θ(1)

 public int size()
 {
 /* Theta(1) */
 while(/* Theta(1) */){

 /* Theta(1) */
 }
 return /* Theta(1) */
 }

Once again, the while loop makes our job a little harder. However, just as before, we can use the loop
invariant to help ourselves out:
1. count starts at 0.
2. Each loop iteration increments count by 1.
3. The loop ends when count = 𝑁 .

Combining these facts, we can definitively state that the loop goes through 𝑁 iterations. So, we get:

Θ(1) + Θ(1) + … + Θ(1)⏟⏟⏟⏟⏟⏟⏟
𝑁 times

+ Θ(1) = (𝑁 + 2) ⋅ Θ(1) = Θ(𝑁 + 2) = Θ(𝑁)

4.4.2.9. Linked List size (Take 2)
It’s not great when a function has a Θ(𝑁) runtime, and it’s really bad when it’s something as
fundamental as size. Many algorithms need to know the size of a collection, so it would be useful to
have a way to cut the runtime to something more practical. In the case of size, there’s one simple trick
that lets us cut the runtime down to Θ(1): Precomputing the size. Let’s add a N field to the linked list
and modify the size method to just return it.

public class SinglyLinkedList<T> implements List<T>
{
 class Node
 {
 T value;
 Optional<Node> next = Optional.empty();
 public this(T value) { this.value = value; }
 }
 /** The first element of the list, or None if empty */
 Optional<Node> head = Option.none();

 /** The precomputed size of the list */
 private int N = 0;

 public int size() { return this.N; }

 /* method implementations */
}

The list starts off empty (𝑁 = 0), so initially this method is correct. However, we need to make sure
that it stays correct as we change the structure. There are two operations, add and remove, that modify
the size of a list, incrementing and decrementing the list’s size. We need to modify these operations to
properly maintain 𝑁 :

 public void add(int index, T element)
 {
 /* ... as before ... */
 this.N += 1;
 }

 public void remove(int index)
 {
 /* ... as before ... */
 this.N -= 1;
 }

Let’s review the trade-off we just made: Both changes add an additional Θ(1) runtime cost to add and
remove. This doesn’t change the overall code complexity of either (Θ(index), or equivalently 𝑂(𝑁))²⁴.

²⁴In practice, incrementing and decrementing an integer is a relatively inexpensive operation in most cases, so even
outside of the magical land of asymptotics, this is usually a worthwhile trade. That said, there are some exceptions,
primarily when dealing with concurrency (synchronized integers are expensive) or with random memory access (we’ll
talk about this later in the book).

In exchange, the asymptotic runtime complexity of size drops from Θ(𝑁) to Θ(1). To summarize, the
asymptotic runtime complexity of all the other operations stays the same, and size’s asymptotic
runtime complexity drops massively. This is almost always a worthwhile trade.

4.5. Iterators

4.6. Doubly Linked Lists

	Introduction
	What to get out of this Data Structures class?
	An intuition for data structures
	Practice with formal proofs and recursion

	What this class is not.
	A word on Lies and Trickery

	Math Refresher
	Asymptotic Runtime Complexity
	Some examples of asymptotic runtime complexity
	Asymptotic Analysis in General
	Runtime Growth Functions
	Complexity Classes
	Example

	Formal Notation
	Polynomials and Dominant Terms
	Θ in mathematical formulas

	Code Complexity
	Complexity Bounds
	Big-O and Big-Ω
	Formalizing Big-O
	Proving a function has a specific Big-O bound
	Proving a function does not have a specific Big-O bound

	Formalizing Big-Ω
	Formalizing Big-Θ
	Tight Bounds
	Which Variable?
	Related Variables

	Summary
	Formal Definitions
	Interpreting Code
	Simple Complexity Classes
	Dominant Terms
	Multiclass Asymptotics

	The Sequence and List ADTs
	What is an ADT?
	The Sequence ADT
	Sequences by Rule
	Arbitrary Sequences
	Arrays
	Array Runtime Analysis
	Side Note: Memory Allocation
	Arrays In Java

	Mutable Sequences
	Mutable Array

	Array Summary

	The List ADT
	A simple Array as a List

	Linked Lists
	Side Note: How Java uses Memory
	A Linked List as a List
	Linked List get
	Linked List update
	Linked List add
	Aside: Invariants and Rule Preservation
	Linked List add runtime
	Linked List size (Take 1)
	Aside: Loop Invariants
	Linked List size (Take 1) runtime
	Linked List size (Take 2)

	Iterators
	Doubly Linked Lists

