
Policy Exploration for JITDs - Java
Team Datum

Splaying on Uniform Distribution

Cracking on Uniform Distribution
without splaying

Cracking on Uniform Distribution
splaying for every 100reads

Tested as
KeyRange 1000000
Load 1000000
Reads 1000

Time Taken ~ 31.8ms Time Taken ~ 26.8ms

Splaying on Zipfian Distribution

Cracking on zipfian Distribution
without splaying

Cracking on zipfian Distribution
splaying for every 500 reads

Tested as
KeyRange 1000000
Load 1000000
Reads 1000

Time Taken ~ 421 ms Time Taken ~ 309 ms

JITD C Group
Alex, Razie, Aurijoy

Some Recaps

● Comparison between Java and C version for JITDs
● Splaying policy

Java and C Performances

However over a 1000 Reads Things Are Better

Splaying policy- preliminary findings

Let’s see if Splaying by itself (at random) is good!
The setup:

● Buffer Size of 1000000
● Data is Randomly Distributed
● Key Range of 1000000
● Total Reads 10000
● We test splaying on every 250, 500, 1000 reads
● Our results here are the average of 5 separate runs (results were pretty

consistent across runs)

How do we choose the random point to splay at?
● We choose it while we do a read
● We single out the cog generated while cracking for the left hand side
● We use the cog generated for the read just before we splay

Why?

● It’s for free unlike finding the median
● It’s random

How does it perform per splay step?

How does it perform in terms of runtime?

Takeaway
● Splaying at random works great as splaying balances the tree pretty good

regardless
● It may thus be better that our policy uses splaying as more of a balancing

technique
● Splaying more often is better
● There is probably a cutoff point and we should find it

Tinkering with Splaying Interval- Variations of Splay
Heuristic

Our efforts would be directed towards finding the variations over different splaying
heuristics.

While the splaying policies used so far are not the ones used in canonical splay
trees used widely.

We hope to get an idea of whether the intervals do matter over uniformly mapped
zipf keys.

ReMapping the Keys in a Zipfian to have fair Prior
over Tree Balancing

Previous week our choice of mapping the numbers generated by the zipfian
had an initial bias. Keys with successive numbers had bias for being the
actual successors in the balanced splay tree. So we decided to remove the
bias by remapping the key-values after a shuffle. This would eliminate
inconsistencies in the splay interval results over the zipfian.

Should we experiment with Dynamic Balancing
Strategies

One of our major concerns in policy design is being able to guarantee bounded
expectations over latency vs throughput.

So could we turn the problem over itself and by means of hierarchical balancing
strategies to have guarantees on bounds. Our context so far has been read heavy
workloads so our policies effectively translate into search structures.

Exploring More Interesting Workloads
While there is a tendency to design policies intended for different distributions
remain high. We would like to point out that the most important distributions for our
purpose are the ones naturally occurring as workloads.

So it is sufficient to say that our efforts are directed towards exploring important
workloads and designing policies around them.

So far we have only modelled around a uniform and a zipfian distribution, we hope
to find more important benchmark distributions from YCSB.

JITDs on Disk

Team Warp
Animesh, Archit, Rishabh, Rohit

SuMMARY TILL CHECKPOINT 1
● Explored and implemented different file formats
● Explored different ideas to store indexes on disk

○ LSM Trees
○ Paging

FILE FORMATS AND SAVING DATA TO FILE
● Different Cogs have different structure
● Using Visitors Pattern to write different Cogs
● Iterative algorithm to restore indexes/pages
● Two file formatters used
● Working on policies to use both the file formats in

conjunction to avoid fragmentation

Detailed File Format For INDEX FILE As Stored in FILE SYSTem
DATA SEPARATOR DATA

COG TYPE FILE NAME ROOT FLAG COG TYPE VALUE COG TYPE FILE NAME

SIZE (BYTES) 2 50 1 2 8 2 50

TYPE Char Char[] Bool Char Long Char Char[]

Cog Type Meaning

A Array Cog

B BTree Cog

C Concat Cog

E Empty

F File Cog

L Leaf Cog

S SubArray Cog

Detailed File Format For INDEX FILE As Stored in FILE SYSTem
DATA SEPARATOR DATA

COG TYPE FILE OFFSET COG TYPE VALUE COG TYPE FILE OFFSET

SIZE (BYTES) 2 4 2 8 2 4

TYPE Char Integer Char Long Char Integer

Cog Type Meaning

A Array Cog

B BTree Cog

C Concat Cog

E Empty

F File Cog

L Leaf Cog

S SubArray Cog

LSM TRees
● Timely flushing index tree in memory to disk
● Merging these files together to main index file
● Problems

○ Merging was very complicated
○ Restoring partial trees based on queries were

problematic

PAGING
● Refined the concept of saving and restoring partial

indexes into the concept of paging
● Page-In indexes based on queries
● Page-Out indexes based on available memory
● Current Progress

○ Bug Fixing
○ Coming up with benchmarks
○ Policies based on which pages should be paged-out

QUESTIONS?

