
By Team Datum

Policy Exploration for JITDs (Java)

Cracking Results from Paper vs. Observed
Results

Tested with :

mode cracker
init 100000000
seqread 5000
write 10000000
seqread 5000

Adaptive Merge Results from Paper vs. Observed
Results

Tested with :

mode merge
init 100000000
seqread 5000
write 10000000
seqread 5000

Comparison of Swapping Results from Paper vs.
Observed Results

Tested with :

mode cracker
init 100000000
seqread 2000
mode merge
seqread 3000
write 10000000
mode cracker
seqread 2000
mode merge
seqread 3000

Past : Uniform(Random) Workload

y Currently, all the graphs are plotted using RandomIterator where the Lower
bound of range query is selected at random.

y All the Data values have equal probability of Selection.
y Is this the Correct way for evaluation?

Current : Zipfian Workload
y Zipfian distribution Vs uniform distribution
y Added new Iterator that extends current KeyValueIterator.

y Considered 3 different implementations for Zipfian Distribution Generation.
y Naïve Zipfian Generator
 (Uses basic implementation of Zipfian distribution)
y Fast Zipfian Generator
 (Stores values in a NavigableMap prior to the iterator’s next() call)
y YCSB’s Zipfian Generator
 (Implements Zipfian distribution fully using the standard distribution form)

Distribution Stats

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1 5 9 13

17

21

25

29

33

37

41

45

49

53

57

61

65

69

73

77

81

85

89

93

97

NaiveImplCount

FastImplCount

YCSBImplCount

Total duration (in millisecs) :
NaiveImpl : 67212.710357
FastImpl : 540.022825
YCSBImpl : 950.114582

Progress
y Basic implementation of Splaying is done without the concept

of Cogs. Should find the policies that fits the current
implementation.

y Should find how current implementation works against
Workloads following Zipfian Distribution.

JITDs on Disk

Team Warp
Animesh, Archit, Rishabh, Rohit

UPDATEd FILE formats to include new metadata

Data,2,Data Null,5,Null Data,6,Data

File,2,File Null,5,Null File,6,File

Data , Separator, Data

File Pointer, Separator, File Pointer

COGS TO SUPPORT PAGING
● PageCog - deals with pages
● FileCog - deals with data in files

PAGING DATA in AND OUT
● Basic implementation for saving index trees in pages
● Basic implementation for restoring index trees from pages
● Policies on when and what to page out
● Researching on the ideal page size

QUESTIONS?

Policy Exploration of JITDs (C)

Team Twinkle

Today’s Presentation

● Splay tree policy exploration.
● Policy implementation details.
● Tests and Test Results.

Policy 1 : Splaying

● When to Splay ?
○ Test Scenario: Splay after every 10 reads.
○ Performance benefit is summarized in the following slides.
○ It is yet to be determined the optimal time to Splay.

● How to Splay ?
○ Test Scenario: Splay on the Tree Median Btree-cog
○ Other possible splays:

■ Most recently accessed data.
■ Most frequently accessed data prior to splaying
■ Random splaying

Performance comparison of cracking with
splaying vs without Splaying
For a random array of size 100000 and key range of 1000

random 10 read key range Without Splaying (in msec.) With Splaying (in msec.)

1000 83 78

100 6 5

10 0 1

Why Zipfian Distribution?

Distribution of Data Points
on Logarithmic Scale

● Real life workload.
● More selective distribution.
● Part of major benchmarking softwares like YCSB

Testing Base Setup

● One million records of random data created using mk_random_array() function.
● Same distribution values for the test run on both the splaying and un-splayed data-

points.
● Cracking performed on the range-scan operations.
● Splaying performed after 100 reads.
● Total of 1000 reads performed on each test.
● Selectivity or range scan width changed for each test.

Results for the test

Selectivity for range scan changed.

Selectivity(10) Selectivity(50) Selectivity(100) Selectivity(1000)

Test ran without
splaying

5333 5325 5419 5319

Test ran with
splaying

5142 5172 5151 5138

Time in milliseconds

● Test ran with splaying varying splay interval
● Range scan 1000

Splaying after 5
reads

Splaying after 10
reads

Splaying after 100
reads

Splaying after 200
reads

5174 5296 5337 5239

Future Work

● Perform more testing b changing the parameters taking into consideration more
factors.

● Perform read and write simultaneously into the cog and check how the performance is
impacting.

● Explore other self balancing data-structures like AVL tree,Red-Black tree and perform
the same workload operations.

Questions?

