
PROJECT OVERVIEW

Tools like personal sensing [29, 82], citizen science efforts such as eBird [38] or the Citizen Science Al-
liance [1], crowdsourcing [52, 116, 13], governmental open-data portals, and social media sources like Twit-
ter’s Firehose put into the public’s hands a wealth of high-volume — but often low-veracity data. With
data enthusiasts, scientists, reporters, and start-up companies all rushing to leverage this data for their
own ends, managing the data’s reliability is more important than ever before.

Historically, the reliability of a dataset would be ensured before it was analyzed, often through complex,
carefully developed curation processes that attempt to completely shield the dataset’s users from any and
all uncertainty. As data sizes and rates have grown, maintaining these processes has become increasingly
infeasible. Consequently, a “collect first, clean later” mentality has emerged, resulting in high-volume,
high-velocity, and low-veracity data being dumped into so-called data lakes (or “data swamps” [124]).
Although this approach seems lighter-weight at first, it simply defers the burden of curation to the analysis
step, and in doing so encourages the use of brittle, one-off, or heuristic data cleaning solutions. [124].

Heuristic data cleaning is the closest to being sustainable. With minimal human intervention, good heuris-
tics produce mostly reliable, usually actionable information from big, messy data. For instance, an analyst
might automate their curation workflow by using classifiers to predict missing attribute values, or by us-
ing an entity-resolver to find and merge duplicate records. Unfortunately, heuristic solutions are also the
most dangerous, as the result of heuristic curation is typically taken as fact. Serious mistakes result when
low-confidence, or uncertain heuristic inferences are treated as truth [76]. As we will discuss shortly, many
principled strategies presently exist for explicitly tracking potential errors in unreliable data. However,
using these strategies is hard enough that analysts more often resort to ad-hoc, unreliable approaches like
comment fields and README files. Our aim in this proposal is to provide a better option by enabling data
management systems capable of querying and organizing uncertain data, without being hard to use.

When using a database system, users focus on the questions they want answered, while the system ad-
dresses mechanical concerns like which join algorithm is best or how data is stored on disk. Our aim is to
do the same for uncertainty management by decoupling the process of asking questions about uncertain
data, from mechanical concerns like why the data is uncertain, how the user wants to view uncertainty in
query results, or which algorithms should be used. In short, this five-year proposal lays the foundations
for research on declarative uncertainty management.

Our approach builds on decades of research on managing uncertain data [35, 69, 16, 66, 113, 114, 135, 21,
122, 71, 137, 25, 58, 70, 78, 81, 142] (only a small sample of the field). Although the problem of uncertainty
in data is clearly not being ignored, existing models, formal representations, query processing systems,
algorithms, tools, and techniques for handling uncertain or probabilistic data create a bewildering array
of options for users. Making matters worse, selecting from among these options requires a careful un-
derstanding of which statistical guarantees and performance properties are needed, as well as what data
models are available. Selecting the right options thus requires a convergence of backgrounds in statistics,
database administration, and data modeling that no one individual database user is likely to have. Hence,
while efforts to adapt research in this field of probabilistic query processing (PQP) to specific real-world
challenges exist [45, 42, 48, 57, 70, 80], general-purpose tools for uncertainty-management remain predom-
inantly limited to research prototypes.

Mimir. Our approach builds on preliminary work from PI Kennedy’s ODIn lab on a new PQP system
called Mimir [138, 141, 109, 123, 88], and leverages it as a way to virtualize uncertainty. In classical PQP
systems, uncertainty is treated as a property of the data, which leads to uncertainty encodings that store
data as a probability distribution over possible values. By contrast, Mimir treats uncertainty as a property
of the process that created the data, encoding uncertainty as a form of provenance. Mimir is hardly the first
to recognize the link between PQP and provenance [57, 56, 21, 135]. However, to the best of our knowledge
we will be the first to leverage the link in order to decouple a user’s analytical goals from orthogonal
implementation details such as specific algorithms, data representations, or presentation formats.

Mimir takes tasks that are classically performed heuristically (i.e., data curation operations like schema
alignment, missing-value imputation, type inference, or outlier removal) and encodes them through high-
level abstractions that we call lenses [138, 141]. Lenses act as a form of uncertainty-capture, registering alter-
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native outcomes to normally heuristic decisions. Once uncertainty is registered, users in an ideal declara-
tive setting would not need to give any further thought to the fact that their data are uncertain — at least
not until the uncertainty becomes relevant. Unfortunately, there currently exists a bewildering array of
options available to users for visualizing, summarizing, and analyzing uncertainty, from many different
perspectives. As a result, the cognitive burden of explicitly tracking data uncertainty is high, especially
when compared to the apparently straightforward approach of simply applying heuristic solutions upfront
and just querying the data, reliability be damned.

Goals. This proposal aims to realize the potential of declarative uncertainty management systems. By
decoupling the process of querying data from the mechanics of managing uncertainty in the data being
queried, we will make it easier for analysts to incorporate uncertainty-awareness into their workflows. If funded,
this proposal will lay the foundations for a lifetime of research on declarative uncertainty management,
leading to a new wave of safer, more reliable, and more trustworthy data management systems. As a way
to guide our exploration of declarative uncertainty, our initial efforts will be driven by two thrusts:

Thrust 1: Summarizing Uncertainty Different PQP systems offer a range of different perspectives from
which to view uncertain query outputs: Probabilities [114, 135, 25, 66], Statistical measures like expectations
or variances [71, 78], Histograms [71], Rankings [45, 93], or Provenance [135, 141, 109]. As a consequence,
users trying to ask questions about uncertain data also have to explicitly decide upfront how they plan to
visualize uncertainty in the answers to those questions. The first thrust of this proposal explores strate-
gies for decoupling these two decisions. Our approach is based on automatically generating summaries
of uncertainty in query results by default, while retaining the flexibility to provide additional details if the
user desires it. Key challenges that we address in this thrust include algorithms for efficiently constructing
summaries, as well as strategies for managing how much detail is shown to the user at any one time.

Thrust 2: Compiler Support for Uncertainty Declarative uncertainty will require many fundamental changes
in the design of query compilers. For this five-year proposal, we will address two specific considerations.
First, research on PQP has led to a plethora of different algorithms and intermediate representations for
probabilistic data, each optimized for specific use cases. Query compilers already automate the rote task
of selecting between join algorithms, access paths, join orders, and more, based on the underlying data
and the other needs of a query. We need compilers that do the same for uncertainty, selecting between
the plethora of available algorithms for PQP. Second, query compilers classically treat schemas as static
properties of a database. With uncertainty, this is no longer the case [96, 97, 123]. Although the general
challenge of compilers for data with uncertain schemas will not be completely solved through this specific
five-year effort, we will take the first steps by creating an efficient uncertainty-aware query type-checker.

1 — Background and Related Work
1.1 — Uncertain Query Processing
The majority of recent work on uncertain data management relies on so-called possible worlds semantics [17].
An uncertain database D instantiating schema sch(D) is defined as a set of possible worlds: determinis-
tic database instances D ∈ D instantiating schema sch(D) = sch(D). Possible worlds semantics defines
queries over uncertain databases in terms of deterministic query semantics. A deterministic query Q ap-
plied to an uncertain database defines a set of possible results Q(D) = { Q(D) | D ∈ D }. Note that these
semantics (illustrated in Figure 1) are agnostic to the data representation, query language, and number of
possible worlds |D|. A probabilistic database 〈D, p : D → [0, 1]〉 is an uncertain database annotated with a
probability distribution p(D) with the standard normalization property: ∑D∈D p(D) = 1. Observe that
queries induce a marginal distribution over possible result relations (P[Q(D) = R] = ∑D∈D : Q(D)=R p(D)).

1.2 — Visual Representations of Uncertain Relational Data
The large number of possible worlds that could exist make it impractical to show probabilistic query result
relations (i.e., Q(D)) directly as a set of possible relation instances. Instead, most work on PQP focuses
on reducing this representation into a more easily consumed form, typically summarizing by individual
tuples. At one extreme lie what are called certain query answers, commonly used in data exchange [50]. For
a probabilistic query Q(D) the certain answer (which we write Qcertain(D)) consists of the set of tuples that
are present in the query result in all possible worlds (i.e., { t | ∀D ∈ D : t ∈ Q(D) }). At the other extreme,
we can consider the set of possible query answers (Qpossible(D)), which include all tuples that appear in the
query result in any possible world (i.e., { t | ∃D ∈ D : t ∈ Q(D) }).
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Figure 1: Normal query processing semantics (a) vs query processing under possible worlds semantics (b).

Certain and possible results represent two extremes of a spectrum. The former may omit potentially valu-
able information, while the latter might produce too many results. The search for an intermediate ‘sweet
spot’ has led to the emergence of a variety of orthogonal summarization strategies that we broadly describe
as either summary-by-filtering or summary-by-aggregation. Summary-by-filtering discards tuples that are
likely to be irrelevant to the user — typically based on a metric called the tuple’s confidence, or the marginal
probability of the tuple existing in a randomly sampled query result (i.e., con f (t) = ∑D∈D : t∈Q(D) p(D)).

Examples of filtering mechanisms include: (1) threshold [53], which retains all tuples with a confidence
that exceeds a given threshold, (2) top-k posterior [45, 92], which retains only the top-k most likely possible
tuples in the output relation as ranked by their confidence, (3) top-k prior [141], which retains the union of
all tuples in the result of the query on the k most likely possible input instances — We refer to the special
case of the top-1 prior as best guess filtering — and (4) sample [71, 81], which retains the union of tuples
drawn from a fixed-size sample of the possible output relation instances.

Summary-by-aggregation creates groups of different versions of the same tuple from across different pos-
sible worlds. An early example is x-tuples/or-set-tuples [21], which display tuples or attribute values in
the form of sets of possible alternatives. More recent schemes further summarize attribute alternatives,
displaying them as histograms [71], expectations [71, 78], confidence bounds [81], or hard bounds [79].

Example 1 Consider the following four instances of a relation Prod(id, name, brand, type).

Prod1 id name type MSRP
P123 Apple 6s phone $400
P125 Note2 phone $300

Prod2 id name type MSRP
P123 Apple 6s phone $900
P125 Note2 phone $300

Prod3 id name type MSRP
P123 Apple 6s phone $400
P125 Note2 tablet $300

Prod4 id name type MSRP
P123 Apple 6s phone $900
P125 Note2 tablet $300

Note the two values that change between each instance (in bold text above). Part P123 has a price of $400 or $900,
while part P125 has a type of ‘phone’ or ‘tablet’. Applying summary-by-aggregation, we get a more compact summary
representation [21, 66], where discrete values are replaced by sets of possible values.

Prod id name type MSRP
P123 Apple 6s phone {$400, $900}
P125 Note2 {phone, tablet} $300

1.3 — Evaluating Queries on Uncertain Data
The large number of possible worlds that could exist also make possible worlds semantics equally imprac-
tical for query evaluation. Instead of evaluating queries on each individual possible world one at a time,
existing systems adopt either a Monte-Carlo- or a Placeholder-based evaluation strategy.

Monte-Carlo. Monte-Carlo evaluation [71, 19, 81] substitutes the set of all possible instances of a relation
with a bag of samples drawn from those instances. This is perhaps the most general evaluation strategy,
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as a naive implementation simply runs the (deterministic) query once on each sampled instance. Monte-
Carlo evaluation was first proposed as part of the MCDB system [71], alongside an optimization called
tuple-bundles. Tuple-bundles factorize the sampled relation instances by merging similar tuples from dif-
ferent possible worlds together to eliminate redundant computations on values that are consistent across
all instances (i.e., determininstic). PI Kennedy’s Jigsaw/FuzzyProphet [80, 81] system later used the same
strategy for allowing non-statisticians to run what-if?-style queries on predictive analytics models. A key
strength of Monte-Carlo evaluation strategies is that they impose no constraints on the query language,
and only require that it be possible to draw samples from an uncertain relation. However, this generality
comes at the cost of completeness: any statistics obtained about the results are necessarily approximations.

Placeholder. An alternative evaluation strategy relies on placeholders — analogous to promises/fu-
tures [95] — to defer realizing concrete instances of uncertain relations until after query evaluation is
complete. Instead, query processing manipulates an internal representation where attributes, tuples, and
databases are annotated with constraints and transformations that guide how the resulting relation can be
instantiated. A common example of a placeholder-based strategy is called c-tables [68, 69], which uses la-
beled nulls to represent uncertainty. Labeled nulls appearing the relation itself encode missing or unknown
attribute values. Each tuple is annotated with a boolean expression over labeled null symbols called a local
condition (denoted φ), that determines the tuple’s presence in any specific world. A boolean expression
called the global condition restricts value assignments to labeled nulls. Any valuation v, or assignment of
values to labeled nulls that satisfies the global condition defines a specific possible world denoted D[v].

Example 2 Returning to Example 1, the results of a query σcategory=‘phone′(Prod) can be expressed as the C-Table:

σcategory=‘phone′ (Prod) id name category MSRP φ

P123 Apple 6s phone 〈X〉 >
P125 Note2 〈Y〉 $300 〈Y〉 = ‘phone′

Under valuation v1 = {X 7→ $400, Y 7→ ‘phone′}, Prod[v1] corresponds to Prod1 and the selection predicate
passes all rows. Valuation v4 = {X 7→ $900, Y 7→ ‘tablet′} corresponds to Prod4 and the relation resulting from
the selection contains only one row because 〈Y〉 6= ‘phone’.

Many PQP systems adopt some variation of c-tables for query evaluation, including MayBMS [16, 66],
Sprout [113, 114], Trio [21, 135], Orion 2.0 [122], MystiQ [25], Orchestra [58, 70], and Katara [33, 22] as well
as PI Kennedy’s own system PIP [78].

Most c-tables-based PQP systems also add a probability measure that defines the likelihood of each valua-
tion, and in turn each possible world. Such a pairing of a c-table and a probability measure is commonly
referred to as a pc-table [56]. Critically, this distribution is closed under query processing over c-tables [56].
A distribution over valuations of the input instance to a query is valid for the output of the query as well. As
a result, the placeholder-style output of a query over c-tables, coupled with the input probability measure,
losslessly encode the distribution over possible results.

Unfortunately, computing tuple confidences from this encoding generally reduces to counting satisfying as-
signments to a boolean formula [40], a #P problem. Consequently, end-to-end PQP systems either resort to
approximations outright [66], attempt analytical solutions where possible and fall back to approximation-
based techniques otherwise [113, 78, 122], or rely on bounded-error approximations [53, 113] to allow early
termination of normally exponential-time algorithms. A notable subclass of PQP systems aim specifically
at computing top-k posterior or threshold representations [92, 45, 53]. These systems commonly rely on ap-
proximations to quickly assess which results are guaranteed to be in (or not in) the top-k/threshold result.
The exponential-time exact marginal probability computations are necessary only for borderline tuples.

1.4 — Uncertainty Capture — Where does uncertainty come from?
PQP Systems. All work on PQP defines a precise model for representing uncertain data, but few address
the construction of that model. Orion 2.0 [122] requires users to model their data using a library of construc-
tors for common data distribution types. MCDB’s Variable Generating, or VG-Functions [71] generalize this
approach by allowing users to define new distributions as randomized procedures that sample from source
distributions. PI Kennedy’s systems: PIP [78] and Jigsaw [81, 80] take a similar approach. MayBMS [16, 66]

4



constructs models through a non-deterministic repair-key operation that de-duplicates data, and similar
approaches are used by Sprout [114, 113], Trio [21, 135], and MystiQ [25].

Model Databases. Several efforts have explored the use of SQL as a language for interacting with prob-
abilistic models. MauveDB [44], BayesStore [132], and FunctionDB [127] allow relations to be defined by
continuous functions (representing graphical models in the case of MauveDB and BayesStore). Pulse [12],
Lahar [91], and SimSQL [28] focus specifically on time-series models — The latter two systems specifically
target Markov processes. QUDE [23] and FIDES [125] explore uncertainty in the model itself, resulting
from training errors like accidental p-hacking or biased training data. The idea of models as data also ap-
pears under the name Probabilistic Programming [85, 121, 115], which involve domain-specific languages
for training and querying a specific classes of models based on the available data.

Data Exchange, Integration, and Cleaning. Data exchange [50, 49] and data integration manage data trans-
formations across different representations and schemas. Overt errors — typically contradictions or miss-
ing values — need to be “repaired” before the database can present a consistent answer [49, 18]. Frequently,
many such repairs are possible, creating uncertainty as to which repair is the correct one [22, 48]. The Or-
chestra system [58, 70], Dataspaces [51, 63, 130], and more (e.g., [98, 26, 27, 117]) all use a form of uncertainty
capture to facilitate repairs. Data cleaning systems like Katara [33, 32, 22] and others [133, 32, 83, 47, 54, 84]
adopt similar techniques, but for repairing self-inconsistent data based on constraints.

Approximate Query Processing. Approximate [10, 111, 112, 64, 60, 61] and online [64, 60, 61] query pro-
cessing use samples of input data to quickly extrapolate approximations of final query results. The majority
of work on AQP is on extrapolating progressively better approximations and error bounds for progres-
sively larger fragments of SQL [9, 136, 31, 62, 118, 65, 11]. Approximations are also beneficial in distributed
systems as a response to slow or failed nodes that would otherwise block query execution. Numerous
efforts [24, 89, 55, 131, 126] capture uncertainty through constraints on result relations that can allow a
blocked computation to be terminated early if the constrained result is actionable or sufficient for the user.

Predictive Interfaces. There has been significant recent interest in interfaces for data entry [30], data
cleaning [74], speculative updates [59], and interactive querying [106, 108, 67]. Interface challenges often
require aggressive heuristic interpretation, albeit with respect to the query rather than the data.

2 — Preliminaries — Uncertainty Virtualization
In most existing work on probabilistic databases, uncertainty is treated as a fundamental feature of data.
As illustrated in Figure 1, probabilistic data is simply a set of possible versions — or more precisely, an
encoding of the set of possibilities. By contrast, Mimir treats uncertainty as a feature of processes: The ob-
servable data in a system are fixed, but processes that act on that data may admit different interpretations,
which in turn may lead to different outcomes. The immediate consequence of this shift in perspective is
that “uncertain data” in Mimir are never materialized — Mimir works strictly with deterministic relations,
supplemented with contextual metadata. Although not the original goal of avoiding materialization1, an
important consequence that this proposal aims to leverage is the added flexibility it brings. By not com-
mitting to any specific materialization strategy, Mimir is free to select from among a wide variety of visual
uncertainty representations, data encodings, and query processing algorithms. We refer to this feature as
virtualized uncertainty, and we now outline the the basics of how it functions.

Example 3 Alice is evaluating the effects of a promotional offer for her
company. Unfortunately some of her sources use non-standard termi-
nology, while others contain duplicate information.

Prod id name type MSRP
P123 Apple 6s phone $400
P123 Apple 6s phone $900
P125 Note2 phablet $300

Primitive-valued expressions (i.e., expressions in selection, projection, or aggregation operators) in Mimir
may reference special variable-generating terms (VG-Terms, denoted Var[·](·)). Conceptually, a VG-Term
behaves like a skolem term, instantiating fresh skolem variables that act as placeholders for decisions that
would otherwise need to be made heuristically — The result of any query that uses VG-Terms is effectively
a c-table. Additionally, each VG-Term includes a reference to an independently created object called a
model that manages the domain and probability distribution of the possible value assignments for one or

1The decision to avoid materializing uncertainty also facilitates backwards compatibility with classical relational databases [141].
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Figure 2: An example of Mimir’s user interface for displaying relational tables.

more skolem variables — A query and set of models referenced by its VG-Terms together define a pc-
table. Typically, VG-Terms are created as part of higher level abstractions called lenses [138, 141]. A lens
captures general data-cleaning tasks like schema matching, key-repair, or missing-value imputation. The
lens is responsible for instantiating both the view that encodes all possible clean versions of the data (i.e.,
by encoding heuristic decisions through VG-Terms), as well as any model objects used by those VG-Terms.

Example 4 Continuing Example 3, Alice applies a type-repair lens to coerce Prod.type into a standardized form
and a key-repair lens to eliminate duplicates in Prod.id. The resulting (lightly abbreviated) view query is:

CREATE VIEW Prod_Clean AS

SELECT id, name , MSRP , IF type IN (’phone ’, ’tablet ’, ’computer ’)

THEN type ELSE Var[’TR:type’](id) END AS type FROM

(SELECT id ,

IF COUNT(DISTINCT name)>1 THEN Var[’KR:name’](id) ELSE FIRST(name) END AS name ,

IF COUNT(DISTINCT type)>1 THEN Var[’KR:type’](id) ELSE FIRST(type) END AS type ,

IF COUNT(DISTINCT MSRP)>1 THEN Var[’KR:MSRP’](id) ELSE FIRST(MSRP) END AS MSRP

FROM Prod GROUP BY id)

In principle, this query would produce the
c-table to the right, identical to that of Ex-
ample 2 before applying selection.

Prod id name type MSRP
P123 Apple 6s phone 〈KR : name : P123〉
P125 Note2 〈TR : type : P125〉 $300

Observe that reliable data is preserved, while potentially erroneous data is removed and replaced with skolem sym-
bols. Identifier arguments (e.g., Prod.id) deterministically assign names to the generated variables, allowing cor-
relations to be expressed. As the lenses are created, Mimir also instantiates four model objects, named KR:name,
KR:type, KR:MSRP (for key-repair), and TR:type (for type-repair). The model objects track possible assignments
(e.g., 〈KR : name : P123〉 ∈ {$400, $900}), as well as a probability distribution over each (e.g., a uniform distribu-
tion in lieu of additional information). Say that Alice queries the data to assess the cost of a 10% discount:

SELECT SUM(MSRP * 0.1) FROM Prod_Clean p, Sales s

WHERE p.id = s.product AND TODAY() - s.date < 1 month

The hypothetical result would be encoded as an expression $30+ $30+ 0.1 · 〈KR : name : P123〉+ $30+ . . ., which
could be displayed visually (e.g., as a histogram) or as a statistical measure (e.g., an expectation or variance).

VG-Terms are one of a variety of similar constructs found across databases and programming languages.
Most directly related are the VG-Functions of MCDB [71] and PIP [78], which capture the semantics of how
uncertainty arises in a dataset through an external “black-box” object analogous to Mimir’s models. Green
and Tannen’s RA-Encodings [56] are also quite similar — In their approach, a single distinguished decision
relation (Z) encodes what we refer to as a valuation, while skolem terms are encoded as projections on this
relation. Another closely related concept is promises/futures [95] from programming languages, which
serve as placeholders for values that are not available yet, while still allowing the value to be manipulated
in absentia. The variables generated by a VG-Term behave, in effect, as futures.

The similarity between VG-Terms and futures is critical, as queries containing VG-Terms are never evalu-
ated directly. In previous versions of Mimir [141, 109], queries would be compiled down into a simpler form
that could be evaluated on a classical relational DBMS to produce the heuristic or “best-guess” result. To
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compile the query, VG-Terms were replaced with references to specific values, as in the Green/Tannen RA-
Encoding. While only a single relation was shown to users, definitive results would be distinguished from
uncertain results through annotations [88] computed alongside the rest of the query [109]. For example, red
text [88] as in Figure 2, indicates an unconfirmed heuristic decision “tainting” the marked attribute. As a
cost of preserving backwards compatibility with relational DBMSes, Mimir never materializes probabilistic
query results. Instead, probabilistic relations are “virtualized” as views [141], with the option of caching
specific deterministic realizations of the view query (i.e., best-guess results) for improved performance.

The core of this proposal is the observation that uncertainty virtualization also allows us to de-couple
queries from the mechanical concerns of managing uncertain data. Through the proposed work, we aim to
demonstrate how uncertainty virtualization can be leveraged to automate important, but rote tasks such as
visualizing uncertain query results, selecting algorithms for processing uncertain queries, and managing
schema-level uncertainty. The resulting research will form the foundations of a new breed of safer and
more reliable data management systems based on declarative uncertainty management.

3 — Thrust 1: Summarizing Uncertainty
Classical PQP requires analysts to be aware of uncertainty. Even systems that explicitly define general-
purpose operators for analyzing uncertainty in relational data, such as the conf aggregate in MayBMS [66,
17] or the expectation aggregates of PIP [78], still require that users explicitly convert probabilistic results
into deterministic summaries [15]. Our first thrust aims at decoupling the visualization of uncertain re-
lations, from the process of posing the queries that create those relations in the first place. The goal is to
mimic the classical deterministic database experience, while still communicating enough information for
users to be able to act on potential errors. In our target application of heuristic data cleaning, the status
quo is queries evaluated deterministically on a single realization of uncertain data, to produce a single
best-guess (i.e., top-1 prior) result relation. From this starting point, we consider ways of annotating the
best guess query results to better communicate uncertainty. For example, our preliminary user study [88]
demonstrated that a simple relational table with potentially erroneous data highlighted (e.g., as in Figure 2)
is sufficient to discourage users from acting on portions of a query result marked as uncertain.

For this proposal, we will focus on algorithmic concerns associated with two types of annotations: Qualita-
tive Explanations and Correlations. Causal explanations [99, 102, 101, 119, 134, 109, 73] attempt to explain
“why” a result appears (resp., does not appear) in a result set by identifying chains of potential database
mutations (e.g., INSERT, UPDATE, or DELETE operations) that could lead to a result appearing (resp., not
appearing). For qualitative explanations, we adopt a similar strategy, but only consider changes to skolem
variables as allowable mutations. Our overaching goal for qualitative explanations, broken down into
three sub-goals, is to organize these explanations into a hierarchical structure that analysts can use to man-
age how much or how little detail they see. A similar tradeoff between too much and too little detail arises
when trying to present correlations in relational data. We propose three metrics — succinctness, precision,
and accuracy — for selecting optimal representations from a search space of allowable designs.

Goal 1: Qualitative Uncertainty Analysis. The first goal will be to establish a common framework for qual-
itative analysis of uncertainty in Mimir. In Mimir, each non-deterministic decision made during heuristic
data cleaning is identified by a single skolem variable. Mimir allows variables be translated into specific
human-readable descriptions of those decisions [141, 109]. Thus, one approach to causal analysis is to enu-
merate all variables that affect the result relation. As a simple example, consider the query σψ(A,B)(R),
which filters R based on a predicate ψ over attributes A and B. If R is deterministic, then uncertainty in the
result can only arise through VG-Terms in ψ. With f [X\x] denoting formula f with X replaced by x:

R A B
t1 ’foo’ 5
t2 ’foo’ 6
t3 ’bar’ 6
t4 ’baz’ 7

Base Data

σψ(A,B)(R) A B φ

t1 ’foo’ 5 ψ[A\’foo’, B\5]
t2 ’foo’ 6 ψ[A\’foo’, B\6]
t3 ’bar’ 6 ψ[A\’bar’, B\6]
t4 ’baz’ 7 ψ[A\’baz’, B\7]

Generic C-Table

σVar[](A)(R) A B φ

t1 ’foo’ 5 〈 f oo〉
t2 ’foo’ 6 〈 f oo〉
t3 ’bar’ 6 〈bar〉
t4 ’baz’ 7 〈baz〉

With ψ = Var(A)

Continuing the example, assume that R is deterministic and that ψ = Var[](A) — that is, that each result
row is filtered based on a skolem variable (as before, denoted 〈·〉) assigned based on the row’s value for
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A. Every row in the result is non-deterministic, and the corresponding explanation is given by a variable
(either 〈 f oo〉, 〈bar〉, or 〈baz〉). An explanation for the full query includes all three variables.

Using this outline as a model, we can propose a naive strategy for finding all variables that affect the output
of a query: (1) Identify every operator that uses a VG-Term, (2) Construct the operator’s input relation(s),
and (3) For each VG-Term Var[](A,B,...) compute all distinct values of A, B, ... from the input relation(s).

This naive approach has three weaknesses that we will need to address. First, the approach does not
produce minimal explanations. For example, tuples that are removed by a later selection operator will still
contribute to the explanation. Similarly, conditional expressions may make an explanation data dependent,
as in the above query, but with ψ = CASE WHEN A > 6 THEN Var[](A) ELSE TRUE END. In this case, tuples t1,
t2, and t3 take the deterministic branch and uncertainty in the result is entirely due to 〈baz〉.

Second, variables can affect query results through uncertainty in attribute values, a tuple’s presence, or sort
orders. A framework for causal analysis will have to cope with all three forms of uncertainty.

Finally, and perhaps most importantly, this approach will typically produce very large numbers of explana-
tions, making summarization essential. Our first summarization strategy leverages the existing association
between VG-Terms and model objects. The model’s identifier becomes part of the unique identity of each
skolem variable constructed by the VG-Term. For example, a per-row missing-value imputation query
might be encoded via the expression CASE WHEN A IS NULL THEN Var[’Impute’](ROWID) ELSE A END. Here,
’Impute’ becomes part of any variables instantiated by the VG-Term (e.g., 〈Impute : 23〉 for row number
23). This shared identity drives the first level of our explanation hierarchy. We group variables — or more
precisely their corresponding explanations — into explanation families.

The full set of all explanation families appearing in a query can be derived statically. However, it may be
helpful to users if each family is communicated alongside a summary of its members, such as the number
of distinct variables belonging to the family, or example explanations for specific variables belonging to the
family. Furthermore, simply appearing in a query does not guarantee that the family has any members that
contribute to uncertainty in the query’s output. We will need to devise strategies for efficiently computing
these summaries in order to achieve our first goal. For example, we may need to use approximations like
sketching [37] the size of a family. We also expect that it will be more efficient to compute this statistic for
all families together, as one large batch operation, a process made challenging by the fact that VG-Terms
can appear anywhere in a relational algebra tree.

End Goal Establish a framework for reasoning about causal explanations of uncertainty.
Deliverable A scalable algorithm for summarizing explanation families.

Goal 2: Goal-Based Ranking. The second goal will be to filter explanations based on their impact on a
query’s results — a measure analogous to tuple influence [73] or responsibility [100]. Informally, influence
can be thought of as the derivative of a value of interest in the query result (e.g., an aggregate value or
confidence) with respect to changes in the probabilities of input tuples. Though related, our interest is
on the impact of skolem variables on the uncertainty in the results. Hence, it will be necessary to extend
existing work, like that of Kanagal and Deshpande [73] to measure the effect of skolem variables on measures of
uncertainty such as entropy or standard deviation. Although we expect this extension to be straightforward,
there are several opportunities for adjacent novelty. For example, assessing the joint contribution of an
entire explanation family as a group is likely to present opportunities for batch evaluation.

It may be useful to also incorporate other factors into the ranking based on the user’s goals. For example,
a user doing data cleaning may be focused on low-hanging fruit: easy-to-clean sources of uncertainty that
will have a high impact on her query results [141]. Conversely, a user trying to debug a query may have
context-specific knowledge that causes her to quickly disregard certain types of uncertainty as culprits. In
other words, if given weights on variables, explanation families, and/or general categories of model (e.g.,
type-repair or key-repair), we can better prioritize explanations that the user is likely to be interested in.

It is not realistic to expect the user to provide these weights directly, but it may be possible to infer them.
For example, consider a data cleaning interface that shows users a list of explanations and creates the
opportunity to either acknowledge or correct the heuristic decisions. A user skipping over highly ranked
explanations sends a strong signal that these explanations are ranked too highly, and we can re-weight
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them. We plan to explore several approaches, including linear optimization and bayesian feedback to re-
weight them [105]. Time permitting, we will also explore how to incorporate feedback incrementally [110].

End Goal Explore relevance metrics for summarizing explanations by filtering.
Deliverable Algorithms for influence-based relevance and goal-based relevance.

Goal 3: Relaxed Dependency Models. The dependency model outlined in Goal 1 is strict: Any variable
that could possibly affect the derivation of a given tuple or result value creates another explanation. In
some cases however, the inclusion of one variable as an explanation may depend on the value assigned
to another. For example, consider the expression CASE WHEN Var(A) > 5 THEN Var(B) ELSE FALSE END. Any
given variable 〈B〉 is only a dependency when a corresponding variable 〈A〉 is assigned a value no greater
than 5. In other words, each possible explanation 〈B〉 is conditionally dependent on the corresponding 〈A〉s.

Conditional dependencies create new opportunities for summarizing explanations by filtering out expla-
nations that may not be immediately critical. A naive approach is to use the best-guess (top-1 prior) value
of each variable to decide whether a conditional dependency is relevant. In the example above, if the best
guess value for a variable 〈 f oo〉 was 2, then the expression evaluated on the row 〈A : ’foo’, B : ’bar’〉
would contribute 〈 f oo〉 as an explanation, but not 〈bar〉, since 2 6> 5. Extending the hierarchy from goal 1,
we could nest hidden variables underneath the variables doing the hiding, For example we might indicate
that “this heuristic choice is preventing 10 other heuristic choices from being relevant”. Like explanation families,
nesting explanations requires us to efficiently generate summary statistics for sets of hidden variables.

Alternatively, we can use the probability of a conditionally dependent variable being hidden to impose a
threshold- or top-k-style limit on the set of explanations shown. These computations are effectively prob-
abilistic, existential queries. Although #P in general [41], there is substantial work on how to efficiently
approximate the resulting probabilities [45, 113, 114, 53, 43] that we expect to be able to build on.

End Goal Explore techniques for computing summaries from causal dependencies.
Deliverable Scalable algorithms for summarizing explanations based on conditional dependence.

Goal 4: Correlations. The final goal of this thrust is to develop a process for effectively communicating
correlations between attributes, tuples, and explanations in a displayed relation. Few PQP systems consider
correlations in query outputs, and as a result their output may hide critical information. For example, a
subtle schema matching error might lead to an imputation model being trained with a slight, but highly
targeted bias. Knowing that a specific set of cells exhibit this unexpected correlation (i.e., the cells that the
imputation model was biased against), an analyst might examine them more closely.

We will start with a simplified form of the problem: detecting correlations among sets of skolem variables.
Recall that each skolem variable is drawn from a distribution defined by its corresponding model object.
Hence, we can treat skolem variables backed by the same model object as probabilistic random variables
Xi drawn from a joint distribution P(X1, . . . , XN). Our preliminary goal then is to find a way to summarize
the distribution P . A solution developed for this base case could then be extended to the more general
cases of correlations between cells (expressions over skolem variables), row-presence (boolean formulas
over skolem variables), and sort orders (determined by expressions over skolem variables).

We could treat the problem as a form of structure discovery in graphical models [90], which aims to de-
termine all correlated, or conditionally independent variables in a joint distribution. However, the goal
of structure learning is to generate a complete representation, and not a succinct, representative summary
intended for human consumption. As a result, it may be possible to devise a structure summarization
strategy that draws on structure learning but avoids its typically high cost.

A second approach focuses on the information content of data representations for communicating corre-
lations. Without focusing on any specific visual encoding of a relation’s correlations (see Figure 3 for ex-
amples), we treat summaries as communicating fragments of marginal distributions. We will initially assume
that all variables are binary (i.e., true or false), and define the fundamental unit of information conveyed by
a representation to be a feature F ⊆ [1, N], a set of variable identifiers. We treat a summary representation
S as a partial mapping from features F to the marginal probability of the feature’s variables all being true:

S(F) ≡ p
( ∧

i∈F
Xi

)
= 1− p

( ∨
i∈F
¬Xi

)
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R A B
t1 1 5
t2 1 6
t3 2 6
t4 3 7

p(t1 ∧ t2) = 0.4
p(t3 ∧ t4) = 0.15
p(t2 ∧ t4) = 0.6

R A B p
1 5 0.5
1 6 } 0.63 7
2 6 0.2

Figure 3: Example representations of correlated features: Annotations (left) or grouped tuples (right).

We define three measures applicable to any visual encoding of correlated data that fits into this framework:
(1) Succinctness, (2) Precision, and (3) Accuracy. A baseline measure for succinctness is simply the number
of features given by the summary (i.e., |S|). To measure precision and accuracy, we consider each feature to
be a constraint on the user’s perception of the joint distribution PS. Taking a uniform prior, we can model
the user’s perception as a distribution p(P = PS | S) over the space of distributions allowed by the marginal
probabilities given by S. This model allows us to define precision as the entropy of the distribution of PS.
Similarly, accuracy can be modeled in terms of the expectation of the distribution, for example by taking
the K-L divergence between E[PS] and P .

This model provides a framework for trading off between succinctness, precision, and accuracy. When
combined with constraints from specific families of visual representations (e.g., the grouped-tuples repre-
sentation in Figure 3 assigns each variable to exactly one feature) any representation on the optimal tradeoff
curve can be obtained, for example with a linear solver. Once we have an algorithm for the basic model,
we will continue by generalizing away assumptions like the uniform prior or variables being boolean.

End Goal A framework for reasoning about representations of correlated tabular data.
Deliverable An algorithm for selecting between correlation-aware representations of c-tables.

4 — Thrust 2: Compiler Support for Uncertainty
Our second thrust explores the implications of declarative uncertainty on compiler design. Both goals
show how virtualized uncertainty can be leveraged during the query compilation process, first to evaluate
queries faster, and second to make authoring queries easier in the presence of uncertainty.

Goal 1: Query Optimization. Probabilistic queries introduce new degrees of freedom to query optimiza-
tion. For instance, the background section introduced a wide range of sample- and placeholder-based
query evaluation techniques, while Thrust 1 introduced a “best guess” evaluation strategy. Each of these
strategies has strengths and weaknesses — placeholder-based evaluation becomes expensive on aggregate
queries, best-guess evaluation has limited representational utility, and sampling has its own challenges that
we will turn to shortly. The most efficient strategy for any given query varies with respect to the operators
it uses, which specific inputs are uncertain, and even properties of the uncertainty (e.g., whether a variable
is drawn from a finite and discrete distribution). The first goal of this thrust is to design a query optimizer
capable of efficiently selecting an appropriate evaluation strategy for a given query and data.

To make the problem concrete, our initial focus will be on a surprising tradeoff in sampling-based query
evaluation. Assume we are given a query Q(D) with schema A, and that we would like to generate N
samples of Q(D) (denoted Q1(D), . . . , QN(D)). Concretely, we would like to construct a version of the
query QN(D) with schema 〈A1, . . . , AN , W1, . . . , WN〉, where ∀i < N : Qi(D) ≡ πAi (σWi (Q

N(D))).
That is, each tuple contains N copies of schema A, with each copy Ai mapping to the value of A in world
i sampled from the original query. The boolean attributes Wi indicate whether a tuple is present in each
sampled world. These semantics mirror those of MCDB’s tuple-bundles [71].

Clearly, one way to achieve this result is to use tuple-bundles directly. Figure 4a summarizes the general
process of rewriting an SPJU bag-relational algebra query into the desired form (i.e., such that JQKTB (D) ≡
QN(D)). Unfortunately, this is not always the right thing to do. Figure 4b uses the benchmark from [109]
to compare the performance of tuple bundles with an alternative, sparse encoding which simply maintains
one entire copy of each tuple in each possible world, annotated with the index of the world it belongs to.
Results shown in the figure include the cost of constructing a result in the format described above. In spite
of the output format being explicitly tailored for tuple-bundles, tuple bundles were slower on complex queries.

10



JR(A)KTB ≡ πAi←A,Wi←T(R(A))
r

πB← f (A)R(A)
z

TB
≡ πBi← fi(Ai)

JR(A)KTB
r

σφ(A)R(A)
z

TB
≡ σ∨

i(Wi)

(
πAi←Ai ,Wi←φi(Ai)∧Wi

(JR(A)KTB)
)

JR(A)× S(B)KTB ≡ σ∨
i(Wi)

(
πAi←Ai ,Bi←Bi ,Wi←R.Wi∧S.Wi (JR(A)KTB × JS(B)KTB)

)
JR(A) ] S(A)KTB ≡ JR(A)KTB ] JS(A)KTB

(a) A simplified tuple-bundle rewrite J·KTB that assumes all attributes are non-
deterministic. fi and φi denote the result of evaluation in the specified world.
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Figure 4: Tuple Bundles

To understand why this is, note the predicates
∨

i (Wi) in the rewrites for selection and cross-product,
which filter out tuple-bundles that have already been eliminated from all sampled worlds. This check
makes joins incredibly expensive. Classical hash-based join algorithms are not as effective at pre-filtering
potential joins, as tuples join if the condition φi(Ai, Bi) is satisfied in any sampled world. Clearly, if the
condition depends only on deterministic attributes, this is not a problem. However, non-deterministic
equi-joins effectively reduce to performing N independent equi-joins, one for each version of the tuple.
The overhead resulting from needing to re-assemble the tuple bundle after the join, outweighs the benefits
of the tuple bundle’s reduced redundancy.

In summary, we have two representations: tuple-bundles and sparse tuples. The two representations en-
code identical information, and it is possible to transform either representation into the other. Furthermore,
certain relational operators naturally inline with the shift between representations. For example, a prob-
abilistic equi-join could be implemented without the cost of re-assembling tuple bundles by emitting a
sparse representation instead. Similarly, aggregates can inexpensively link sparse tuples back into tuple-
bundles. The goal then, is to select an optimal query plan accounting for the different representational
options, transformations between the representations, and the costs of algorithms for each.

Optimizing the evaluation of sampling queries is only one step in the process of building an uncertainty-
aware query optimizer. For example, rather than sampling, we could simply enumerate all options of a
finite, discrete distribution, (e.g., as in the world set decompositions of MayBMS [16]), or use placeholder-
style evaluation. Another factor to consider when optimizing probabilistic queries is how the results will be
used. For example, the added overhead of deferring sampling through placeholder-style evaluation may
be worth it if the number of samples needed is not known ahead of time [78].

End Goal Design, implement, and evaluate an uncertainty-aware query optimizer.
Deliverable An optimizer for plans that hybridize tuple-bundle and sparse-tuple encodings.

Goal 2: Schema-Level Uncertainty. Schema evolution [39], semistructured data [46, 123, 20, 72], and
natural-language interfaces [94], all create situations where precise relational schemas are not available.
Although it may still be possible to enumerate a set of possible schemas [123, 72], classical data management
systems are ill equipped to handle any more than just one (often heuristically selected) “optimal” schema.
If chosen poorly, this schema may lead to errors that can be be hard to diagnose and even harder to fix.

As the second goal for this thrust, we aim to help users to diagnose and fix errors caused by uncertainty at
the schema-level. Our approach re-visits the type-checker, a part of query compilers typically responsible
for annotating queries with schema information. Type-checkers also serve to sanity check the query, for
example by identifying nonsensical operations (e.g., (3 / ’foo’)) or references to non-existent attributes.
Thus, any unexpected consequences of a schema selection mistake will first appear in the type-checker.

As in the prior goals, our aim with the type-checker is to preserve the existing deterministic database user
experience, while also making it easier to detect and recover from errors. We will first need a representation
of uncertain schemas that preserves backwards compatibility with classical type-checking (i.e., based on
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JR(A)KTC ≡ πName,Type (σTable=′R′ (attr catalog)) (1)

JπB←A(R(A))KTC ≡ πName←′B′ ,Type←Type(σName=′A′ (JR(A)KTC) (2)

JπC←A+B(R(A))KTC ≡ πName←′C′ ,Type←escalate+(1.Type,2.Type) (σName=′A′ (JR(A)KTC)× σName=′B′ (JR(A)KTC)) (3)
q

σφ(R(A))
y

TC ≡ JR(A)KTC (4)

JR(A)× S(B)KTC ≡ JR(A)KTC ] JS(B)KTC (5)

JR(A) ] S(B)KTC ≡ JR(A)KTC ∩ JS(B)KTC (6)

Figure 5: Parts of a simplified type-checker query mapping J·KTC for SPJU bag-relational algebra.

heuristically selected schemas). While backwards-compatible, this representation should encode sufficient
information to allow a more advanced type-checker to quickly diagnose schema errors and suggest fixes.

Our initial approach will be to re-cast type-checking as a form of relational query. We will devise a scheme
for rewriting normal relational queries Q(D) into corresponding type-inference queries JQKTC (sch(D)). Given
the relational encoding of a database’s schema, the type-inference query constructs a relational encoding of
the corresponding query’s schema. Examples of this rewriting process are given in Figure 5.

It is possible to use lenses to generate relational encodings of uncertain schemas [123]. For example,
consider a scheme developed by DiScala and Abadi [46] for shredding de-normalized data into multiple
normal-form relations. This scheme relies on a heuristically selected spanning tree over a graph of func-
tional dependencies. We can encode the scheme in Mimir by using a repair-key lens [123] to create a prob-
abilistic, relational encoding of all possible spanning trees, in turn encoding all possible output schemas.
Thus, by creating a type-checker that operates over relational encodings, it becomes possible to leverage
results of the work outlined previously in this proposal to realize uncertainty-aware type-checking.

Our primary goal is to be able to mimic the deterministic database experience: Computing the best-guess
results for a type-inference query achieves this end2. If this mode detects an error (e.g., a missing attribute
or a type mismatch), we can instead compute all possible results of the type-inference query to determine
whether there exists any schema configuration under which the query makes sense. We can then leverage
qualitative explanations or correlation summaries from Thrust 1 to better explain what schema changes
need to happen, or why the result is an error. The user can then apply any appropriate remedial actions.

Re-casting the type-checker in terms of relational queries accomplishes three immediate goals. First, rela-
tional queries provide us with precise, intuitive semantics for propagating uncertain schemas. Second, a
relational type-checker can leverage, for free, the mountain of existing work on probabilistic query process-
ing. Finally, a relational type-checker, when combined with existing work on triggers and incremental view
maintenance could, in principle, be used to implement guards for schema requirements, preventing after-
the-fact schema adjustments from breaking existing view definitions or database applications. In spite of
these benefits, it may not be possible to define a clean relational encoding for some parts of the type-checker
(e.g., type escalation — Equation 3 in Figure 5). As a result, we suspect that creating an efficient relational
type-checker will require either special-purpose extensions to relational algebra, or that we simply use the
relational encoding as a template for an implementation in a lower-level language.

End Goal Realize and evaluate a query compiler capable of managing schema-level uncertainty.
Deliverable A relational-algebra type-checker for non-deterministic schemas.

5 — Evaluation Plan
5.1 — Benchmarks, Metrics and Deliverables:
Both thrusts will be evaluated on a mix of datasets and workloads that include elements of uncertainty. For
example, MayBMS [14] and MCDB [71] were both evaluated on probabilistic adaptations of the popular
TPC-H benchmark [128]. Further datasets and query workloads will be drawn from resources like the MIT
Patient Monitoring Project [120], the UCI Machine Learning Repository [8], as well as governmental open
data portals, including the upcoming City of Buffalo portal [34].

2In practice, we will use a classical type-checker for normal type-checking, as type-checking queries will also need type-checking.
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Thrust 1: Summarizing Uncertainty
   Goal 1: Explanation Families
   Goal 2: Ranking Explanations
   Goal 3: Conditional Deps.
   Goal 4: Summarizing Correlations
 Thrust 2: Compiler Support
   Goal 1: Prob. Query Optimizers
   Goal 2: Schema-Level Uncertainty

Y1 Y2 Y3 Y4 Y5

Figure 6: Anticipated timeline and dependencies for proposed goals

The research goals of this proposal are purely algorithmic. However, it may be desirable to obtain feedback
about user-facing components of the proposed work. Here, we expect to be able to leverage PI Kennedy’s
involvement in NSF ACI Award #1640864 (CIF21 DIBBs: EI: Vizier, Streamlined Data Curation), which aims
to implement a system for simultaneous data exploration and curation. As Mimir is a core component of
this project, we expect that our partners — Oracle, Airbus, the NYU Center for Urban Science and Progress,
and others — will be able to provide us with insights that can guide our algorithmic efforts. We do not
expect to need user studies for the proposed work3.

Qualitative Explanations. For goal 1.1, our primary metric for success will be to demonstrate that our
framework can construct complete and minimal qualitative explanations of uncertainty. Performance, in
particular of algorithms for summarizing explanation families, will be a secondary measure of success.
Goals 1.2 – 1.3 both propose algorithmic contributions, so demonstrating their efficiency and scalability
will be our primary measure.

Correlations. Goal 1.4 outlines a wide design space. One measure of success would simply be a demon-
strably correct, efficient optimizer for pre-defined tradeoffs between succinctness, precision, and accuracy.
Secondary measures of success would be defined classes of visualizations that can be generated quickly, as
well as methods for solving the problem that scale beyond the limits of typical linear solvers.

Uncertainty-Aware Optimizers. A clear measure of success for goal 2.1 is whether optimized plans match
or beat both fixed-format sampling algorithms, in terms of performance and scalability. A secondary mea-
sure of quality will be time required to select an optimal plan.

Type-checker for Uncertain Schemas. If we are able to create a probabilistic type-checker, goal 2.1 will
have succeeded. However, there are numerous secondary metrics such as the cost of type-checking in both
modes, as well as the type-checker’s scalability on complex schemas with many possible options.

5.2 — Timeline
Figure 6 outlines the anticipated timeline for the project. Explanation families serve as a lightweight intro-
duction to potential students for the project, and motivate work on compiler optimization as a means of
efficiently computing probabilities for conditional dependencies. Schema level uncertainty will require the
same optimizations. Time permitting, we will consider other PQP algorithms in the optimizer in Year 5.

Risk Analysis and Mitigation. The most significant risk in this project is that one or more algorithmic
challenges proposed do not admit an efficient solution. If this happens, we will focus on approximation
algorithms, while attempting to identify classes of problem where exact solutions are feasible. A second
risk is that the family of interface designs that we are targeting turns out to be not useful. To mitigate this
risk we will emphasize rapid prototyping of demonstrable interfaces that we can use to solicit feedback
early on. If significant changes are required, we will pivot as needed.

6 — Integrating Education and Research
PI Kennedy is an avid supporter of educational outreach and has been involved in K-12 STEM programs in
the Buffalo area, including Science is Elementary [7], Coder Dojo [2], Liberty Partnerships [5], the Interdis-
ciplinary Science and Engineering Partnership [3], and the ACM’s Computer Science Teachers Association

3If the situation changes, we will notify the cognizant NSF official and obtain approval from UB’s IRB before proceeding.
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(CSTA). PI Kennedy’s outreach efforts presently include running summer programs through the Liberty
Partnerships, and periodic data science workshops for students at local area high-schools.

Uncertainty-awareness as a form of pedagogy. Many of the techniques proposed, when realized, serve
as a form of pedagogy. Through NSF ACI Award #1640864 (CIF21 DIBBs: EI: Vizier, Streamlined Data
Curation), we hope to release Mimir as a tool to the public, where it can serve as a form of tangential
learning. Declarative uncertainty makes it much easier for data hobbyists — potential users without a
formal background in data science or statistics — to more safely jump into data science. By giving data
hobbyists insight into errors, for example through qualitative explanations, Mimir helps them to learn
potential types of errors that can occur in the data analysis process. In effect, declarative uncertainty can
lead to systems that provide “training wheels” for data science.

Data4Good Workshops. Through his contacts with the ACM CSTA, PI Kennedy has been running periodic
workshops on data science at Williamsville North High School under the monicker Data4Good. To date,
the intent of these workshops has been simple awareness and exposure: The workshops introduce students
to using open-data portals, and expose them to the tools that they will need for analyzing the data. As
an example, a recent after-school workshop conducted in May illustrated the use of JuPyTer notebook to
analyze crime data from the Detroit open data portal. The workshop guided students through the process
of finding the data, loading it into JuPyTer online, and detecting outliers through visualizations.

If this proposal is funded, PI Kennedy will be able to devote more time to the Data4Good workshops, ex-
panding them into a week-long program (e.g., a ‘camp’) to be conducted during the summer or winter
break. Key material that he hopes to cover during this time includes: (1) Data and where to find it, (2)
Rudimentary data models: Spreadsheets and DataFrames (e.g., in NumPy/Pandas), (3) Transforming and
visualizing data with DataFrames and JuPyTer notebook, and (4) Basics of Geospatial data. PI Kennedy
intends to have four days of intensive teaching and hands-on-lab components, followed by a one-day
hackathon, where participants join into teams to construct interesting visualizations. In addition to pro-
viding a valuable service to the community, PI Kennedy hopes to be able to use this as an opportunity to
derive new insights about how people approach uncertainty, in turn driving the core goals of this proposal.

Advancing UB’s Graduate Databases Course. PI Kennedy is lead instructor for two database courses at
UB: CSE-4/562 (Database Systems), and CSE-662 (Languages and Runtimes for Big Data). Kennedy plans
to integrate material from the proposed work into both courses. CSE-4/562 already regularly includes
segments on probabilistic data and representations. CSE-662 is a project-based course where students are
offered a range of seed projects, of which they pick one to implement as part of a team. PI Kennedy has a
history of integrating his research efforts into this course. In the two years that the course has existed, seed
projects completed by students have led to insights related to IIS Awards #1617586 (III: Small: Just in Time
Datastructures) and #1629791 (CI-P: Supporting Pocket Scale Data Management Research).

6.1 — Prior and Ongoing Educational and Outreach Efforts:
K-12 STEM Education. For two years PI Kennedy volunteered as a classroom leader with Buffalo’s chap-
ter of Science is Elementary, a program that works with local elementary schools in predominantly-minority
neighborhoods to excite children about the scientific method and encourage them to ask questions about
the world they live in. PI Kennedy is now in his fifth summer of volunteering with Liberty Partnerships, a
program that prepares high- and middle-school students from underprivileged neighborhoods to attend
college. In his first two years with Liberty Partnerships, PI Kennedy participated in a program of short-term
internships where students shadow mentors in science and engineering fields. Since then, Liberty started
a program of summer camps for middle-school students from underprivileged schools As part of this pro-
gram PI Kennedy has been regularly teaching “sections” of a simulated introductory CS course, where
students gain confidence by discovering that they are capable of the material that they will be learning in
these courses. Finally, PI Kennedy participated in a short-lived program called CoderDojo-Buffalo, which
paired middle-school students with mentors as they learn coding skills. Although CoderDojo-Buffalo no
longer exists, PI Kennedy models aspects of his Data4Good workshops on it.

Graduate and Undergraduate Education. PI Kennedy considers equalizing gender ratios in computer
science to be one of his top priorities. He presently advises 4 PhD students (1 female) and co-advises 4 PhD
students. He has recently completed independent studies or similar research projects with 3 MS students
(1 female). PI Kennedy is an avid supporter of undergraduate research and is presently mentoring 3 BS
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students (2 female), in addition to mentoring 5 BS students who have already graduated. PI Kennedy
teaches UB’s Graduate Database Systems course (CSE-562), one of UB’s most popular CSE courses. Starting
in Fall 2017, this course will be available to undergraduates (as CSE-462). PI Kennedy also co-teaches a
project based course entitled Languages and Runtimes for Database Systems (CSE-662), which he and his
co-instructor Lukasz Ziarek have used to get graduate students involved in their research activities.

Small Data. At ICDE 2017, PI Kennedy organized a panel on “Small Data” [77], which emphasized the
need for data management systems that work with people, rather than working to replace them. The work
outlined in this proposal represents one step in this direction. If funded, PI Kennedy will be able to continue
his efforts on small data management systems like Mimir through workshops, tutorials, and editorials.

Community Organization. In addition to PI Kennedy’s educational outreach efforts, he co-leads the Buf-
falo Database Seminar Meetup along with Charlie Wertz of Buffalo State University, and Tyler Poland of
local startup EngineYard. The meetup is a monthly meeting of database enthusiasts from industry and
local educational institutions, featuring regular talks about database techniques and technology.

7 — Broader Impacts of the Proposed Work
The current status quo of treating heuristic inferences as fact is unacceptable Already, we are seeing sig-
nificant impacts on people’s lives: Numerous high profile instances of misuse of heuristics has led to ev-
erything from children being mistaken for terrorists [6], to people being denied access to critical financial
services due to someone else’s bad credit [4]. Manual curation would be ideal, but is unsustainable due to
the sheer volume and velocities of data that modern analysts need to work with. What remains is a need
for easy to use tools for working with uncertain data that help users to differentiate between trustworthy
and non-trustworthy inference. If fully realized and developed, declarative uncertainty has the potential to
transform analytics as we know it by making it easier to work with unreliable data, spawning a new wave
of safer, more reliable tools for uncertainty-aware analytics.

PI Kennedy has a history of deploying his research efforts into practice through the release of code arti-
facts, including PIP [75] and DBToaster [36]. Likewise, Mimir has been released as a well documented
prototype [129] with 11 watchers, 8 stars, and 8 forks on GitHub. The proposed work promises to lead to
numerous improvements in Mimir, making it both faster and easier to use. These improvements will be
incorporated into Mimir for public release. As already mentioned, PI Kennedy is collaborating with NYU
and the Illinois Institute of Technology on an NSF-supported effort to build a user interface called Vizier for
exploring messy datasets while curating them. Vizier also provides us with a deployment path for many
of the ideas outlined in this proposal. As a core part of Vizier, any functionality added to Mimir can be
directly translated into improvements to Vizier.

Our partners on Vizier, including the NYC Taxi and Limousine Commission, as well as the NYU Cen-
ter for Urban Science and Progress, demonstrate that there is keen interest in tools for uncertainty man-
agement. There is also significant interest from industry for uncertainty-aware query processing. Many
of PI Kennedy’s efforts on PQP have resulted from collaborations with industry including Jigsaw (Mi-
crosoft) [80, 81] and Mimir (Oracle, Airbus) [79, 141, 109, 123]. Ying Yang, the first student to work on
Mimir was recently hired by Oracle for a related project.

8 — Results from Prior NSF Support
PI Kennedy has been tenure-track faculty since Fall of 2012 and has been a PI/CoPI on 4 NSF awards.
Intellectual Merit: Since receiving his first award 2.5 years ago, PI Kennedy’s NSF funding has facilitated
3 conference papers [105, 140, 123], 2 workshop papers [88, 86], 3 technical reports [109, 87, 104], 1 masters
thesis [107], and 2 PhD theses [103, 139]. Broader Impacts: NSF: ACI-1640864 (2017-2019; $2.7m; “CIF21
DIBBs: EI: Vizier, Streamlined Data Curation”) is funding the unification of Mimir with provenance systems
GProM and VisTrails, as the basis for a new tool for exploring and curating messy data. Since being funded
half a year ago, the project has already linked the three systems, and is exploring user interface designs
and prototype deployments. PI Kennedy’s NSF funding has supported the professional development of 6
PhD students (2 female), and through REU supplements, independent studies, and coursework have led to
research opportunities for 3 MS students (1 female) and 8 BS students (3 female). Dr Kennedy is currently
advising 4 PhD students (including 1 female student) and co-advising 4 PhD students.
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