CSE 250

Data Structures

Dr. Eric Mikida
epmikida@buffalo.edu
Dr. Oliver Kennedy
okennedy@buffalo.edu

212 Capen Hall

QuickSort and Average Runtime

Announcements

- WA1 due tonight at 11:59PM
- Late submissions (up to tomorrow at 11:59PM) receive 50% penalty
- PA2 is released
- Start early......please :)

Recap - Merge Sort

Divide: Split the sequence in half

$$
D(n)=\boldsymbol{\Theta}(n) \text { (can do in } \boldsymbol{\Theta}(1))
$$

Conquer: Sort the left and right halves

$$
a=2, b=2, c=1
$$

Combine: Merge halves together

$$
C(n)=\boldsymbol{\Theta}(n)
$$

Merge Sort: Intuition

Merge Sort: Intuition

Merge Sort: Intuition

Merge Sort: Intuition

Notice the total cost of each level is always $\Theta(n)$

Merge Sort: Intuition

Because we divide in half at each level, we have $\log (n)$ levels

Notice the total cost of each level is always $\Theta(n)$

Merge Sort: Intuition

Because we divide in half at each level, we have $\log (n)$ levels

Hypothesis: The cost of merge sort is $n \log (n)$
Notice the total cost of each level is always $\Theta(n)$

Merge Sort: Proof by Induction

Base Case: $T(1) \leq c$

$$
c_{0} \leq c
$$

True for any $c>c_{0}$

Merge Sort: Proof by Induction

Assume: $T(n / 2) \leq c(n / 2) \log (n / 2)$
Show: $T(n) \leq c n \log (n)$

Merge Sort: Proof by Induction

Assume: $T(n / 2) \leq c(n / 2) \log (n / 2)$
Show: $T(n) \leq c n \log (n)$

$$
2 \cdot T\left(\frac{n}{2}\right)+c_{1}+c_{2} n \leq c n \log (n)
$$

Merge Sort: Proof by Induction

Assume: $T(n / 2) \leq c(n / 2) \log (n / 2)$
Show: $T(n) \leq c n \log (n)$

$$
2 \cdot T\left(\frac{n}{2}\right)+c_{1}+c_{2} n \leq c n \log (n)
$$

By the assumption, and transitivity, we just need to show:

$$
2 c \frac{n}{2} \log \left(\frac{n}{2}\right)+c_{1}+c_{2} n \leq c n \log (n)
$$

Merge Sort: Proof by Induction

Assume: $T(n / 2) \leq c(n / 2) \log (n / 2)$
Show: $T(n) \leq c n \log (n)$

$$
2 \cdot T\left(\frac{n}{2}\right)+c_{1}+c_{2} n \leq c n \log (n)
$$

By the assumption, and transitivity, we just need to show:

$$
\begin{gathered}
2 c \frac{n}{2} \log \left(\frac{n}{2}\right)+c_{1}+c_{2} n \leq c n \log (n) \\
c n \log (n)-c n \log (2)+c_{1}+c_{2} n \leq c n \log (n)
\end{gathered}
$$

Merge Sort: Proof by Induction

Assume: $T(n / 2) \leq c(n / 2) \log (n / 2)$
Show: $T(n) \leq c n \log (n)$

$$
2 \cdot T\left(\frac{n}{2}\right)+c_{1}+c_{2} n \leq c n \log (n)
$$

By the assumption, and transitivity, we just need to show:

$$
\begin{gathered}
2 c \frac{n}{2} \log \left(\frac{n}{2}\right)+c_{1}+c_{2} n \leq c n \log (n) \\
c n \log (n)-c n \log (2)+c_{1}+c_{2} n \leq c n \log (n) \\
c_{1}+c_{2} n \leq c n \log (2)
\end{gathered}
$$

Merge Sort: Proof by Induction

$$
c_{1}+c_{2} n \leq c n \log (2)
$$

Merge Sort: Proof by Induction

$$
\begin{gathered}
c_{1}+c_{2} n \leq c n \log (2) \\
\frac{c_{1}}{n \log (2)}+\frac{c_{2}}{\log (2)} \leq c
\end{gathered}
$$

Merge Sort: Proof by Induction

Which is true for any

Merge Sort

Where is all of the "work" being done?

Merge Sort

Where is all of the "work" being done?
The combine step

Merge Sort

Where is all of the "work" being done?
The combine step
Can we put the work in the divide step instead?

QuickSort

Idea: What if we divide our sequence around a particular value?
What value would we like to choose?

QuickSort

Idea: What if we divide our sequence around a particular value?
What value would we like to choose? Median

QuickSort: Idealized Version

$$
\begin{array}{llllllll}
7 & 1 & 4 & 3 & 5 & 2 & 6 & 8
\end{array}
$$

QuickSort: Idealized Version

$$
\begin{array}{llll|llll}
7 & 1 & 4 & 3 & 5 & 2 & 6 & 8
\end{array}
$$

QuickSort: Idealized Version

$$
\begin{array}{llll|llll}
7 & 1 & 4 & 3 & 5 & 2 & 6 & 8 \\
2 & 1 & 4 & 3 & 5 & 7 & 6 & 8
\end{array}
$$

QuickSort: Idealized Version

$$
\begin{aligned}
& 7 \begin{array}{lll|llll}
7 & 4 & 3 & 5 & 2 & 6 & 8 \\
\hline
\end{array} \begin{array}{lll|llll}
1 & 4 & 3 & 5 & 7 & 6 & 8
\end{array}
\end{aligned}
$$

QuickSort: Idealized Version

$$
\begin{array}{lllll|llll}
7 & 1 & 4 & 3 & 5 & 2 & 6 & 8 \\
2 & 1 & 4 & 3 & 5 & 7 & 6 & 8
\end{array}
$$

QuickSort: Idealized Version

$$
\begin{aligned}
& 7 \\
& \hline
\end{aligned} \begin{array}{llll|llll}
1 & 4 & 3 & 5 & 2 & 6 & 8 \\
2 & 1 & 4 & 3 & 5 & 7 & 6 & 8 \\
1 & 2 & 4 & 3 & 5 & 7 & 6 & 8
\end{array}
$$

QuickSort: Idealized Version

$$
\begin{array}{lllll|llll}
7 & 1 & 4 & 3 & 5 & 2 & 6 & 8 \\
2 & 1 & 4 & 3 & 5 & 7 & 6 & 8 \\
1 & 2 & 4 & 3 & 5 & 7 & 6 & 8
\end{array}
$$

QuickSort: Idealized Version

$$
\begin{array}{lllll|llll}
7 & 1 & 4 & 3 & 5 & 2 & 6 & 8 \\
\hline 2 & 1 & 4 & 3 & 5 & 7 & 6 & 8 \\
1 & 2 & 4 & 3 & 5 & 7 & 6 & 8 \\
1 & 2 & 3 & 4 & 5 & 7 & 6 & 8
\end{array}
$$

QuickSort: Idealized Version

$$
\begin{array}{lllll|llll}
7 & 1 & 4 & 3 & 5 & 2 & 6 & 8 \\
\hline 2 & 1 & 4 & 3 & 5 & 7 & 6 & 8 \\
1 & 2 & 4 & 3 & 5 & 7 & 6 & 8 \\
1 & 2 & 3 & 4 & 5 & 7 & 6 & 8
\end{array}
$$

QuickSort: Idealized Version

$$
\begin{array}{lllll|llll}
7 & 1 & 4 & 3 & 5 & 2 & 6 & 8 \\
2 & 1 & 4 & 3 & 5 & 7 & 6 & 8 \\
2 & 2 & 4 & 3 & 5 & 7 & 6 & 8 \\
1 & 2 & 3 & 4 & 5 & 7 & 6 & 8 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

QuickSort: Idealized Version

$$
\begin{array}{lllll|llll}
7 & 1 & 4 & 3 & 5 & 2 & 6 & 8 \\
2 & 1 & 4 & 3 & 5 & 7 & 6 & 8 \\
2 & 2 & 4 & 3 & 5 & 7 & 6 & 8 \\
1 & 2 & 3 & 4 & 5 & 7 & 6 & 8 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

QuickSort: Idealized Version

$$
\begin{array}{lllll|llll}
7 & 1 & 4 & 3 & 5 & 2 & 6 & 8 \\
\hline 2 & 1 & 4 & 3 & 5 & 7 & 6 & 8 \\
1 & 2 & 4 & 3 & 5 & 7 & 6 & 8 \\
1 & 2 & 3 & 4 & 5 & 7 & 6 & 8 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

QuickSort: Idealized Version

$$
\begin{array}{llll|llll}
7 & 1 & 4 & 3 & 5 & 2 & 6 & 8 \\
2 & 1 & 4 & 3 & 5 & 7 & 6 & 8 \\
1 & 2 & 4 & 3 & 5 & 7 & 6 & 8 \\
1 & 2 & 3 & 4 & 5 & 7 & 6 & 8 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

QuickSort: Idealized Algorithm

To sort an array of size n :

1. Pick a pivot value (median?)
2. Swap values until:
a. elements at $[1, n / 2)$ are \leq pivot
b. elements at $[n / 2, n)$ are $>$ pivot
3. Recursively sort the lower half
4. Recursively sort the upper half

QuickSort: Idealized Version

```
def idealizedQuickSort(arr: Array[Int], from: Int, until: Int): Unit = {
    if(until - from < 1) { return }
    val pivot = ???
    var low = from, high = until -1
    while(low < high) {
        while(arr(low) <= pivot && low < high) { low ++ }
        if(low < high) {
            while(arr(high) > pivot && low < high) { high ++ }
            swap(arr, low, high)
        }
    }
    idealizedQuickSort(arr, from = 0, until = low)
    idealizedQuickSort(arr, from = low, until = until)
}
```


Great! So...how do we find the median...?

Great! So...how do we find the median...?

Finding the median takes $\mathrm{O}(n \log (n))$ for an unsorted array :(

QuickSort: Hypothetical

Imagine a world where we can obtain a pivot in $O(1)$. Now what is our complexity?

QuickSort: Hypothetical

Imagine a world where we can obtain a pivot in $O(1)$.
Now what is our complexity?

$$
T_{\text {quicksort }}(n)= \begin{cases}\Theta(1) & \text { if } n=1 \\ 2 \cdot T\left(\frac{n}{2}\right)+\Theta(n)+0 & \text { otherwise }\end{cases}
$$

QuickSort: Hypothetical

Imagine a world where we can obtain a pivot in $O(1)$.
Now what is our complexity?

$$
T_{\text {quicksort }}(n)= \begin{cases}\Theta(1) & \text { if } n=1 \\ 2 \cdot T\left(\frac{n}{2}\right)+\Theta(n)+0 & \text { otherwise }\end{cases}
$$

Compare to Merge Sort:

$$
T_{\text {mergesort }}(n)= \begin{cases}\Theta(1) & \text { if } n=1 \\ 2 \cdot T\left(\frac{n}{2}\right)+\Theta(1)+\Theta(n) & \text { otherwise }\end{cases}
$$

QuickSort: Attempt \#2

So how can we pick a pivot value (in $0(1)$ time)?

QuickSort: Attempt \#2

So how can we pick a pivot value (in $\mathrm{O}(1)$ time)?
Idea: Pick it randomly! On average, half the values will be lower.

QuickSort: Attempt \#2

To sort an array of size n :

1. Pick a value at random as the pivot
2. Swap values until the array is subdivided into:
a. low: array elements < pivot
b. pivot
c. high: array elements > pivot
3. Recursively sort low
4. Recursively sort high

QuickSort: Runtime

What is the worst-case runtime?

QuickSort: Worst-Case Scenario

What if we always pick the worst pivot?

$$
[8,7,6,5,4,3,2,1]
$$

QuickSort: Worst-Case Scenario

What if we always pick the worst pivot?

$$
\begin{gathered}
{[8,7,6,5,4,3,2,1]} \\
{[7,6,5,4,3,2,1], 8,[]}
\end{gathered}
$$

QuickSort: Worst-Case Scenario

What if we always pick the worst pivot?

$$
\begin{gathered}
{[8,7,6,5,4,3,2,1]} \\
{[7,6,5,4,3,2,1], 8,[]} \\
{[6,5,4,3,2,1], 7,[], 8}
\end{gathered}
$$

QuickSort: Worst-Case Scenario

What if we always pick the worst pivot?

$$
\begin{gathered}
{[8,7,6,5,4,3,2,1]} \\
{[7,6,5,4,3,2,1], 8,[]} \\
{[6,5,4,3,2,1], 7,[], 8} \\
{[5,4,3,2,1], 6,[], 7,8}
\end{gathered}
$$

QuickSort: Worst-Case Scenario

What if we always pick the worst pivot?

$$
\begin{gathered}
{[8,7,6,5,4,3,2,1]} \\
{[7,6,5,4,3,2,1], 8,[]} \\
{[6,5,4,3,2,1], 7,[], 8} \\
{[5,4,3,2,1], 6,[], 7,8}
\end{gathered}
$$

QuickSort: Worst-Case Runtime

What is the worst-case runtime?

QuickSort: Worst-Case Runtime

What is the worst-case runtime?

$$
T_{\text {quicksort }}(n) \in O\left(n^{2}\right)
$$

QuickSort: Worst-Case Runtime

Is the worst case runtime representative?

QuickSort: Worst-Case Runtime

Is the worst case runtime representative?
No! (the actual runtime will almost always be faster)

QuickSort: Worst-Case Runtime

Is the worst case runtime representative?
No! (the actual runtime will almost always be faster)
But what can we say about runtime?

QuickSort

Let's say we pick Xth largest element for our pivot. What is the runtime $(T(n))$?

QuickSort

Let's say we pick Xth largest element for our pivot.

What is the runtime $(T(n))$?

$$
\begin{cases}T(0)+T(n-1)+\Theta(n) & \text { if } X=1 \\ T(1)+T(n-2)+\Theta(n) & \text { if } X=2 \\ T(2)+T(n-3)+\Theta(n) & \text { if } X=3 \\ . & \\ T(n-2)+T(1)+\Theta(n) & \text { if } X=n-1 \\ T(n-1)+T(0)+\Theta(n) & \text { if } X=n\end{cases}
$$

Probabilities

How likely are we to pick $X=k$ for any specific k ?

Probabilities

How likely are we to pick $X=k$ for any specific k ?

$$
P[X=k]=1 / n
$$

Probability Theory (Great Class...)

If I roll a d6 (6-sided die) k times,
what is the average roll over all possible outcomes?

If I rolld a d6 1 time...

Roll	Probability	Outcome
\square	$1 / 6$	1
\square	$1 / 6$	2
\square	$1 / 6$	3
国	$1 / 6$	4
国	$1 / 6$	5

Expected Runtime

Back to Induction

Hypothesis: $E[T(n)] \in O(n \log (n))$

Base Case

Base Case: $E[T(1)] \leq c(1 \log (1))$

Base Case

Base Case: $E[T(1)] \leq c(1 \log (1))$
 $$
E[T(1)] \leq c(1 \cdot 0)
$$

Base Case

Base Case: $E[T(1)] \leq c(1 \log (1))$

$$
\begin{gathered}
E[T(1)] \leq c(1 \cdot 0) \\
E[T(1)] 太 0
\end{gathered}
$$

Base Case (Take 2)

Base Case (Take Two): $E[T(2)] \leq c(2 \log (2))$

Base Case (Take 2)

$$
\begin{gathered}
\text { Base Case (Take Two): } E[T(2)] \leq c(2 \log (2)) \\
2 \cdot E_{i}[T(i-1)]+2 c_{1} \leq 2 c
\end{gathered}
$$

Base Case (Take 2)

Base Case (Take Two): $E[T(2)] \leq c(2 \log (2))$

$$
\begin{gathered}
2 \cdot E_{i}[T(i-1)]+2 c_{1} \leq 2 c \\
2 \cdot(T(0) / 2+T(1) / 2)+2 c_{1} \leq 2 c
\end{gathered}
$$

Base Case (Take 2)

Base Case (Take Two): $E[T(2)] \leq c(2 \log (2))$

$$
\begin{gathered}
2 \cdot E_{i}[T(i-1)]+2 c_{1} \leq 2 c \\
2 \cdot(T(0) / 2+T(1) / 2)+2 c_{1} \leq 2 c \\
T(0)+T(1)+2 c_{1} \leq 2 c
\end{gathered}
$$

Base Case (Take 2)

Base Case (Take Two): $E[T(2)] \leq c(2 \log (2))$

$$
\begin{gathered}
2 \cdot E_{i}[T(i-1)]+2 c_{1} \leq 2 c \\
2 \cdot(T(0) / 2+T(1) / 2)+2 c_{1} \leq 2 c \\
T(0)+T(1)+2 c_{1} \leq 2 c \\
2 c_{0}+2 c_{1} \leq 2 c
\end{gathered}
$$

Base Case (Take 2)

Base Case (Take Two): $E[T(2)] \leq c(2 \log (2))$

$$
\begin{gathered}
2 \cdot E_{i}[T(i-1)]+2 c_{1} \leq 2 c \\
2 \cdot(T(0) / 2+T(1) / 2)+2 c_{1} \leq 2 c \\
T(0)+T(1)+2 c_{1} \leq 2 c \\
2 c_{0}+2 c_{1} \leq 2 c
\end{gathered}
$$

True for any $c \geq c_{0}+c_{1}$

Inductive Case

Assume: $E\left[T\left(n^{\prime}\right)\right] \leq c\left(n^{\prime} \log \left(n^{\prime}\right)\right)$ for all $n^{\prime}<n$ Show: $E[T(n)] \leq c(n \log (n))$

Inductive Case

Assume: $E\left[T\left(n^{\prime}\right)\right] \leq c\left(n^{\prime} \log \left(n^{\prime}\right)\right)$ for all $n^{\prime}<n$
Show: $E[T(n)] \leq c(n \log (n))$

$$
\frac{2}{n}\left(\sum_{i=0}^{n-1} E[T(i)]\right)+c_{1} \leq c n \log (n)
$$

Inductive Case

Assume: $E\left[T\left(n^{\prime}\right)\right] \leq c\left(n^{\prime} \log \left(n^{\prime}\right)\right)$ for all $n^{\prime}<n$
Show: $E[T(n)] \leq c(n \log (n))$

$$
\begin{aligned}
& \frac{2}{n}\left(\sum_{i=0}^{n-1} E[T(i)]\right)+c_{1} \leq c n \log (n) \\
& \frac{2}{n}\left(\sum_{i=0}^{n-1} c i \log (i)\right)+c_{1} \leq c n \log (n)
\end{aligned}
$$

Inductive Case

Assume: $E\left[T\left(n^{\prime}\right)\right] \leq c\left(n^{\prime} \log \left(n^{\prime}\right)\right)$ for all $n^{\prime}<n$
Show: $E[T(n)] \leq c(n \log (n))$

$$
\begin{aligned}
& \frac{2}{n}\left(\sum_{i=0}^{n-1} E[T(i)]\right)+c_{1} \leq c n \log (n) \\
& \frac{2}{n}\left(\sum_{i=0}^{n-1} c i \log (i)\right)+c_{1} \leq c n \log (n) \\
& c \frac{2}{n}\left(\sum_{i=0}^{n-1} i \log (n)\right)+c_{1} \leq c n \log (n)
\end{aligned}
$$

Inductive Case

$$
c \frac{2}{n}\left(\sum_{i=0}^{n-1} i \log (n)\right)+c_{1} \leq c n \log (n)
$$

Inductive Case

$$
\begin{aligned}
& c \frac{2}{n}\left(\sum_{i=0}^{n-1} i \log (n)\right)+c_{1} \leq c n \log (n) \\
& c \frac{2 \log (n)}{n}\left(\sum_{i=0}^{n-1} i\right)+c_{1} \leq c n \log (n)
\end{aligned}
$$

Inductive Case

$$
\begin{aligned}
& c \frac{2}{n}\left(\sum_{i=0}^{n-1} i \log (n)\right)+c_{1} \leq c n \log (n) \\
& c \frac{2 \log (n)}{n}\left(\sum_{i=0}^{n-1} i\right)+c_{1} \leq c n \log (n) \\
& c \frac{2 \log (n)}{n}\left(\frac{(n-1)(n-1+1)}{2}\right)+c_{1} \leq c n \log (n)
\end{aligned}
$$

Inductive Case

$$
\begin{aligned}
& c \frac{2}{n}\left(\sum_{i=0}^{n-1} i \log (n)\right)+c_{1} \leq c n \log (n) \\
& c \frac{2 \log (n)}{n}\left(\sum_{i=0}^{n-1} i\right)+c_{1} \leq c n \log (n) \\
& c \frac{2 \log (n)}{n}\left(\frac{(n-1)(n-1+1)}{2}\right)+c_{1} \leq c n \log (n) \\
& c \frac{\log (n)}{n}\left(n^{2}-n\right)+c_{1} \leq c n \log (n)
\end{aligned}
$$

Inductive Case

$$
\begin{aligned}
& c \frac{2}{n}\left(\sum_{i=0}^{n-1} i \log (n)\right)+c_{1} \leq c n \log (n) \\
& c \frac{2 \log (n)}{n}\left(\sum_{i=0}^{n-1} i\right)+c_{1} \leq c n \log (n) \\
& c \frac{2 \log (n)}{n}\left(\frac{(n-1)(n-1+1)}{2}\right)+c_{1} \leq c n \log (n) \\
& c \frac{\log (n)}{n}\left(n^{2}-n\right)+c_{1} \leq c n \log (n) \\
& c n \log (n)-c \log (n)+c_{1} \leq c n \log (n)
\end{aligned}
$$

Inductive Case

$$
\begin{gathered}
c \frac{2}{n}\left(\sum_{i=0}^{n-1} i \log (n)\right)+c_{1} \leq c n \log (n) \\
c \frac{2 \log (n)}{n}\left(\sum_{i=0}^{n-1} i\right)+c_{1} \leq c n \log (n) \\
c \frac{2 \log (n)}{n}\left(\frac{(n-1)(n-1+1)}{2}\right)+c_{1} \leq c n \log (n) \\
c \frac{\log (n)}{n}\left(n^{2}-n\right)+c_{1} \leq c n \log (n) \\
c n \log (n)-c \log (n)+c_{1} \leq c n \log (n) \\
c_{1} \leq c \log (n)
\end{gathered}
$$

QuickSort

So...is QuickSort $O(n \log (n))$...?
No!

What guarantees do you get?

If $f(n)$ is a Tight Bound
The algorithm always runs in $c f(n)$ steps
If $f(n)$ is a Worst-Case Bound
The algorithm always runs in at most $c f(n)$
If $f(n)$ is an Amortized Worst-Case Bound
n invocations of the algorithm always run in $\operatorname{cnf}(n)$ steps
If $f(n)$ is an Average Bound
...we don't have any guarantees

