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1 Overview
Uncertainty is prevalent in data analysis, no matter what the size of the data, the application domain,

or the type of analysis. Common types of uncertainty include missing values, sensor errors, bias, outliers,
mismatched data, and many more. If ignored, data uncertainty can result in hard to trace errors in analytical
results, which in turn can have severe real world implications such as unfounded scientific discoveries, financial
damages, or even effects on people’s physical well-being (e.g., medical decisions based on incorrect data).

customers

SSN name income ownsProperty
777-777-7777 Alice $60,000 NULL(no)
333-333-3333 Bob $102,000 no
111-111-1111 Peter NULL($0) yes
555-555-5555 Arno $95,000 yes

Figure 1: Example of uncertainty in data. Loan
decisions based on this data, even after imputing
missing values (shown in red), may lead to loans
erroneously being denied.

Classical data management systems are designed
around the assumption that data quality issues and un-
certainties have been resolved before data is ingested into
the system. While this assumption makes data easier to
work with, it is often violated in practice, because (i)
users may not be in a position to identify all sources of
uncertainty or (ii) insufficient information or resources
may be available to repair the dataset with 100% cer-
tainty. Hence, classical analytics requires users to make
a “best-guess” and live with it. Techniques for manag-
ing incomplete data (e.g., [15,22,31,36,68]) exist, but are
generally too heavy-weight for real-world usage, and also
may hide relevant information from users. We propose to explore a recently introduced abstraction called
Uncertainty-Annotated Databases (UA-DBs) that bridges the gap between classical and incomplete
data management. Rather than trying to outright replace classical data management semantics, UA-DBs
annotate existing data with uncertainty labels, and provide lightweight semantics for propagating these la-
bels through queries. The result is a strict generalization of classical data management that also clearly
distinguishes between reliable (i.e., certain) and potentially unreliable (i.e., uncertain) data and results.

Example 1 Consider the customers table shown in Figure 1, which tracks customer features that a bank
uses to determine a customer’s eligibility for loans. This data is missing values, including Peter’s income
and whether Alice owns property, and is thus uncertain. Ideally, the bank would curate the data manually
(e.g., a service representative calls Alice to request the missing information) before acting on it. However
if the bank is sufficiently large, it may be more productive to mine existing data (e.g., property tax records)
to “fill in” missing values. Such mining often also involves uncertainty, for example as a result of entity
matching. For this example, assume that the best match for Alice in her town’s property tax database has a
40% likelihood. Because no match exists with greater than 50% likelihood, the NULL value would typically
be replaced replaced with a “no”. From the bank’s perspective, the data quality issue is resolved. However,
there is now at least a 40% chance that any loan decision the bank makes will be based on faulty evidence.

This problem arises because classical data management systems are not equipped to track uncertainty.
Consider an alternative where the mined ownsProperty value was labeled as uncertain, due to the not-
insignificant possibility of a match. By propagating this label through the query that determines Alice’s
eligibility, a loan officer can see that the outcome (i.e., denied) is not certain and investigate further.

The challenge of tracking uncertainty has been explored through incomplete [3, 36], probabilistic [20,
67], and fuzzy [71] databases. An incomplete database encodes a set of database instances called possible
worlds, while a probabilistic (resp., fuzzy) database also encodes a probability (resp., score) for each world.
Unfortunately, probabilistic and fuzzy databases are slow (e.g., [53] finds probabilistic databases to be up to
an order of magnitude slower than classical databases), and can be unintuitive. Incomplete databases track
more intuitive, qualitative descriptors like “certain” and “possible.” However the primary query semantics
for incomplete databases: computing certain answers (a) is also slow (coNP-hard [3, 36] in general), and
(b) discards many results that are within the realm of possibility and might thus still be useful to the user.
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Hence, most analysts simply make a best-effort attempt to remove potential sources of error in the data,
and then work with the data as if it were perfect. Unfortunately, in this sort of selected-guess analytics,
information about ambiguous interpretations of the source data and irreparable data errors is lost, or at best
only retained out-of-band (e.g., in a README file or comments field).

Q1 Q2 Q3 Q4 Q5

Runtime Overhead 2.28% 1.81% 1.32% 2.88% 3.51%
Misclassified Answers 0.55% 0.37% 0% 0.92% 0.29%
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Figure 2: Experimental results using crime data [1]:
(top) 5 real-world queries; (bottom) a large number of
randomly generated projection queries. UA-DBs have
low overhead, never incorrectly flag an answer as cer-
tain, and rarely mis-classify certain results as uncertain.

An abstraction recently proposed by the
PIs [23] called Uncertainty-Annotated Data-
bases (UA-DBs) bridges the gap between cer-
tain query answering and selected-guess analytics
by fusing the latter with a lightweight approxima-
tion of the former. Specifically, queries in a UA-
DB behave exactly as in selected-guess analytics,
but results also include sufficient information to
distinguish result tuples and values that are cer-
tain from those that might not be. As illustrated
in Figure 2 (see [23] for more details), UA-DBs
only introduce a small performance penalty com-
pared to selected-guess analytics, never falsely flag
an answer as certain, and (depending on dataset
quality and query specifics) only rarely incorrectly
flag answers as being uncertain. UA-DBs (and our
preliminary implementation of them) extend the
state-of-the-art in the following ways:

Generality. Most past approaches for dealing with uncertainty have been limited to set semantics. Our
framework also handles bags (and, thus, SQL databases). Furthermore, we support a wide range of extensions
of the relational model such as access control annotations, various types of provenance, and many more. In
fact, any extension of the relational model that can be expressed through the (quite general) K-relations
framework [29] is supported by UA-DBs.

Efficiently Bounding Certain Answers. Previous work has focused exclusively on under-approximating
certain answers. The rationale is that under-reporting certain answers is safer than mis-classifying an
uncertain answer as certain. By constrast, our approach combines over- and under-approximations: A
superset of the certain answers is annotated such that the subset labeled as certain is an under-approximation.

Backward Compatibility. A UA-DB can be efficiently constructed from any existing model of incom-
plete, probabilistic, or fuzzy data, as long as we can compute (1) a distinguished possible world (the over-
approximation) and (2) a labeling of the tuples from this world as (un-)certain (the under-approximation). In
preliminary work [23], we have already demonstrated compatibility with several common incomplete database
models such as V-tables [3], c-tables [36], and tuple- and block-independent probabilistic databases [67].

Combing Selected-Guess Query Processing with Certain Answers. UA-DBs combine the benefits
of selected-guess analytics (a practically proven solution that is efficient and works well in a highly uncertain
world) with an approximation of certain answers (a proven formal approach with strong guarantees of
correctness). Furthermore, unlike certain answers, UA-DBs are closed under queries.

In the following, we discuss background and related work, including preliminary work on UA-DBs. Next,
we present the primary goals of the proposed work and our evaluation plan, and finally discuss the broader
impacts and intellectual merit of the proposal. The proposed work follows two major research thrusts:

Thrust I: Formal foundations of UA-DBs. Building on the foundation of our preliminary work [23], we
will extend the UA-DB model and study its properties. (a) Approximation Guarantees: We will investigate
how properties of queries and data affect the accuracy of the approximation of certain answers provided by
UA-DBs. (b) Certainty in Non-Set Databases: UA-DBs, in principle, support any data model expressible
in Green et al.’s K-relations framework [29] (e.g., provenance annotations or natural numbers encoding bag
semantics). We will develop the theory of UA-DBs to take advantage of this generality and investigate how
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the choice of annotation domain affects the accuracy of our approximations of certain answers. (c) Attribute-
level Annotations: We will extend UA-DBs with attribute-level annotations that encode bounds on the
values of an attribute across all possible worlds, enabling a more precise encoding of the uncertainty inherent
in a dataset. We conjecture that this extension will not result in a significant increase in computational
complexity. (d) Non-monotone Queries: Under-approximating certain answers is easy only for monotone
queries. As observed elsewhere [33,51], non-monotone queries can be dealt with if an over-approximation of
possible answers is available. However, such over-approximations can be large. We will combine this idea
with recent results from instance optimal join query processing [21, 42] to support efficient non-monotone
queries in UA-DBs.

Thrust II: Efficient algorithms for UA-DBs and their implementation in U4U. We propose to
build a system called U4U (Uncertainty For You) that implements algorithms for transforming existing
incomplete and probabilistic data models into UA-DBs and for efficiently evaluating queries over UA-DBs.
(a) Management of Uncertainty-Labeled Data: We will develop adapters expressed as relational queries that
translate data from incomplete and probabilistic data models into UA-DBs. Furthermore, we propose to
extend SQL’s DML and DDL constructs to encode operations (e.g., key-repair [6]) that introduce and manage
uncertainty. Importantly, this will include the study of how update operations can be executed over UA-DBs.
(b) Query Rewriting for UA-DBs: Building on promising results with a prototype query-rewriting middleware
implementing tuple-level UA-DBs, we will implement and evaluate support for attribute-level annotations,
aggregation (and non-monotone queries), and additional types of annotations (e.g., uncertain provenance
annotations). (c) A Specialized Database Engine for UA-DBs: To further improve performance of query
evaluation, we will design and implement a specialized UA-DB query processing engine that will exploit
compact representations based on factorization, functional aggregate queries [43] (FAQ), and geometrical
interpretations of relations [42]. (d) Online Refinement of UA-DBs: Since UA-DBs encode both super- and
subsets of certain answers, they can be used as a pruning step to speed up exact algorithms for computing
certain answers (and/or probabilities).

The Team. The PIs are uniquely qualified to conduct the proposed research. PI Glavic has extensive
background in annotated databases and provenance [9, 28, 48, 60] (including a best-of-ICDE invitation to
TKDE [59]). PI Kennedy has a background in probabilistic databases and uncertainty in general [41,
46, 52, 53, 70] (including a best-of-SIGMOD invitation to TODS in 2017 [52]). PIs Glavic and Kennedy
are actively collaborating on topics relevant to this proposal [23, 25, 26, 53, 58, 65] and have long standing
experience in developing systems in the domain of data cleaning [12,13], curation, uncertainty [23,41,70], and
provenance [9,28]. PI Rudra has background in database theory and has studied formal aspects of annotated
databases involving semirings [43,44] (a line of research that won the PODS 2016 [43] and PODS 2012 [55,56]
best paper awards) and compact representations of non-results in joins and #-SAT formulas [21,42].

2 Background and Related Work
Before presenting an overview of our UA-DB framework, we first introduce necessary background and

related work on incomplete databases, probabilistic databases, and K-relations. A database schema D =
{R1, . . . ,Rn} is a set of relation schemas. A relational schema R(A1, . . . , An) consists of a relation name and
a set of attribute names A1, . . . , An. The arity arity(R) of a relation schema R is the number of attributes
in R. A database instance D for database schema D is a set of relation instances with one relation for each
relation schema in D: D = {R1, . . . , Rn}. Assume a universal domain of attribute values D. A tuple with
schema R is an element from Darity(R). A set relation R with schema R is a set of tuples with schema R,
i.e., R ⊆ Darity(R). A bag relation R with schema R is a bag (multiset) of tuples with schema R.

2.1 Possible Worlds Semantics
Incomplete databases model uncertainty and its impact on query results. An incomplete database D is a

set of deterministic database instances D1, . . . , Dw called possible worlds. We write t ∈ D to denote that a
tuple t appears in a specific possible world D. Most approaches adopt the so called “possible worlds” seman-
tics for querying incomplete databases: The result of evaluating a deterministic query Q over an incomplete
database is the set of relation instances resulting from evaluatingQ over each possible world individually using
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id address ℓ N B
1 51 Co. . . L1 1 T
2 Grant . . . L2 1 T
3 499 W. . . L4 1 T

(a) Address

ℓ locale state N B
L1 L. . . NY 1 T
L2 T. . . AZ 1 T
L3 G. . . NY 1 T
L4 K. . . NY 1 T
L5 W. . . IL 1 T

(b) Neighborhood

state N B
NY 2 = (1 · 1) + (1 · 1) T = (T ∧ T ) ∨ (T ∧ T )

AZ 1 = (1 · 1) T = (T ∧ T )

IL 0 = (0 · 1) F = (F ∧ T )

(c) Result of Qa

Figure 3: N- and B-relation examples

standard deterministic query semantics: Q(D) = { Q(D) | D ∈ D }. Decades of research [6,16,31,36,63,67]
has focused on algorithms for efficient query processing over incomplete databases, introducing data models
such as V-tables [3], c-tables [36], and tuple-independent probabilistic databases [67] that more compactly
represent a set of possible worlds by factoring out commonalities.

2.2 Certain, Possible, and Best-Guess Answers
The goal of query processing over incomplete databases is to differentiate query results that are certain

from ones that are merely possible. Formally, a tuple is certain if it appears in every possible world and
possible if it appears in at least one possible world [18,36]:

certain(D) = { t | ∀D ∈ D : t ∈ D } possible(D) = { t | ∃D ∈ D : t ∈ D }

In contrast to [36], which studies certain answers to queries, we find it useful to define certainty at the
instance level. The two approaches are equivalent since we can compute the certain answers of a query Q
over incomplete instance D as certain(Q(D)). For ease of presentation we will abuse terminology and refer
to the set of tuples that are certain in an instance as certain answers. Although computing certain answers is
coNP-hard [3] in general, there exist PTIME under-approximations [33,51,61] that allow false negatives (some
certain answers may be omitted from the query result) but guarantee that no false positives (tuples that are
not certain answers) are returned. The rationale behind this choice is that it is considered less harmful to
omit a certain answer than to claim that an uncertain answer is certain.

Selected-Guess Query Processing. As mentioned in the introduction, another approach commonly used
in practice is to ignore ambiguity in the data and select one distinguished possible world as canon. Queries
are evaluated solely in this world, and ambiguity is ignored or documented outside of the database. We refer
to this approach as selected-guess query processing (SGQP) [70] since typically one would like to select the
possible world that is deemed most likely (e.g., the world with the highest probability). Going forward, we
will assume that it is possible to select one distinguished possible world that we will call the selected-guess
world DG . For example, a probabilistic database [67] pairs the set of possible worlds with a probability
measure P : D → [0, 1]. Given a probabilistic database, one may define DG = argmaxD∈D P (D). We also
note that although we refer to it as a “best-guess” world, any distinguished world — even an arbitrary one
— will still be able to provide some utility, as any possible world can serve as an over-approximation of
certain answers.

2.3 K-relations
The UA-DB model that we propose to study is based on the K-relation/K-database [29] framework that

defines relations annotated with elements from the domain K of a commutative semiring K. A commutative
semiring is an algebraic structure based on two binary operators (+K, ·K) with identities (0K, 1K) that satisfy
specific algebraic laws like commutativity, associativity, and distributivity. Since K-relations are functions
from tuples to annotations, it is customary to denote the annotation of a tuple t in relation R as R(t)
(applying function R to input t).

Query Semantics. The K-relation framework defines a non-standard semantics for positive relational
algebra that computes the annotation of a query result by combing the annotations of input tuples using
the addition (+K) and multiplication (·K) operations of the semiring. When using the boolean semiring, i.e.,
the semiring over the boolean constants B = {T, F} with disjunction (∨) as addition and conjunction (∧)
as multiplication, the resulting B-relations exactly mirror set-semantics (a tuple is annotated with T if and

4



only if it appears in a relation). Similarly, the semiring (N,+,×, 0, 1) of natural numbers N with standard
addition and multiplication over natural numbers mirrors bag semantics (each tuple is annotated with its
multiplicity). Other semirings can be used to model, for example, security policies and provenance.

Example 2 Figure 3 shows an example of how to encode a bag semantics database as an N-database by
annotating each tuple t with its multiplicity (the number of copies of t that exist in the relation). Annotations
are shown to the right of each tuple. Query Qa, shown below, returns states.

Qa = πstate (Address ⋊⋉ Neighborhood)

In the input database every tuple appears once (is annotated with 1). The annotation of an output tuple is
computed by multiplying annotations of joined tuples, and summing up annotations projected onto the same
result tuple. For instance, 2 NY addresses are returned.

3 Uncertainty-Annotated Databases

Figure 4: A set UA-DB stores best-guess tu-
ples and labels some subset of those as cer-
tain. The certain answers of a query are sand-
wiched between the results a UA-DB labels as cer-
tain (under-approximation) and the best-guess an-
swers (over-approximation). The set of POSSIBLE
tuples [5] is the union of all possible worlds, and
IMPOSSIBLE tuples are tuples from the active do-
main (Darity(R)) not in any possible world.

Before discussing our proposed contributions, we first
introduce the core concepts behind them. We begin
with incomplete K-relations, an extension of incomplete
databases to K-relations. Recall that K-relations gen-
eralize set semantics, bag semantics, provenance, and
many other extension of the relational model. The same
holds for incomplete K-relations. We introduce certain
annotations as a sensible generalization of certain an-
swers to incomplete K-relations. Exploiting the natural
order, an order relation over the domain of a semiring
that is defined for many semirings, we define the certain
annotation of a tuple as a lower bound of its annota-
tion across all possible worlds. Importantly, this gener-
alization coincides with the standard definition of certain
answers for set semantics and the definition for bag se-
mantics proposed by Guagliardo et al. [34]. We then
introduce Uncertainty-Annotated Databases (UA-DBs),
which are databases where each tuple is annotated with
an under-approximation as well as an over-approximation of its certain annotation. By choosing the anno-
tation of a tuple in the selected-guess world as the over-approximation, UA-DBs are a strict improvement
over selected-guess query processing. Figure 4 shows the relationship of certain answers, selected-guess an-
swers, and UA-DBs for set semantics. Recall that set semantics corresponds to B-relations: tuples are either
annotated with T (true) to indicate that they exist or F (false) to indicate that they do not exist. A set se-
mantics UA-DB annotates each tuple with a pair [b1, b2] where b2 encodes the over-approximation of certain
answers (it is T if the tuple exists in the selected-guess world) and b1 encodes an under-approximation of
certain answer (if it is T then the tuple is surely a certain answer). Hence, a UA-DB sandwiches the certain
answers from below and above. Queries over UA-DBs treat the two annotations of a tuple independently
and, thus, preserve the encoded selected-guess world (over-approximation). An important result we have
proven [23] is that queries over UA-DBs also preserve the under-approximation of certain answers, which is
a generalization of an earlier result for set semantics from Reiter [61].

3.1 Incomplete K-Relations
An incomplete K-database D is a set of possible worlds D = {D1, . . . , Dn} where each possible world

Di is a K-database. Incomplete K-relations are defined analogously. Queries over incomplete K-databases
are evaluated using possible worlds semantics, i.e., evaluating the query over each possible world using K-
relational semantics. That is, the result of a query is a set of K-relations (possible worlds). Incomplete
K-databases can be trivially extended to probabilistic K-databases by defining a distribution P : D 7→ [0, 1]
such that

∑
D∈D P (D) = 1.
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Certain and Possible K-Annotations. We specifically consider semirings with a natural order ⪯K
1 that

defines a lattice (also called l-semirings [45]). Assuming that the natural order is a total (resp., partial)
order, we define the certain annotation of a tuple to be the minimum (resp., greatest lower bound) of the
tuple’s annotations across all possible worlds. Similarly, we define the possible annotation of a tuple to be
the maximum (resp., least upper bound) across all possible worlds. We use ⊓K and ⊔K to denote the greatest
lower bound (e.g., min in a total order) and lowest upper bound (e.g., max) operations for a l-semiring K.

Under set semantics (where F < T is the natural order), this gives us exactly the classical notion
of certainty: A tuple is certain if it appears in all possible worlds and possible if it appears in at least one
possible world. For the bag semantics case, certainty (possibility) is a lower (upper) bound on the multiplicity
of the tuple across all possible worlds. As mentioned above, this semantics coincides with a proposal for
certain and possible answers in bag-relational databases by Guagliardo et. al. [33]. For a set S of annotations
from a semiring K, these operations are defined as follows:

certK(S) = ⊓K(S)

possK(S) = ⊔K(S)

certK(D, t) = certK({ D(t) | D ∈ D })
possK(D, t) = possK({ D(t) | D ∈ D })

Example 3 Consider the N-database D (bag semantics) containing a single relation loc with two attributes
locale and state and two possible worlds (denoted D1, D2) as shown below:

D1:
locale state N
Lasalle NY 3
Tucson AZ 2

D2:

locale state N
Lasalle NY 2
Tucson AZ 1

Greenville IN 5

The certain multiplicity of the tuple ⟨ Lasalle, NY ⟩ is certN({3, 2}) = min(3, 2) = 2. Similarly, for the
tuple ⟨ Greenville, IN ⟩ (only present in possible world D2) we get certN({0, 3}) = 0, i.e., the tuple has
certain multiplicity 0. Reinterpreting the example in set semantics, all tuples that exist (multiplicity larger
than 0) are annotated with true (T ) and all other tuples with false (F ). Then for the first tuple we get,
certB({T, T}) = T ∧T = T , i.e., the tuple is certain. Conversely for the third tuple we get certB({F, T}) =
F ∧ T = F , i.e., the tuple is not certain.

Just like classical incomplete databases, incomplete K-databases are used only as an abstract model to define
clear semantics. More compact representations are needed. For example, existing incomplete data models
like c-tables can be used to concisely encode incomplete B-databases.

3.2 UA-Databases Incomplete 
K-database

Compact Incomplete 
Data Model UA-DB

Rep

Rep

Cert

Certain 
Answers

Certain
Answers

Best-Guess

Labeling

Best-Guess

Labeling

Certain
AnswersCert

bounds

bounds

Query Query Query

over
approximation

under
approximation

over
approximation

under
approximation

Figure 5: Representations of incomplete data and relationships
between them.

Figure 5 provides an overview of the UA-
DBs framework. In a typical scenario, a user
would start from a compact encoding, e.g.,
c-tables, which represents an incomplete K-
database. Following [36] we use Rep(D) to
denote the incomplete database encoded by
a model D. Evaluating a query over this
model using possible world semantics yields
a result that encodes the query result over
the incomplete K-database. For both the
input and the output we can determine the
certain answers (assuming the existence of
an algorithm Cert that realizes this step).
Note that it is not possible to evaluate the query directly over the certain answers from the input since

1The natural order for a semiring K is defined as a ⪯K b ⇔ ∃c : a+K c = b.
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certain answers are not closed under queries. A UA-DB can be derived from the incomplete data model
by extracting the selected-guess world DG (the over-approximation) and an under-approximation of certain
answers L that we refer to as a labeling. We will discuss briefly below how compute such labelings. We have
proven in [23] that positive queries over UA-DBs preserve these approximations. Hence, the result of the
query evaluated over the UA-DB bounds (“sandwiches”) the certain answers from below and above.

Consider D, an encoding of an incomplete K-database using some incomplete data model, e.g., V-
tables [3]. Furthermore, let DG be a distinguished possible world of D (selected-guess world) and L be
a labeling for D. An UA-DB for DG and L is a K2-database: a database that labels each of its tuples with
a pair of elements from K computed as follows:

D(t) = [DG(t),L(t)] Q(D)(t) = [Q(DG)(t), Q(L)(t)]

That is, the UA-DB D annotates each tuple with (1) the annotation from DG , and (2) the annotation from
L. Similarly, the result of query Q(D) is a relation that labels its tuples with the annotations obtained
by querying DG and L independently. Since DG and L are K-databases this amounts to standard K query
evaluation. Observe that this trivially preserves the over-approximation of certain answers, because by
definition the certain answers are a lower bound on the result of a query over one possible world. The fact
that the under-approximation is preserved by this approach is less obvious. In [23] we have proven that
positive relational algebra over K-relations preserves under-approximations. For specific incomplete data
models, e.g., tuple-independent databases, UA-DBs compute precisely the certain answers. The same holds
for certain classes of queries.

To demonstrate the backward-compatibility of UA-DBs with existing incomplete and probabilistic data
models we have developed methods [23] for computing best-guess worlds and labelings (under-approximations
of certain answers) for these models. We refer to the later as labeling schemes.

Example 4 Consider a probabilistic version of the incomplete B-relation from Example 3 where P (D1) = 0.4
and P (D2) = 0.6. One way to encode this database more compactly is to use a tuple-independent probabilistic
database [67] (TIP-DB) as shown below. In a TIP-DB, tuples are assumed to be independent probabilistic
events. The marginal probability P (t) of each tuple t is stored in an attribute p. A world with the highest
probability for a TIP-DB can be computed as the set of tuples that have probability larger than or equal to
0.5.2 For TIP-DBs, certain answers can be computed efficiently by returning all tuples that have a probability
of 1 and we can use this method as a labeling scheme. For instance, storing the annotations of a tuple in
attributes isBG and isCert3, we can compute a UA-DB from the TIP table loc using the SQL query:

SELECT locale , state , ’T’ AS isBG , CASE WHEN p>=0.5 THEN ’T’ ELSE ’F’ END AS isCert

FROM R WHERE p = 1

Applying this technique, we get the UA-DB shown below on the right. In this particular instance, the
labeling L is exact. The first two tuples are both certain and labeled as certain (i.e., DG(t) = L(t) = T ), and
so is annotated with [T, T ]. The last tuple is possible but not certain, and so is annotated with [T, F ].

TIP-DB:

locale state p

Lasalle NY 1
Tucson AZ 1

Greenville IN 0.6

UA-DB:

locale state B2

Lasalle NY [T,T]
Tucson AZ [T,T]

Greenville IN [T,F]

4 Research Thrust I - Formal Foundations of UA-DBs
In preliminary work on UA-DBs [23], we extended the classical notion of certain and possible answers

for incomplete databases to support any type of semiring-annotated relation (generalizing bag semantics,

2Each subset of a TIP-DB is a possible world and the probability of a possible world is computed by multiplying the
probabilities of tuples that are in the possible world and 1− p(t) for tuples that are not in the possible world. The probability
can be maximized by including tuples if p(t) ≥ 1− p(t) which is the case if p(t) ≥ 0.5.

3Note that the isBG attribute is redundant since it will be ’T’ for every tuple in the result of the query. Our implementations
omits this attribute.
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various types of provenance, access control, . . . ). We established UA-DBs as a light-weight model that labels
selected-guess answers according to an approximation of certain answers. The selected-guess answers provide
an over-approximation of certain answers, while the labeled tuples provide an under-approximation.

The work conducted as part of this proposal will significantly extend the formal foundation of UA-DBs by
studying under which conditions (data, query, or semiring properties) the approximations of certain answers
provided by UA-DBs are bounded (or exact). Furthermore, we will extend UA-DBs to support attribute-level
annotations that bound the values of attributes across possible worlds. Finally, using attribute-level bounds
and extending ideas from functional aggregate queries [40, 43, 44] to concisely encode possible answers, we
will approximate certain answers for non-monotone queries such as queries with aggregation and negation.

4.1 I-a: Studying the Approximation in UA-DBs

Starting with set- and bag-semantics UA-DBs, we will study which properties of incomplete
databases and queries cause UA-DBs to precisely identify certain answers. Furthermore, we will
investigate whether we can guarantee any bounds on the approximation provided by UA-DBs.

In preliminary work we have demonstrated that positive queries (SPJ-U) over an UA-DB preserve the
under-approximation and over-approximation of certain answers. However, we observe that under certain
circumstances UA-DBs exactly encode the certain answers of a query. For instance, evaluating a positive
query over any UA-DB generated from a TIP-DB returns a labeling that is precisely the certain answers.
Even when this is not the case, initial experiments [23] suggest that in many real-world settings, labelings
are close approximations of (or exactly equal to) certain answers. In [23] we did evaluate a large number of
randomly generated projection queries over the result of missing value imputation for 9 real-world datasets
and found that the percentage of certain answers mis-classified by our approach as uncertain is typically
less than 5%. When using real-world queries, the error rate is even lower (less than 1% for the example
queries we have tested). We propose to study how characteristics of the input data (e.g. the incomplete or
probabilistic data model a UA-DBs is derived from) and of the query (e.g., structural parameters such as
whether the query is hierarchical [19]) relate to the tightness of the approximation provided by a UA-DB.
This information is useful for keeping the user aware of the degree of uncertainty in a UA-DB’s query results
For example, if we can establish that the error rate of a labeling is no more than 1% then it is reasonable to
trust a UA-DB if it labels a result as uncertain.

4.2 I-b: Incomplete Databases and Certain Answers Beyond Sets and Bags

Although UA-DBs admit a natural extension to incomplete databases and certain answers beyond
sets and bags, some proofs (e.g., conditions when approximations are exact) may not translate
directly to arbitrary semirings. We will study the properties of these non-traditional cases and will
investigate how approximation of certain answers is affected by the choice of annotation domain.

Our incomplete K-relations and UA-DBs generalize incomplete data and certain answers beyond sets and
bags. This opens up new use cases such as uncertain provenance where we keep track of which parts of the
provenance of a data item are certain and which are uncertain or uncertain fine-grained access-control where
a query result can be exposed to a user if its certain confidentiality level is one that the user is allowed to
see. Extending the result of research thrust I-a, we will study how the choice of semiring affects the precision
of our approximation of certain answers. Furthermore, we will investigate novel applications enabled by
incomplete databases beyond set semantics. For instance, the aforementioned incomplete databases with
access control annotations would enable a rigorous treatment of access control for applications that analyze
data that is the inherently uncertain result of information extraction, data cleaning, or data wrangling.

4.3 I-c: Bounding Values for Attribute-Level Uncertainty

We will extend the UA-DB model with attribute-level annotations that bound an attribute’s values
across all possible worlds, extend the definition of certain answers accordingly, study how these
annotations propagate through queries, and investigate what certainty guarantees are provided.

Like many existing models for incomplete and probabilistic databases, our preliminary work on UA-DBs
tracks uncertainty at the row-level. However, as repeated efforts have shown [7, 38, 41, 53, 63, 68], tracking
uncertainty at the attribute-level can lead to more concise and precise representations of uncertainty.
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Example 5 Consider an employee table with two attributes: name and salary. Assume we know with
certainty that Peter is an employee, but only know that his salary is either $25,000, $30,000, or $40,000.
This information can be modeled as an incomplete database with 3 possible worlds: D1 = {(Peter, 25000)},
D2 = {(Peter, 30000)}, and D3 = {(Peter, 40000)}. Let us assume that we choose D1 = {(Peter, 25000)}
as the selected-guess world. Even though part of the information in the single tuple of D1 is certain (the
name), it would be labeled as uncertain in a UA-DB because the tuple itself is not certain.

We propose to enhance the UA-DB model with attribute-level annotations that encode lower and upper
bounds on the values of attributes. The concept of over- and under-approximations of certain answers
extends naturally to attribute-level UA-DBs, but requires us to now reason about the certainty of tuples
that do not have the same values in every possible world.

Example 6 Using attribute annotations, the salary attribute of this tuple from the example above would be
annotated with a bound [25000, 40000]. Because this tuple matches exactly one tuple in each possible world
that has a name of Peter and a salary falling within the bounds, we can label it as certain.

Of course the same would be true if we choose a strictly wider bound for the salary (e.g., [1000, 70000]).
Intuitively, the first bound is more precise and thus preferable. We plan to formalize this concept into a
measure for how precisely an UA-DB with attribute-level annotations represents an incomplete database. For
instance, this measure may take the form of a partial order that models whether a tuple with attribute-level
annotations “dominates” another tuple with attribute-level annotations. Furthermore, we will investigate
algorithms for computing queries over attribute-level UA-DBs and for translating incomplete data models
into our model, and study the computational complexity of these problems. Finally, we will investigate
alternatives to bounds for data types that do not have a meaningful ordering (e.g., name in the example):
For example, as with rows, we might label attributes as certain (i.e., taking exactly one value across all
possible worlds where the tuple appears) or uncertain (taking any value).4

4.4 I-d: Non-Monotone Queries with Compact Encodings of Possible Answers

Approximating certain answers for non-monotone queries (e.g., negation and aggregation) is chal-
lenging since non-monotonicity may turn an under-approximation into an over-approximation. We
propose to employ and extend techniques for computing functional aggregate queries to compactly
bound possible answer and in turn to efficiently compute under-approximations of certain answers.

The problem of computing an approximation of the certain answers to a query in the presence of (some)
aggregate functions that “play nice” with a semiring K can be represented as a functional aggregate query, for
which recent work presents algorithms with provable runtime guarantees [44]. We note that these algorithm
hold for arbitrary functional aggregate queries over arbitrary semirings. One intriguing aspect of these
algorithms is that they artificially impose a total ordering on the underlying semiring(s). One question we
will explore in this proposal is whether we can exploit the fact that a semiring K comes equipped with a
natural order to perhaps speedup the algorithms from [40, 43] specialized to our context. Secondly, we will
consider the challenging task of handling negation. The results in [40,43] cannot handle negations. For these
queries we will turn our attention to a join query algorithm that is based on the following geometric view
— instead of trying to figure out which potential tuples are part of the output, the algorithm in [42] tries to
“rule out” tuples that cannot be part of the output. Since the set of non-answers is typically much larger
than the set of answers, this algorithm relies on a geometric encoding of a relation and represents sets of
non-answers compactly as boxes in such a space. We will extend these results for our settings. We note that
there are implementation challenges in that the algorithms presented in [42] ignore (large) poly-log factors
that impact real-life performance. However, we have been able to implement this algorithm in the context
of a model-counter (i.e., a #-SAT solver) [21].

4This would be closely related to models which allow variables as values such as Codd-tables or V-tables.
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5 Research Thrust II - Design and Implementation of U4U
Thrust II addresses the challenge of translating the principles developed in Thrust I into practice through

a prototype UA-DB called U4U (Uncertainty for You). We will address logistical challenges involved in
managing labeled data and then realize U4U in three stages. In stage 1, we will realize a purely rewrite-
based implementation based on our preliminary work [23] for incomplete bag semantics databases. Then in
stage 2 we will explore how augmenting the database through new data structures, algorithms, and cost-
based optimization strategies can improve performance and accuracy. Finally, in stage 3 we will incorporate
elements of existing incomplete (resp., probabilistic) database systems, enabling new forms of incremental
approximation. We will assume for the sake of discussion that, except where noted, our source data consists
of a selected-guess world that has already been labeled, for example using one of several existing data cleaning
systems that label data as certain or possible [39,53,70] or one of our existing labeling adapters [23].

5.1 II-a: Management of Uncertainty-Labeled Data

We will extend SQL with tools for creating and updating uncertainty-labeled data.

Classical relational databases are deterministic: Data is provided as-is. For U4U to be useful — whether
as a query rewriting middleware or a stand-alone database system — it needs uncertainty-labeled data. PIs
Kennedy and Glavic have already explored labeling data in the context of the Mimir system [53, 70] where
non-deterministic data cleaning operators called lenses label their outputs. We will develop, formalize, and
realize two additional strategies for generating uncertainty-labels for relational data: (1) Adapting existing
models for incomplete data, and (2) Incorporating uncertainty directly into SQL DML and DDL.

Adapters for Incomplete and Probabilistic Data. Numerous existing techniques have been developed
for representing incomplete [36], probabilistic [31, 67], and fuzzy [15, 71] data. As part of this goal, we will
implement labeling schemes such as those we have proposed [23] for TIP-DBs, block-independent relations,
and c-tables. These adapters will be implemented as relational operators that operate on existing data. For
example, consider a table of (potentially redundant) RSVPs and a user trying to convert this into a list of
participants for each meeting.

CREATE TABLE RSVPS(email string , name string , event_id int , guests int);

CREATE TABLE PARTICIPANTS AS BLOCK_IND(RSVPS WITH (email ,event_id) AS KEY);

The BLOCK_IND adapter operator acts as the MayBMS probabilistic repair-key [6], selecting a single selected-
guess repair for user-specified key attributes (optionally weighted by a user-provided weight attribute or
expression), and labeling the resulting rows and attributes with certainty and bounds respectively. We
expect a wide range of adapters to be implementable through a combination of query rewriting and user-
defined functions.

DML and DDL for Uncertainty-Labeled Data. Another practically relevant alternative for labeling
is to incorporate it into SQL’s data modeling (DML) and definition (DDL) languages. This requires us to
develop a consistent semantics for manipulating uncertain data under possible-worlds semantics. The update
semantics defined by Abiteboul et al. [2] could be employed here. We will investigate how this semantics
translates to UA-DBs. For example, if the user learns that John Doe is likely to want to bring 3 guests in
place of the number previously declared, they can update the RSVPs table as:

PROBABLY UPDATE PARTICIPANTS SET guests = 3 WHERE email = ’john@doe.org’;

This update splits every existing possible world into two: one where the update occurs and one where it does
not. Since there can only be one selected-guess world, prefixing the UPDATE with PROBABLY (resp., POSSIBLY)
indicates that the update should be applied (resp., not applied) in the selected-guess world. We will first
formalize semantics for creating and propagating labeled data through updates and schema operations.
Then, we will implement these semantics, first through a rewrite-based approach based on PI Glavic’s work
on updates and transactions over annotated databases through reenactment [8–10] (a declarative replay
technique for updates with annotated semantics), and later as a native version built into the database
engine.
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5.2 II-b: Query Rewriting for UA-DBs

We will develop techniques for rewriting queries with uncertainty annotations, ensuring that these
queries run efficiently on existing relational databases, that the rewriting middleware supports tuple-
and attribute-level uncertainty, and if time permits that they support uncertain provenance.

In [23] and [53], we developed a query rewriting middleware that implemented a bag semantics UA-DB
with tuple-level uncertainty using a classical relational database. As the first stage of realizing U4U, we will
extend this middleware with support for: (1) Attribute-level uncertainty, (2) Aggregation, and if time permits
(3) semirings other than bags. The key challenge we will focus on at this stage is ensuring performance, while
retaining backwards compatibility by not requiring any fundamental changes to the underlying database.

Efficiently Supporting Attribute-Level Uncertainty. We will translate the theory developed in goal
I-c into practice by realizing it within U4U. A naive implementation of attribute bounds would extend each
relation’s schema with two additional attributes for the upper and lower bounds, respectively. For example,
the schema of the rewritten PARTICIPANTS would add an attribute+ and attribute− for each existing attribute,
as well as a row-level uncertainty annotation phi5:

( email string , event_id int , guests int , email+ string , event_id+ int ,

guests+ int , email− string , event_id− int , guests− int , phi boolean )

This naive approach roughly triples the size of all relations produced by a rewritten query. We will
identify, implement, and evaluate more efficient strategies for storing these bounds. For example, storing
deltas (relative or absolute) from the best guess value, rather than the actual bounds may be more compact.
For example, consider that an attribute’s value in the selected-guess world is 150 and the bounds for this
value are [140, 160]. Given the best-guess value 150, this bound can be delta-encoded as [−10,+10]. This
encoding is quite effective in applications like sensor data where (with high probability) the real value is
close to the sensor reading. Similarly, schema-level rules (e.g., the upper bound is always infinite) preclude
the need to include one or both bounds. It will also be important to consider that exact bounds may not
be available (e.g., if an uncertain value is transformed by a non-monotone user-defined function). For such
attributes, we will explore gracefully degrading to simpler boolean (i.e., certain vs uncertain) attribute-level
annotations.

Supporting Aggregation. Aggregate queries introduce an additional layer of complexity. For example
take the query: SELECT SUM(guests) AS total FROM PARTICIPANTS. The aggregation function result (the value
of total) can be uncertain in multiple ways: (1) if the existence of at least one input tuple is uncertain, then
the aggregation function result cannot be the same in worlds that include this tuple and worlds that do not
include this tuple (unless the guests value of this tuple is 0 in every possible world); and (2) even if the
existence of all input tuples is certain, the aggregation function result may still be uncertain if the guests

attribute of one of these tuples differs across possible worlds (is uncertain). The following simplified query
illustrates one naive (and incorrect) way to test for these conditions:

SELECT SUM(guests) AS total , TRUE AS phi , SUM(guests+) AS total+,

SUM(CASE WHEN PHI THEN guests− ELSE 0 END) AS total− FROM PARTICIPANTS

Non-group by queries produce exactly one tuple in all possible worlds, so we consider the result tuple to
certainly exist (phi = TRUE). The bounds on total take the best and worst cases assuming that attribute
guests is non-negative. However, evaluated over a UA-DB, this query only considers results in the selected-
guess world of PARTICIPANTS. If there exists a possible tuple not in the selected-guess world, then the computed
upper bound is incorrect. In other words, to avoid having to mark all aggregated values as uncertain, we need
to be able to efficiently reason about possible tuples. The problem becomes harder for group-by aggregate
queries like SELECT event_id, SUM(guests) AS total FROM PARTICIPANTS GROUP BY event_id. In addition to
the above challenges, the existence of result tuples may no longer be certain (e.g., if all tuples in a group are
uncertain), and group membership now plays a role in the certainty of aggregate values.

We will initially explore two approaches to this problem. First, we will consider tracking simple schema-
level properties like whether a best-guess relation is “complete” (i.e., whether it is exactly the possible

5Following [23], phi is true for tuples that are certain.
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tuples of the relation), or complete for specific groups. Second, we will consider evaluating aggregates in
multiple passes (e.g., by combining multiple aggregate queries), for example by adapting a rewriting scheme
by Guagliardo and Libkin [33], which over-approximates the impossible answers of a query. We will return
to labeling aggregate values in goal II-c, when we consider new algorithms and data structures for UA-DBs.

Stretch Aim: Implementing Non-Bag Semantics. Time permitting, we will also explore implementing
a UA-DB that supports annotations other than N or B. One particularly interesting use case is uncertain
provenance. For example, lineage [68] associates each query result tuple with the set of source tuples on
which it depends. Applied to lineage, UA-DBs differentiate between tuples on which an output may depend,
and tuples on which it certainly depends.6 In settings like data cleaning, this distinction helps to prioritize
work [17,39] and provides more intuitive qualitative summaries of uncertainty [70].

The primary challenge we anticipate for non-bag semantics is supporting semirings with unbounded
storage requirements. For example, the domain of provenance polynomials is the set of all polynomials.
We will begin by adapting existing approaches for deterministic K-relations. For example Orchestra [37]
uses stores provenance polynomials referentially using temporary tables. ProvSQL [62] uses boolean circuits
to store the full provenance of a tuple in a non-1NF relation. Conversely, PI Glavic’s GProM [9] encodes
provenance using multiple database rows (each storing a bounded-size fragment), and relying on extremely
aggressive query optimization [59,60] to limit the performance impact of this representation.

5.3 II-c: Database Engine Specializations for UA-DBs

We will identify, realize, and evaluate new data-structures, algorithms, optimization techniques, and
other internal improvements that will make UA-DBs more efficient and expressive than they could
be made through query rewriting alone.

Our second goal aims at supporting uncertainty-aware data management within existing relational
databases. However, ensuring full backwards-compatibility precludes many opportunities for optimization.
The third goal of this thrust is to consider architectural changes including new algorithms, data structures,
and optimization techniques for improving UA-DB performance and utility.

Tetris for Over-Approximating Possible Answers. As noted above, support for uncertainty-labeled
aggregate queries requires being able to determine the existence of tuples that are possible (but that may not
be selected-guess answers). One approach to this problem is to use dual queries [33] to approximate the set of
tuples that can not possibly be in the result (The impossible tuples of Figure 4). However, the intermediate
results produced by this approach are large, as the set of impossible answers typically consists of most of the
active domain [50]. Goal I-d explores the applicability of the Tetris join algorithm [21, 42], which avoids
large intermediate states by incrementally ruling out progressively larger regions of the potential space of
output tuples. In addition to implementing an adaptation of the algorithm specialized for UA-DBs, we will
explore how the algorithms may be tuned for possible queries.

A (usually) Single-pass UA-DB Aggregation Operator. In general, aggregate queries over UA-DBs
require multiple passes over their source data to effectively mark results as certain or not: (1) A pass to
compute the selected-guess answers as normal, including determining the certainty of each tuple; (2) A pass
to determine the existence of any possible rows with an uncertain group-by attribute value, which would
make all group’s aggregate values uncertain; and (3) A pass to determine whether there exist any possible
rows with certain group-by attribute values, which would make one group’s aggregate values uncertain. As
a second part of this goal, we will explore optimization rules and runtime optimization techniques that can
collapse passes, or eliminate the need for some of these passes. For example, if we can establish that the
selected-guess answers includes all possible rows, we could execute the aggregate with one relational operator
that performs all three passes in a single scan. Similarly, if the first pass identifies any selected-guess answers
with uncertain group-by attributes, the latter two passes are redundant.

6Lineage in this sense corresponds to the semiring Which(X) [30].
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5.4 II-d: Online Refinement of UA-Rels

We will extend U4U to support exact certain (and probabilistic) queries over data by using UA-DBs
as a pre-processing step to prune out certain (resp., P = 1) and uncertain (resp., P = 0) tuples before
computing exact certainty (or probabilities).

The heavyweight machinery of computing certain answers using incomplete, probabilistic, and fuzzy
databases (e.g., C-Tables [31, 36], U-Relations [7], VG-Functions [38], or VC-Tables [70]) is wasteful when
most tuples (and/or attributes) in a dataset are certain. We will explore a novel approach to incomplete
and probabilistic query processing that works in three stages: (1) Compute a preliminary result using UA-
DBs, (2) Compute exact certainty, probabilities, expectations, and other relevant measures for tuples and
attributes that the UA-DB result labels as uncertain (as having a range), and (3) Compute counts, marginal
distributions, and other relevant measures over tuples not in the selected-guess answers. This three stage
approach significantly benefits interactive analytics: (1) Based on preliminary experimental experience with
real-world data [23], UA-DBs mis-classify comparatively few tuples, so the need for heavyweight computa-
tions is limited and (2) Results are produced incrementally as in online aggregation [35] and and approximate
query processing [4]7. We will implement and evaluate exact incomplete query processing in U4U. If time
permits, we will then add support for probabilistic queries.

6 Intellectual Merit
The proposed research generalizes incomplete databases, probabilistic databases, and certain answers

beyond set semantics. In addition to practical applications like bag semantics (SQL), access control under
incompleteness, and incomplete provenance, this also will open up new research opportunities for studying
the behavior of UA-DBs, a new type of uncertain database and their approximation. The proposed work
will lay down a solid formal foundation for future research by investigating approximation of certain answers
for large classes of queries, diverse annotation domains, and for attribute-level uncertainty. All of these
expected results are also interesting research contributions in their own right. The inherent low complexity
of query evaluation for UA-DB and their backward compatibility with selected-guess query processing makes
it easy to employ them in a wide range of use cases that were, until now, limited to selected-guess query
processing. Applications currently relying on selected-guess query processing can now benefit from the
additional trust provided by (an under-approximation of) certain answers, without the performance penalty
or the risk that useful answers might be omitted. Furthermore, applications that already rely on existing
incomplete or probabilistic data models can benefit directly from UA-DBs thanks to our proposed adapters.
The algorithms and methods developed in the second research thrust and their implementation in U4U will
provide a pathway to making incomplete databases more practical, while laying the groundwork for future
research in uncertainty management. Finally, even though updates to incomplete data have been studied
formally [2]), to the best of our knowledge no practical solution exists.

7 Broader Impacts
The state of the art in uncertainty management is what we call selected-guess query processing: An

analyst or data ingest process selects one possible world and proceeds with analyses as if that world was
true. In other words, uncertainty is dealt with by ignoring it. As we showed in [70] this model is applied
in ETL (Extract-Transform-Load) pipelines. For instance, when imputing missing values as part of a ETL
workflow, NULL values in a column are often replaced using a classifier to predict the “correct” value.
However, the heuristic steps in a data curation workflow frequently admit alternative repairs of the data
— they are uncertain, even if that uncertainty is presently discarded. UA-DBs have the potential for great
practical impact since they combine the practicality and performance of selected-guess query processing with
the rigor of certain answers. Our proposed techniques can significantly improve many real world use cases
which currently make decisions based on uncertain data with severe negative impact. In addition to the
potential of the proposed research itself, this grant will support three Ph.D. students and one postdoctoral
researcher.

7Our proposed approach compliments anytime probabilities [24], which targets existential queries and individual tuples.
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Integration of Research and Education. All PIs are dedicated to integrate research into education.
Beyond the involvement of undergraduate and master students though summer internships, research projects,
and master theses, we will incorporate uncertainty and UA-DBs into related classes at SUNY Buffalo and
IIT. For instance, PI Glavic is teaching a graduate-level course on data integration, cleaning, and provenance.
A module covering incomplete databases will be integrated into this course. Similarly, PI Kennedy teaches
a graduate-level course that uses research-inspired projects to teach databases and programming languages
concepts to students. To date, four projects have involved probabilistic or incomplete databases. Because of
the severe real world impact that uncertainty can have when not handled properly, we believe that awareness
of how uncertainty can effect analysis results should be taught to students starting from an early stage. The
PIs will incorporate this topic into undergraduate database and data science courses demonstrating by
example the impact of uncertainty on the trustworthiness of query results.

Dissemination of Research Results. Results will be published in top-tier database conferences such as
SIGMOD, VLDB, PODS, ICDE, ICDT, and EDBT. The PIs will maintain a webpage for the project to
keep track of U4U users and inform about new releases and features.

Minority and Undergraduate Involvement. We are committed to recruiting and mentoring minorities.
All the PIs have been involved in different efforts to foster minority involvement and we will use this proposal
as a vehicle to further these efforts. A detailed description of efforts related to this proposal can be found in
the Broadening participation in computation plan of the proposal.

Technology Transfer and Software Tools. Our team has an strong record of translating research results
into practice. The software we will develop will be released as open source. Value-added open data derived
by our methods will also will be made available under creative commons licenses where permitted.

8 Evaluation Plan
We define the following success metrics for this work: (i) query processing over UA-DBs has a small

overhead compared to deterministic (best guess) query processing; (ii) the approximation accuracy of certain
answers provided by UA-DBs is high for most real world use cases; (iii) attribute-level uncertainty encoded as
bounds on attribute values increases the accuracy of approximations encoded by UA-DBs at a low additional
performance penalty; (iv) the concise representations of possible answers we use to deal with non-monotone
queries such as negation and aggregation allows the efficient and correct (the output is an approximations
of certain answers) evaluation of such queries over UA-DBs.

We will evaluate the performance of our implementation of UA-DBs in U4U over a wide range of real world
datasets and synthetic benchmarks from the literature (e.g., PDBench [5]). We plan to use uncertain data
where directly available: (1) the output of some information integration tools is probabilistic in nature [14,22],
(2) Using probabilistic data cleaning operators called Lenses [70], we can create uncertain databases that
are cleaned versions of real world datasets, but with explicitly modeled uncertainty. This enables us to
evaluate our techniques over a range of publicly available (messy) open government datasets. We will
experimentally compare the performance and approximation accuracy of our approach against other methods
for approximating certain answers, against exact methods for computing certain answers, and with selected-
guess query processing. Furthermore, we will compare UA-DBs with tuple-level uncertainty with the novel
attribute-bound encoding we propose in this work. Finally, we will compare certain answer techniques for
non-monotone queries with our approach for maintaining a compact representation of possible answers to
deal with non-monotonicity.

9 Project Management and Timeline
The PIs will coordinate work on the project through joint bi-weekly online meetings with the students

from both sites. A yearly in-person meeting will be held alternating between SUNY Buffalo and IIT (travel
funds are requested as part of the budget). These day-long meetings will include progress reports and
presentations by students and a strategic planning session by the PIs. In addition to the funded Ph.D.
students and PostDocs, the PIs will also involve students at the master and undergraduate level in projects
related to the proposed research. The yearly meetings will also serve as a platform for these students to
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meet in person and present their research results. The PIs have successfully collaborated in the past and
this ongoing collaboration led to the development of some of the preliminary work for this proposal. Further
project management details can be found in the collaboration plan.

The time table below shows the 4 year plan for the proposed research.

Year Trust I - Formal Foundations Thrust II - Algorithms and Their Implementation in U4U

1

�I-a - study when UA-DBs are exact
�I-c - extend UA-DB model for attribute-level uncertainty
�I-d - investigate the applicability of FAQ and Tetris for
over-approximating possible answers

�II-a - develop adapters for incomplete and probabilistic data models
�II-b - develop rewrites for queries over set and bag semantics UA-DBs

2

�I-a - study bounds for certain answer approximations based
on data and query characteristics
�I-c - generalize the concept of certain answers to attribute-
level UA-DBs

�II-a - investigate methods for preserving approximations of certain answers
under updates
�II-b - develop rewrites for attribute-level uncertainty UA-DBs

3

�I-b - study approximation bounds for additional semirings
�I-c - develop query execution algorithms for attribute-level
UA-DBs
�I-d - extend FAQ and Tetris [42, 43] to support negation

�II-a - design and implement DDL and DML extensions for various tasks that
generate uncertainty
�II-b - extend rewrites for non-monotone queries (aggregation and negation)
�II-c - adapt the Tetris algorithm [42] to efficiently compute over-
approximations of possible answers

4

�I-c - study approximation bounds guaranteed by attribute-
level UA-DBs
�I-d - integrate the extended FAQ representation of possible
answers to support aggregation and negation (set difference)
queries

�II-b - develop rewrite techniques for additional semirings (e.g., provenance)
�II-d - study online refinement methods for computing certain answers starting
from a UA-DB query result
�II-c - develop specialized single pass aggregation algorithms for UA-DBs
�II-d - extend online refinement to support probabilistic databases and
attribute-level uncertainty

10 Prior NSF Results
PI Glavic. Dr. Glavic is funded through NSF grant ACI-1640864 as a subrecipient. Project Title: CIF21
DIBBs: EI: Vizier, Streamlined Data curation; Award Amount: $2.73 million; and Period of Performance:
10/03/2016 - 12/31/2019. Intellectual Merit: The goal of this work is to built Vizier, a next genera-
tion data curation system that will make it easier and faster to explore and analyze raw data. The work
significantly improves the way how data science is conducted, making data curation easier, simpler, more
transparent, more reliable, more exploratory, and more efficient. This work has lead to several publications
in conferences, journals, and workshops [9, 11, 49, 50, 59, 65]. Broader Impact: The Vizier system will be
deployed by stakeholders from industry, government, and academia who will ensure sustainability. Thus,
the research will have a long term transformative effect on how data science is conducted by a wide range of
users. This grant is funding two Ph.D. students and one undergraduate student through a REU. Dr. Glavic
is supervising 7 Ph.D. students (minority female) and 3 undergraduate students (minorities).

PI Kennedy. PI Kennedy is funded through NSF grant ACI-1640864. Project Title: CIF21 DIBBs: EI:
Vizier, Streamlined Data curation; Award Amount: $2.73 million; and Period of Performance: 10/03/2016
- 12/31/2019. Intellectual Merit: PI Kennedy’s work for this award has explored techniques for man-
aging messy and incomplete data [23, 52, 64, 66, 69], inter-modal provenance [27, 57], and interfaces for the
above [46,47], through a practical system called Vizier. Broader Impact: The Vizier system [32] facilitates
collaborative reproducible research between participants of varying skill levels. This grant is funding one
Ph.D. student, one developer, and has funded one undergraduate student through an REU. Dr. Kennedy is
presently supervising 6 Ph.D. students (2 female) and one undergraduate student (minority female).

PI Rudra. Rudra was funded through NSF grant CCF-1319402. Project Title: AF:III:Small:Collaborative
Research: New Frontiers in Join Algorithms: Optimality, Noise, and Richer Languages; Amount: $326,101;
and Period of Performance: 09/01/2013 - 08/31/2017. The main results of this grant in Intellectual Merit
are as follows: (i) the first beyond-worst-case results for the general join query in [54], (ii) a resolution-based
framework for designing join algorithms that recovers most of known (worst-case and beyond worst-case)
results as well as new results on computing joins [42]; (iii) extending the join results to a more general
framework [43], which won the PODS 2016 best paper award. With respect to Broader Impacts, this
grant partially supported two Ph.D. students at Buffalo, Mahmoud Abo Khamis and Jimmy Dobler. The
grant also supported a general database audience survey on the developments in worst-case optimal join
algorithms [56]. PI Rudra is currently funded through NSF CCF-1763481 and CCF-1717134 but they are
not as closely related to this proposal as the above award.
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[2] Serge Abiteboul and Gösta Grahne. Update semantics for incomplete databases. In VLDB’85, Pro-

ceedings of 11th International Conference on Very Large Data Bases, August 21-23, 1985, Stockholm,
Sweden., pages 1–12, 1985.
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