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ABSTRACT
Analyzing database access logs is a key part of performance
tuning, intrusion detection, benchmark development, and
many other database administration tasks. Unfortunately,
it is common for production databases to deal with millions
or even more queries each day, and so logs must be sum-
marized for human consumption. Designing an appropriate
summary requires trading off between conciseness and infor-
mation content. In this paper we formalize and analyze this
tradeoff in the context of two families of “pattern-based” and
“pattern-mixture” log summaries; We precisely characterize
the information content of a log, the verbosity of a summary,
and define two measures of information loss due to summa-
rization: ambiguity and deviation. As neither ambiguity nor
deviation are efficiently computable, we define an approxi-
mation that tracks both ambiguity and deviation: summary
error. We then propose a restricted class of “naive pattern-
mixture” summaries that admit an efficient algorithm for
generating summaries that achieve specific tradeoffs between
verbosity and error. Experiments performed on a prototype
implementation of this algorithm show that, compared to a
state of the art summarization technique called LaserLight,
pattern-mixture summaries are both faster to create and
more informative.

1. INTRODUCTION
Database access logs are used in a wide variety of set-

tings, including evaluating database performance tuning [5],
benchmark development [25], database auditing [29], com-
pliance validation [11] and query recommendation [8]. Many
of these cases — benchmark development and database au-
diting in particular — require being able to explain patterns
and outliers in the log, something that as yet can not be
fully automated. Although such tasks benefit from manual
log analysis by human experts, access logs can grow to be
extremely large. For instance, a recent study of queries at
a major US bank for a period of 19 hours found nearly 17
million SQL queries and over 60 million stored procedure

execution events [29]. Numerous approaches to log summa-
rization [34, 35, 39, 19, 15, 3, 38, 23, 41, 13] promise to
make manual analysis more practical by helping analysts to
quickly identify common patterns and outliers.

Nearly all existing log summarization techniques rely on
underlying measures of inter-query similarity. For example,
one approach [1] measures similarity by the degree of overlap
between structural elements like SELECT items, FROM tables,
or conjunctive clauses in the WHERE clause. Unfortunately,
query similarity is usually context-dependent. For example,
two queries that are similar with respect to performance may
have very different impacts on a security audit. Indeed, to
the best our knowledge, similarity metrics for log summa-
rization are all defined heuristically in terms of a fixed set
of relationships that target specific log analysis tasks. As
a result, similarity-based summarization techniques are not
easy to generalize to new settings.

In this paper, we consider the challenge of log summariza-
tion from a task-agnostic, information theoretical perspec-
tive: How can we communicate the most detail about the
log with as simple a description as possible? To accomplish
this, we first decouple the process of feature engineering (i.e.,
of identifying features relevant to a given task) from the
process of summarizing feature-based representations of the
log. We then define a family of pattern-based summaries, as
well as a more general family of pattern-mixture summaries.
These summary families give us a framework for reason-
ing about both the complexity and descriptive power of a
summary in a principled way. Concretely, we define three
measures over both families: (1) Verboseness, which mea-
sures the complexity of the summary; (2) Ambiguity, which
measures the precision with which a summary captures the
log that generated it; and (3) Deviation, which measures
how misleading the summary is as a result of missing de-
tails. Neither Ambiguity nor Deviation can be computed
efficiently, so we propose a fourth measure called Summary
Error. We show through a combination of theoretical proofs
and experimental validation that Summary Error is a reli-
able predictor of both Ambiguity and Deviation.

In general, Verbosity and Summary Error are inversely
related: The more detailed the summary, the more precisely
it captures the original log. Thus, log summarization may
be defined as a search over a space of summaries to identify
the summary that best trades off between these two prop-
erties. Unfortunately, searching for such an ideal summary
from the full space of pattern-based summaries is computa-
tionally infeasible. To avoid this limitation, we restrict our
search to a family of naive mixture summaries — a sim-
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plified form of pattern mixture summaries. We show how
to efficiently construct such a summary by first clustering
entries in the log and then summarizing each cluster sepa-
rately. This approach may then be further refined: (1) By
hierarchically sub-clustering the data to scrub through dif-
ferent trade-offs between verboseness and summary error,
and (2) By piggybacking on more complex, state-of-the-art
pattern-based summarization approaches to create more in-
tricate summaries.

Concretely, in this paper we make the following contribu-
tions: (1) We define two families of summary visualizations:
pattern-based and pattern-mixture, (2) We define Verbosity,
Ambiguity, and Deviation, three principled measures of the
quality of a pattern-based or pattern-mixture summary, (3)
We define the computationally efficient measure, Summary
Error, and demonstrate that it is a close approximation of
both Ambiguity and Deviation, (4) We propose using clus-
tering to generate a family of naive mixture summaries and
experimentally show how to efficiently optimize for any given
tradeoff between Summary Error and Verbosity within this
family through structure-wise sub-clustering, and (5) We ex-
perimentally show how to extend naive mixture summaries
content-wise by piggybacking state-of-the-art pattern-based
summarization approaches, and experimentally measure the
difference in the ratio of Summary Error versus Verbosity
and also running time.

2. BACKGROUND AND RELATED WORK
Existing approaches for log summarization are frequently

aimed at specific tasks like query recommendation [8, 14,
27, 40], performance optimization [2, 6], session identifica-
tion [1], outlier detection [24], or workload analysis [32].

Chatzopoulou et al. [8] aim to assist non-expert users of
scientific databases by tracking their historical querying be-
havior and generating personalized query recommendations.
They flatten query AST as a bag of fragments and adopt
feature vector representation of queries. User profiles are
then built from the query log by summarizing feature vec-
tors that belong to workloads of the same user. Similarly,
Giacometti et al. [14] aim at making query recommendation
by summarizing queries in the previous sessions. SnipSug-
gest [27] is a context-aware SQL-autocomplete system that
helps database users to write SQL queries piece by piece, by
suggesting SQL snippets. It computes the marginal proba-
bility that a query, uniformly drawn from the log, contains
a snippet. Snippets and their marginals serving as the sum-
mary of the query log, which assists the prediction on the
snippet that a user will most likely to append to existing
snippets. Yang et al. [40] also aim at assisting users in writ-
ing SQL queries. They build a graph for each query in the
log using tables in join operation and cluster queries into
similarity groups based on these graphs.

Aouiche et al. [2] aim to help databases respond to users’
queries faster through optimizing view selection in ware-
houses by summarizing query logs. They consider opera-
tions of selection, joins and group-by in the query to cre-
ate feature vectors. Bruno et al. [6] aim at summarizing
multi-dimensional data tuples stored in database relations
for selectivity estimation during query optimization and ap-
proximate query processing. The summary is represented as
multi-dimensional histograms.

Aligon et al. [1] study various approaches on identifying
similar OLAP sessions for the purpose of query recommen-

dation and personalization. They identify sub-trees in query
abstract syntax tree that represent operations of selection
and join as the most relevant in a query followed by the
group by.

Kamra et al. [24] aim at detecting anomalous behavior of
queries in the log by summarizing query logs into profiles of
normal user behavior interacting with a database.

Makiyama et al. [32] approach query log summarization
with the goal of analyzing a system’s workload, and they
provide a set of experiments on Sloan Digital Sky Survey
(SDSS) dataset. They extract features from query AST
by considering operators selection, joins, projection, from,
group-by and order-by separately.

There are also works that aim at summarizing a more gen-
eral data representation—multi-dimensional vectors where
attributes are either discrete or binary. Gebaly et al. [12]
aim at summarizing multi-dimensional discrete-valued vec-
tors augmented with a binary attribute. The summary is
represented as a collection of patterns. Mampaey et al. [33]
study the problem of summarizing multi-dimensional vec-
tors where all attributes are binary-valued. The summary
is represented as a set of most informative patterns which
maximize the Bayesian Information Criterion(BIC) score.

Works related to query log summarization and more gen-
erally, multi-dimensional vector summarization are not lim-
ited to ones described above. In addition, there are stud-
ies that focus on visualization/interpretability of query log
summarization.

QueryViz [9] addresses query interpretation which is the
problem of understanding the goal of the query by visual-
izing it graphically. QueryScope [20] aims at finding better
tuning opportunities by helping human experts to visualize
and identify patterns shared among queries. Logos [28], on
the other hand, is a system that has the ability to translate
SQL queries into natural language equivalents.

3. PATTERN-BASED SUMMARIES
In this section, we formally define the problem of log

summarization from a task-agnostic, information theoreti-
cal perspective.

3.1 Notation
We define a database log to be an order-free collection of

queries, each defined as a collection of features. For ease of
exposition, we adopt the conventions of Aligon et. al. [1],
assume conjunctive queries, and define queries in terms of
the following three types of features: (1) tables in the FROM

clause, (2) columns in the SELECT clause, and (3) atomic
boolean expressions in the WHERE clause. We use f to denote
the feature (table, column, or atomic expression), and C to
denote the feature’s category (FROM, SELECT, or WHERE). We
refer to the 2-tuple w = 〈 f, C 〉 as a word.

Example 1. Consider the following example query.

SELECT _id , sms_type , _time FROM Messages
WHERE status = 1 AND transport_type = 3

This query uses 6 words: 〈 sms_type, SELECT 〉, 〈 _id, SELECT 〉,
〈 _time, SELECT 〉, 〈 Messages, FROM 〉, 〈 status = 1, WHERE 〉,
and 〈 transport_type = 3, WHERE 〉

Denote by b an arbitrary bag of words, encoded as a vector
b = (x1, . . . , xn) where n is the number of distinct words and
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xi = k indicates ith labeled word wi occurs k times in the
bag. For any two bags b, b′, we say that b′ is contained in
b, denoted b′ ⊆ b, if b′ contains a subset of the words in b:

b′ ⊆ b ≡ ∀i, x′i ≤ xi

When it is clear from context, we will use features and
words interchangeably. Observe that the bag representation
and original SQL representations are homomorphic modulo
schema reordering and query equivalence — It is possible to
transform any bag of words into a corresponding conjunc-
tive query, and visa versa1. We thus abuse the notation q to
denote both a conjunctive query and its corresponding bag
of words encoding.

3.2 Summarizing the Log
We would like to be able to effectively communicate the

information content of a query log in an interpretable way.
Displaying the entire log communicates this information com-
pletely, but is a large amount of information for a user to
digest. Thus, our immediate goal is a summary representa-
tion that communicates the log’s information content, but
in a more compact form. We start by formally defining the
information content of the log as a whole, and then use this
definition to create a generic model for summaries.

Information Content of Logs. Denote by L a query log,
a bag of queries { q | q ∈ L }. We define the information
content of the log as the distribution p(Q | L) of queries
uniformly drawn from the log.

Example 2. Consider the following log query log, which
consists of five queries.

1. SELECT _id FROM Messages WHERE status = 1
2. SELECT _time FROM Messages

WHERE status = 1 AND sms_type = 1
3. SELECT _id FROM Messages WHERE status = 1
4. SELECT _id , _time FROM Messages

WHERE sms_type = 1
5. SELECT sms_type , _time FROM Messages

WHERE sms_type = 1

Drawing uniformly from the log, each entry will appear with
probability 1

5
= 0.2. The following query occurs twice:

q1 = q3 = SELECT _id FROM Messages WHERE status = 1

Hence the probability of drawing q1 is double that of the
others (i.e., p(Q = q1 | L) = p(Q = q3 | L) = 2

5
= 0.4)

Decomposing the query into its component words, we can
define a specific query q = (x1, . . . , xn) to be an obser-
vation of the multivariate distribution over variables Q =
(X1, . . . , Xn) with probability:

p(Q = q | L) =
|{| q′ | q′ = q ∧ q′ ∈ L |}|

|L|

Example 3. Continuing the example, the log’s vocabu-
lary consists of (1) 〈 _id, SELECT 〉, (2) 〈 _time, SELECT 〉,
(3) 〈 sms_type, SELECT 〉, (4) 〈 status = 1, WHERE 〉,
(5) 〈 sms_type = 1, WHERE 〉, and (6) 〈 Messages, FROM 〉. Ac-
cordingly, the queries can be encoded as 6-tuples, with fields

1In general, the specific process for converting queries to
collections of features is irrelevant. We only require only
that summaries can be generated from bags of features as
in Aligon.

SELECT sms type, external ids, time, id

FROM messages

WHERE (sms type=1) ∧ (sms type=0) ∧ (status=1)
∧ ( time≥1426084288402000) .
∧ (transport type=3)

(a) Correlation-ignorant : Words are highlighted independently

SELECT sms type

FROM messages

WHERE sms type=1

SELECT sms type

FROM messages

WHERE status=1

(b) Correlation-aware: Groups of words (patterns) are high-
lighted together, according to the probability of co-occurrence.

Figure 1: Example pattern-based summaries: Darker
elements are more likely to occur in the log.

counting the number of occurrences of each word: q1 =
〈 1, 0, 0, 1, 1, 0 〉, q2 = 〈 0, 1, 0, 1, 1, 1 〉, q3 = 〈 1, 0, 0, 1, 1, 0 〉,
q4 = 〈 1, 1, 0, 1, 0, 1 〉, q5 = 〈 0, 1, 1, 1, 0, 1 〉

Our immediate goal can thus be restated as summarizing
the multivariate distribution p(Q).

Use Cases of Information Content. Before we model
the summary representation of the information content, we
offer three example use cases:

Index Selection: Words of atomic boolean expressions
that frequently occur in the query log are good candidates
for indexing. e.g. word status = 1 occurs 90% of the time
in queries drawn from the log. This suggests indexing col-
umn status.

Materializing Views Selection: Words of atomic boolean
expressions that frequently co-occur with a specific table
are good candidates for materialization. e.g. words status

= 1 and sms type = 1 co-occur 90% of the time with table
Messages. This suggests materializing the view that filters
table Messages by condition status = 1 AND sms type =

1.

Detecting Outliers: Two similar sets of co-occurring words
but with significantly different frequencies could indicate a
bug or malicious use of the system [30]. e.g. words SELECT

balance and FROM accounts co-occur with password=? 90%
of the time. This implies that queries containing these words
are used for validating the password from user input. Sup-
pose SELECT balance and FROM accounts also co-occur with
tautology 1=1, 1% of the time. This suggests someone is try-
ing to bypass the password checking.

The naive way to approach the problem is to simply de-
scribe the frequency of each word occurring in the log, for
example by using shading as in Figure 1a. In the case of
index selection, such a representation might be sufficient
— frequently occurring constraints or attributes are good
candidates for indexing. However, in the other two ex-
amples the user is not interested in occurrence, but rather
co-occurrence. In other words, a viable summary needs to
capture correlations in the data as well. For example, Fig-
ure 1b illustrates a specific visual representation of correla-
tions in the log. The shading of correlated words to the right
clearly communicates that words SMS TYPE, MESSAGES, and
STATUS=1 do not co-occur as frequently as it would appear
from Figure 1a.

Pattern-based Summaries. Both visual encodings in
Figure 1 belong to a broader class of what we call pattern-
based summaries, that are able to communicate correlations
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through co-occurrence probabilities. Concretely, a pattern
is an arbitrary bag of words b that can occur/co-occur in
a query drawn from the query log. Each pattern conveys a
piece of information on distribution p(Q) through the prob-
ability of uniformly drawing a query q from the log that
contains the pattern (i.e., q ⊇ b). This probability is equiv-
alent to the marginal p(X1 ≥ x1, . . . , Xn ≥ xn)2 where
b = (x1, . . . , xn). We denote this probability as:

p(Q ⊇ b) ≡
|{| q | q ⊇ b ∧ q ∈ L |}|

|L|
=

∑
∀q∈L∧q⊇b

p(Q = q | L)

Denote by Smax : Nn → [0, 1], the full mapping from the
space of all possible patterns b ∈ Nn to their marginal prob-
abilities. A pattern-based summary is then a visual encoding
that can be expressed as a partial mapping S ⊆ Smax. We
use S[b] to represent the marginal mapped from b. When it
is clear from context, we abuse syntax and also use S to de-
note its set of mapped patterns (i.e., dom(S)). Hence, |S| is
the number of mapped patterns, which we call the verbosity
of the summary.

Note that both visual encodings in Figure 1 are pattern-
based summaries: (a) the correlation-ignorant summary con-
sists of 10 patterns, one for each word and (b) the correlation-
aware summary consists of two patterns (left and right).
Henceforth, we will assume that we already have an user-
interface for visualizing pattern-based summaries and focus
on selecting which specific summary to present.

4. ANALYZING SUMMARIES
Ultimately, our goal is to effectively communicate the dis-

tribution p(Q) to the user. On the one hand, less complex
summaries (i.e., those with fewer patterns) are desirable. On
the other hand, we also want to ensure that the summary is
representative of the distribution p(Q) being communicated.
We will return to the tradeoff between representativeness
and complexity in Section 6. However, first we need to de-
fine what it means for a summary to be representative.

4.1 Lossless Summaries
To establish a baseline for measuring representativeness,

we begin with the extreme cases. At one extreme, an empty
summary (|S| = 0) conveys no information. At the other
extreme, we have the summary Smax which is the full map-
ping from all patterns. Having this summary is a sufficient
condition to reconstruct the original distribution p(Q).

Proposition 1. For any query q = (x1, . . . , xn) ∈ Nn,
the probability of drawing exactly q at random from the log
(i.e., p(X1 = x1, . . . , Xn = xn)) is computable, given Smax.

Proof. Denote by 1n = {0, 1}n the space of possible 0-1
vectors of size n, and define a summary S̄q with patterns:

dom(Sq) = { (x1 + b1, . . . , xn + bn) | (b1, . . . , bn) ∈ 1n }

We will show that Sq ⊆ Smax contains sufficient information
to compute p0 = p(X1 = x1, . . . , Xn = xn) through several
steps. First, we define a new pair of marginal probabilities
p1 〈 b1 〉 = p(X1 ≥ x1 + b1, X2 = x2, . . . , Xn = xn). x1 is

2There are other type of marginals which can be used as
carriers of information content. We explain our choice of
the specific marginal in Appendix B

integral, so p0 = p1 〈 0 〉 − p1 〈 1 〉. Generalizing, we can
define:

pk 〈 b1, . . . , bk 〉 = p(X1 ≥ x1 + b1, . . . , Xk ≥ xk + bk,

Xk+1 = xk+1, . . . , Xn = xn)

Again, xk being integral gives us that:

pk−1 〈 b1, . . . , bk−1 〉 = pk 〈 b1, . . . , bk−1, 0 〉
− pk 〈 b1, . . . , bk−1, 1 〉

Finally, when k = n, the probability pn 〈 b1, . . . , bn 〉 is the
marginal probability p(Q ⊇ b) of a pattern b = (x1 +
b1, . . . , xn + bn), which by definition is offered by Sq for
any (b1, . . . , bn) ∈ 1n.

The resulting summary S =
⋃

q∈L Sq fully reconstructs the

distribution p(Q). We refer to any summary that can fully
reconstruct distribution p(Q), a lossless summary. Clearly
any summary that extends S (including Smax) is lossless.

Unfortunately, while lossless summaries are precise, they
are also verbose. At the extreme, Smax is tantamount to
communicating the entire log. Hence, for the remainder of
the paper, we focus on lossy summaries.

4.2 Lossy Summaries
A lossy summary S ⊂ Smax may not be able to precisely

identify the distribution p(Q), but still communicates some-
thing about its information content. We characterize the in-
formation content of a lossy summary S by defining a space
(denoted ΩS) of possible distributions ρ ∈ ΩS allowed by a
summary S. This space is defined by a set of constraints as
follows. First, we have the general properties of probability
distributions:

∀q ∈ Nn : ρ(q) ≥ 0
∑

q∈Nn
ρ(q) = 1

Each pattern in the summary S constrains the space for
features/words occurring in the pattern:

∀b ∈ dom(S) : S[b] =
∑
q⊇b

ρ(q)3 (1)

The space ΩS is the set of all query logs, or equivalently
the set of all distributions of queries, that obey these con-
straints. From the observer’s perspective, the distribution
ρ that the summary conveys is ambiguous: We model this
ambiguity with a random variable PS with support ΩS . The
actual distribution derived from the log, denoted ρ∗, must
appear in ΩS (i.e., p(PS = ρ∗) > 0). Of the remaining dis-
tributions admitted by ΩS , it is possible that some are more
likely than others. For example, an observer might already
be aware that field status always co-occurs with its table
Messages. This prior knowledge may be modeled as a prior
on the distribution of PS or by an additional constraint in
Equation 1. Task-specific priors can be defined for special
use cases. However, for the purposes of this paper, we take

3The dual constraints 1 − S[b] =
∑
q 6⊇b

ρ(q) are omitted as

they are redundant under constraint
∑

q∈Nn
ρ(q) = 1
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the uninformed prior and assume that PS is uniformly dis-
tributed over ΩS :

p(PS = ρ) =

{
1
|ΩS |

if ρ ∈ ΩS

0 otherwise

Naive Summaries. One specific family of summaries that
treats each feature as being independent (e.g., as in Fig-
ure 1a) is of particular interest to us. Because we will return
to it throughout the rest of the paper we give it a specific
name: a naive summary. A naive summary conveys all pat-
terns with non-zero marginal probabilities and exactly one
distinct feature. That is, a naive summary includes each
pattern (0, . . . , 0, xi, 0, . . . , 0) for xi ∈ [1,K] where K is the
lowest integer such that p(Xi ≥ K) = 0. Equivalently, a
naive summary communicates for each word, a categorical
distribution:

Xi ∼ Categorical(K ,Θi)

where Θi = (θi,1, . . . , θi,j , . . . , θi,K) is the probability of a
query selected uniformly at random from the log having ex-
actly j instances of word i.

4.3 Idealized Representativeness Measures
The representativeness of a summary can be considered

from two related, but subtly distinct perspectives: (1) Am-
biguity measures how much room the summary leaves for
interpretation, and (2) Deviation measures how reliably the
summary approximates the target distribution p(Q).

Ambiguity. The ambiguity of a summary is measured by
entropy of the random variable PS :

a(S) =
∑
ρ

P (PS = ρ) log (P (PS = ρ))

The higher the entropy, the less precisely S identifies any
one specific distribution ρ. Lower entropies indicate a more
informative, precise summary.

Deviation. Deviation compares any permitted distribu-
tion ρ with the designated true distribution ρ∗ ≡ p(Q),
measured by the Kullback-Leibler (K-L) divergence[31]:

d(S) ≈ DKL(ρ∗||ρ) =
∑
q∈L

ρ∗(q) log
ρ∗(q)

ρ(q)

In principle, we can measure deviation by using the expec-
tation of the K-L divergence over all permitted ρ ∈ ΩS :

E [DKL(ρ∗||PS)] =
∑
ρ∈ΩS

P (PS = ρ) · DKL(ρ∗||ρ)

However, there are two limitations to practically compute
the two idealized measures. First, K-L divergence is not de-
fined from any probability measure ρ∗ that is not absolutely
continuous with respect to a second (denoted ρ∗ � ρ). In

other words, deviation is only defined on variable P̂ with
regulated probability measure ¬(ρ∗ � ρ)→ P (P̂ = ρ) = 0.
Second, neither deviation nor ambiguity has a closed-form
formula. Thus, we introduce practical computation of rep-
resentativeness in next section.

5. PRACTICAL REPRESENTATIVENESS
Because there is no closed form representation for the Am-

biguity or Deviation of a summary, computing them requires

enumerating the full space ΩS . This is not practical, so an
approximation is required. One approach would be to sam-
ple from ΩS (as discussed in Appendix C), but this is still
an computationally expensive proposition as we show in our
experiments. In this section we propose a faster approach:
We identify the maximal entropy distribition ρ from ΩS , and
use it to approximate Deviation.

5.1 Summary Error
Inspired by the principle of maximum entropy [22], we

select a single distinguished representative distribution ρS
from the space ΩS :

ρS = arg min
ρ∈ΩS

−H(ρ) where H(ρ) =
∑
q∈Nn

−ρ(q) log ρ(q)

Maximizing an objective function belonging to the expo-
nential family (entropy in our case) under a mixture of
linear equalities/inequalities is a convex optimization prob-
lem [4] which guarantees a unique solution and can be ef-
ficiently solved, for example with iterative scaling [10], the
cvx toolkit [16, 36], or numerous other approaches.

Specially in the case of naive summaries, we can assume
independence across word occurrences Xi. Under this as-
sumption, ρS has a closed-form solution:

ρS(q) = Π
i
p(Xi = xi) where q = (x1, . . . , xn) (2)

Summary Error. Using the representative distribution
ρS , we define summary error e(S) based on the entropy dif-
ference from the space representative to the true distribu-
tion:

e(S) = H(ρS)−H(ρ∗) where ρS = arg min
ρ∈ΩS

−H(ρ)

Relationship to K-L Divergence. Summary error is
closely related to the K-L divergence from the represen-
tative distribution ρ to the true distribution ρ, denoted
DKL(ρ∗||ρS).

DKL(ρ∗||ρS) = H(ρ∗, ρS)−H(ρ∗)

where H(ρ∗, ρS) =
∑
q

−ρ∗(q) log ρS(q)

H(ρ∗, ρS) is called the cross-entropy. Replacing cross-entropy
by entropy H(ρS), the formula becomes the same as sum-
mary error. Though cross entropy is different from entropy
in general, e.g. it is only defined when ρ∗ � ρS , they are
closely correlated. Specially, under the case of naive sum-
maries, they are equivalent.

Lemma 1. For any naive summary S, H(ρ∗, ρS) = H(ρS)

Proof. With q = (x1, . . . , xn) and applying Equation 2:∑
q∈L
−ρ∗(q) log ρS(q) = −

∑
q

P (q) ·
∑
i

logP (Xi = xi)

= −
∑
i,k

logP (Xi = k) ·
∑

q | xi=k
P (q)

= −
∑
i,k

logP (Xi = k) · P (Xi = k)

=
∑
i

H(Xi)

The variables in a naive summary are independent, so:∑
iH(Xi) = H(ρ̄S), and we have the lemma.
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While we do not provide a similar proof for more general
summaries, we show it experimentally in Section 8.3.

5.2 Summary Error vs Ambiguity
In this section we motivate Summary Error by proving

that it correlates with Ambiguity. We supplement the theo-
retical proofs given in this section, with an empirical analy-
sis relating Summary Error to Deviation in Section 8.3. Our
proof is organized as follows: We start by defining a partial
order based on containment and show that for any pair of
summaries for which the partial order is defined, a like re-
lationship is implied for both ambiguity and deviation; We
then prove that the total ordering given by summary error
is a superset of the partial order.

Recall that each summary S defines a space of possible
query distributions ΩS and containment relationship be-
tween spaces defines a partial order over summaries

S1 ≤Ω S2 ≡ ΩS1 ⊆ ΩS2

That is, one summary (S1) precedes another (S2) when all
distributions admitted by the former summary are also ad-
mitted by the latter.

Error Captures Containment. We first prove that the
total ordering given by summary error is a superset of the
partial ordering ≤Ω.

Proposition 2. For any two summaries S1, S2 with spaces
ΩS1 ,ΩS2 and maximum entropy distributions ρS1

, ρS2
it holds

that S1 ≤Ω S2 → H(ρS1
) ≤ H(ρS2

) ≡ e(S1) ≤ e(S2).

Proof. ΩS2 ⊇ ΩS1 implies ΩS2 contains ρS1
. Since

H(ρS2
) is the distribution with maximum entropy in space

ΩS2 , H(ρS2
) at least as large as H(ρS1

).

Containment Captures Representativeness. Next, we
show that partial ordering according to containment implies
a like relationship between ambiguity.

Proposition 3. Assuming p(Ps = ρ) is uniformly dis-
tributed over ΩS, S1 ≤Ω S2 → a(S1) ≤ a(S2).

Proof. Since p(Ps = ρ) is uniformly distributed, Equa-
tion 4.2 can be applied and a(S) = log |ΩS |. Hence S1 ≤Ω

S2 → |ΩS1 | ≤ |ΩS2 | → a(S1) ≤ a(S2)

5.3 Summary Error and Word-Correlation
Another perspective on summary representativeness is from

word-correlation. Consider a pattern b containing only two
distinct words Xi = xi, Xj = xj , word-correlation captured

in the pattern is defined as log
p(Xi≥xi,Xj≥xj)

p(Xi≥xi)p(Xj≥xj)
. In other

words, word-correlation measures the log difference between
the actual marginal of the pattern and the estimation made
by the naive summary which assumes independence among
words. The stronger correlation between ith and jth words,
with more confidence one can conclude that they co-occur
as pattern b in a query not by chance.

A summary effectively communicates the distribution p(Q),
if its patterns capture such word-correlation ignored by naive
summaries. For two patterns encoding the same amount of
correlation, we prefer the one that occurs more frequently

(higher marginal) in queries drawn from the log. As a re-
sult, we compute an overall score for ranking patterns by
word-correlation:

corr rank(b) = p(Xi ≥ xi, Xi ≥ xj) log
p(Xi ≥ xi, Xj ≥ xj)
p(Xi ≥ xi)p(Xj ≥ xj)

We show in Section 8.3 that summary error also captures
word-correlation: Given the naive summary extended by an
additional pattern b, the lower error of the extended sum-
mary, the higher corr rank(b).

6. PATTERN MIXTURE SUMMARIES
So far, we have explored pattern-based summaries in the

context of complete query logs. The query log is treated as
a joint distribution of word occurrences, which a summary
approximates through patterns. However, patterns provide
only positive information—words/features that do occur to-
gether. Pattern-based summaries begin to break down in
settings like logs of mixed workloads, where it is necessary
to communicate sets of features that do not occur together.
Communicating these anti-correlations in a consistent way
requires adding a significant number of patterns.

In this section, we explore an alternative to trying to cap-
ture anti-correlations in a single set of patterns. Instead, we
propose a generalization of pattern-based summaries where
the log is modeled not as a single probabilistic distribution,
but rather as a mixture of several simpler distributions. The
resulting summary is likewise a mixture: Each component
of the distribution mixture is summarized independently.
Hence, we refer to it as a pattern mixture summary.

To begin, we will outline a simplified form of pattern mix-
ture summary where we restrict ourselves to mixing purely
naive summaries — We refer to this restricted family of sum-
maries as naive mixture summaries. Using naive mixture
summaries as a motivation, we discuss how to generalize
summary error and verbosity to pattern mixture summaries.
This in turn helps us to defne a clustering-based approach to
constructing naive mixture summaries. Finally, we discuss
how this approach may be generalized to construct broader
families of summary.

6.1 Example: Naive Mixture Summaries
Consider a toy query log with only 3 conjunctive queries.

1. SELECT _id FROM Messages WHERE status = 1

2. SELECT _id FROM Messages

3. SELECT sms_type FROM Messages

Queries in the log can be encoded using the following
words: 〈 _id, SELECT 〉, 〈 sms_type, SELECT 〉, 〈 Messages, FROM 〉,
and 〈 status = 1, WHERE 〉. Re-encoding the queries as binary
vectors, representing the number of occurrences of each fea-
ture, we get the three vectors:

〈 1, 0, 1, 1 〉 〈 1, 0, 1, 0 〉 〈 0, 1, 1, 0 〉

A naive summary of this log has four independent Bernoulli
distributions with parameters 〈 p1 . . . p4 〉:〈

2

3
,

1

3
, 1,

1

3

〉
≡

SELECT id, sms type

FROM Messages

WHERE status = 1

From this summary it is clear that all queries in the log per-
tain to the Messages table, but that is the only thing we can
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determine for certain. For example, this summary obscures
the anti-correlation between _id and sms_type. Similarly,
the summary hides the association between status = 1 and
_id. Though trivial in this example, relationships like these
can be crucial for tasks ranging from database optimization
(e.g., to identify useful index structures), to security (e.g.,
finding unexpected patterns in the workload).

This relationship is captured in the error metric. For ex-
ample, consider query 1 from the log. The probability of
this query is computed as:

p(〈 1, 0, 1, 1 〉) =
2

3
·
(

1− 1

3

)
· 1 · 1

3
=

4

27
≈ 0.148

This is a significant difference from true probability of this
query (i.e., 1

3
). Conversely non-existant queries like

SELECT sms_type FROM Messages WHERE status = 1

have non-zero probability. All told, the error value for this
summary is

∑
i=1,...,4

H(Xi)−H(X1, . . . , X4) ≈ 0.81 4. To see

how we could do better, consider what happens when we
partition the log into two segments, denoted here as L1 and
L2:

Partition 1 (L1) Partition 2 (L2)

(1, 0, 1, 1) (1, 0, 1, 0) (0, 1, 1, 0)

Generating naive summaries for each partition of the log,
we only get one non-integral probability: p(status = 1 | L1) =
0.5. The result is the following two summary visualizations:

SELECT id

FROM Messages

WHERE status = 1

SELECT sms type

FROM Messages

WHERE

Although there are now two summaries, the summaries are
not ambiguous. The feature status = 1 appears in exactly
half of the log entries, and is indeed independent of the other
features. All other attributes in each summary appear in all
queries in their respective entries. Furthermore, the maxi-
mum entropy distribution induced by each summary is ex-
actly the distribution of queries in the summarized log and
the summary error for each of these two summaries is ex-
actly zero.

6.2 Generalized Representativeness Measures
In this section we generalize Summary Error and Ver-

bosity, defined under pattern-based summaries, to evaluate
pattern mixture summary.

Suppose query log L has been partitioned into K clusters
with Li, Si, ρSi

and ρ∗i representing the log of queries, sum-
mary, maximum entropy distribution and true distribution
for ith cluster respectively. The true distribution ρ∗ for the
whole log L can be obtained by combining true distribution
of each cluster ρ∗i by

ρ∗(q) =
∑

i=1,...,K

wi ∗ ρ∗i (q), wi =
|Li|
|L|

Generalized Summary Error. Similarly, the maximum
entropy distribution ρS for the whole log can be obtained as

ρS(q) =
∑

i=1,...,K

wi ∗ ρSi
(q)

4We leave the full error metric computation as an exercise
for the reader

The generalized summary error of a pattern mixture sum-
mary is then evaluated by

H(ρS)−H(ρ∗) =
∑
i

wi∗H(ρSi
)−
∑
i

wi∗H(ρ∗i ) =
∑
i

wi∗e(Si)

Generalized Verbosity. Verbosity can be generalized
in two ways: (1) Total verbosity

∑
i

|Si|. It correlates with

the number of clusters and measures the verbosity that a
user would suffer by examining summaries of all clusters
and (2) Expectation of verbosity

∑
k

wk ∗ |Sk|. It measures

the average verbosity weighted by normalized cluster size
wi. To motivate using expectation of verbosity, in addition
to total verbosity, we show in Section 7.1.4 that expectation
of verbosity decreases with increasing number of clusters.
This is due to the fact that the less anti-correlated words
within clusters, the less expectation of verbosity.

The generalized summary error and verbosity make pat-
tern mixture summaries comparable with pattern-based sum-
maries on equal footing.

7. CONSTRUCTING SUMMARIES
We now discuss our approach to finding log summaries on

frontier between generalized summary error and verbosity.
Searching the entire space of pattern mixture summaries is
infeasible, so we subdivide this problem into two sub-tasks:
(1) Finding a naive mixture summary close to the target
trade-off point, and (2) Refining this summary into a general
pattern mixture summary. As we show in the experiments,
naive mixture summaries alone are able to achieve trade-offs
that are already close to the frontier.

7.1 Constructing Naive Mixture Summaries
In this section, we show how to search for a naive mixture

summary. Our approach is based on the observation that
each query log, or more precisely each partition of a query
log uniquely maps to a naive mixture summary. Thus the
problem of searching for a naive mixture summary reduces
to the problem of finding log partitions that optimize the
tradeoff between generalized summary error and verbosity.
We accomplish this by clustering the log and using the re-
sulting clusters as partitions. However for this approach
to work, we first need a clustering technique that produces
clusters that consistently map to high quality naive mixture
summaries (i.e., by finding points close to a desired trade off
between summary error and verbosity). To find an appropri-
ate clustering technique, we experimentally evaluated four
different forms of clustering: K-Means, spectral clustering
with the 2 commonly used5 distance measures (given in Ta-
ble 1, and spectral clustering with a novel distance measure
that we introduce below called MAD.

Table 1: Distance Measures for Comparison

Distance Description

Manhattan sum(|x− y)|

Hamming Count(x 6=y)
Count(x6=y)+Count(x=y)

5To simplify illustration, we only pick two representative
distances from those we have compared.
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(a) Error v.s. Number of Clusters (PocketData data set)

(b) Error v.s. Number of Clusters (US Bank data set)

(c) Error v.s. Expectation of Verbosity (PocketData data set)

(d) Error v.s. Expectation of Verbosity (US Bank data set)

(e) Running Time v.s Number of Clusters (US Bank data set)

Figure 2: Distance Measure Comparison

Experiment Setup. Spectral and KMeans clustering al-
gorithms are implemented by sklearn [37] in Python. Data
sets and other relevant experiment settings can be found in
Section 8.1 and 8.2 respectively. We gradually increase the
number of clusters set for these clustering techniques, which
can be regarded as continuously sub-clustering the data.

7.1.1 Data Sub-Clustering
The comparison based on generalized error (Y-axis) versus

the number of clusters (X-axis) is given in Figure 2a and 2b

for two data sets respectively. Note that there are two sub-
figures in a row for each data set and we first focus on ones
on the right.

Trade-off Through Sub-Clustering. A general obser-
vation from these figures is that data sub-clustering consis-
tently reduces generalized error of the resulting naive mix-
ture summaries. This shows that we are getting closer to the
target trade-off point at each step we sacrifice conciseness of
the naive mixture summary by creating more clusters/parti-
tions. In fact, hierarchically sub-clustering the data offers a
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SELECT sms type, external ids, time, id

FROM messages

WHERE (sms type=1) ∧ (sms type=0) ∧ (status=1)
∧ ( time≥14260) ∧ (transport type=3)

(a) Parent Level : Naive summary of a mixture of two workloads.

SELECT sms type, time
FROM messages

WHERE (sms type=1)∧
(sms type=0)∧
( time≥14260)

SELECT id,
external ids

FROM messages

WHERE (status=1)∧
(transport type=3)

(b) Child Level : Two branches that separate the mixture.

Figure 3: Two-level example naive mixture summary

finer control on trading off between generalized error versus
verbosity. Figure 3 shows an example of two-level hierar-
chy of naive mixture summary. The naive summaries on
the child level (Figure 3b) provides a cleaner view (i.e. less
verbosity and error for each separate summary) of workload
mixture in the query log by separating them. However, the
trade-off is that, the total verbosity of two naive summaries
on the child level is larger than the one on the parent level.
To extend the hierarchy for further reducing generalized er-
ror, one can flexibly choose to sub-cluster either left, right
or both branches on the child level.

Distance Measures For Sub-Clustering. However,
Figure 2a and 2b also show that the speed that sub-clustering
approaches the target trade-off point (i.e slope of error re-
duction with increasing number of clusters) varies under dif-
ferent distance measures and hamming distance is signifi-
cantly faster than manhattan. To study the cause of such
an difference between these two distance measures, we fur-
ther investigated the data sets and found two limitations of
traditional distance measures.

7.1.2 Limitations of Traditional Distance Measures
Word-Correlation-Ignorant. Most distance measures
accumulate the similarity/distance contributed by features
as if they were independent. Recognizing that features/-
words are correlated, and that two queries overlap in one
feature will likely overlap in the others is crucial for gen-
erating clustering results that map to high quality naive
mixture summaries. To illustrate, consider the following
example queries.

Example 4. Word-Correlation

1. SELECT _id ,..., time_stamp
FROM Conversations WHERE status = active

2. SELECT _id ,..., time_stamp
FROM Conversations WHERE status = active
AND chat_id = NULL AND blocked = true

Words in SELECT clause from id to time stamp are corre-
lated and shared across two queries in the example. Despite
the large number of words shared between queries in above
example, the tasks that they are performing are quite differ-
ent. Specifically, query 1 is scanning all active conversations
and query 2 is checking whether active conversations having
no chat is blocked. Ignoring word correlation allows similar-
ity dominating dissimilarity between queries, making tradi-
tional distance measures fail to correctly distinguish queries

apart through sub-clustering. Hamming distance also suffers
from this limitation but it is more aggressive in distinguish-
ing queries (i.e. only exact matches on features contribute
to similarity).

Query-Multiplicity-Ignorant. The frequency that a
query is repeatedly issued refers to query multiplicity, which
is part of query distribution p(Q). Incorporating word-
correlation into distance measures requires taking query mul-
tiplicities into consideration. However, for scalability, clus-
tering algorithms are fed with distinct queries in the log,
making distance measures unaware of query multiplicities.

7.1.3 Multiplicity-Aware Distance
To overcome these limitations, we propose a multiplicity-

aware distance (MAD)

dm(q1,q2) = p(Q ⊇ b) log
p(Q ⊇ b)

min(p(Q = q1 | L), p(Q = q2 | L))

Pattern b encapsulates the maximal bag of words shared
between queries q1,q2, which may be correlated. Left mul-
tiplier p(Q ⊇ b) discounts the similarity contributed by
shared pattern b, such that the more it is commonly shared
by other queries, the less it contributes to query similarity.
Note that b = ∅ → p(Q ⊇ b) = 1. Right multiplier is the
log difference from the marginal p(Q ⊇ b) to the minimum
of query probabilities p(Q = qi | L), i = 1, 2. The more
this minimum probability differ from the marginal of their
shared pattern, the larger distance. The resulting distance
measure is non-negative, symmetric and reaches zero when
q1 and q2 are identical.

7.1.4 Selecting a Clustering Technique
In order to select a proper clustering technique for con-

structing naive mixture summaries, we incorporate MAD
distance measure with spectral clustering into comparison
and provides a thorough analysis on comparison results shown
in Figure 2. Figure 2 is organized as three components: (1)
Error v.s. Number Of Clusters, shown in Figure 2a and 2b;
(2) Error v.s. Expectation of Verbosity, as shown in Fig-
ure 2c and 2d; (3) Running time comparison, as shown in
Figure 2e6. Note that, except for Figure 2e, all figures con-
sist of two sub-figures in a row with left/right sub-figure
ignoring/considering query multiplicities when evaluating
generalized error.

Error v.s. Number Of Clusters. We first focus on
figures that consider query multiplicities (right sub-figures).
Except for manhattan distance with spectral clustering, clus-
tering techniques under comparison perform similarly un-
der PocketData. US bank data set is harder to summarize,
with respect to minimum generalized error that all cluster-
ing techniques can achieve. MAD works the best under this
harder case. By comparing figures that ignore (left) and
consider (right) query multiplicities, we observe that query
multiplicities greatly influence the generalized error of naive
mixture summaries which should not be ignored in general7.

Error v.s. Expectation of Verbosity. We observe from
Figure 2c and 2d that expectation of verbosity positively

6We only show running time comparison on US bank data
set as the one for PocketData is similar.
7Query multiplicities may be ignored in tasks like outlier
detection, where infrequent queries are considered equally
important as frequent ones.
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correlates with expectation of error. In other words, expec-
tation of verbosity is a measure very different from total
verbosity. Specially, for PocketData, we observe that MAD
with spectral clustering is able to reduce the expectation
of verbosity much further than other clustering techniques.
This is related to the limitation of word-correlation (See Sec-
tion 7.1.2). More precisely, the verbosity of a naive summary
increases when a large number of words are anti-correlated
within the cluster. Sub-clustering reduces anti-correlation
in each sub-cluster. However, traditional distance measures
fail to further distinguish queries into sub-clusters because
similarity contributed by correlated words dominates dis-
similarity.

Running Time Comparison. A pair distance matrix is
required by spectral clustering and should also be considered
in running time comparison. Hence we incorporate two sub-
figures in a row. Y-axis of the left/right sub-figure represent
the time that ignores/considers distance matrix computa-
tion time. Note that K-Means does not show up in left sub-
figure as it does not require computing distance matrix. One
can observe from left sub-figure that running time of spec-
tral clustering is greatly influenced by distance measures.
MAD and hamming distance are significantly faster than
manhattan. With respect to total running time, K-Means
is orders of magnitude faster than spectral clustering.

7.2 Refining Naive Mixture Summaries
To further refine a naive mixture summaries when sub-

clustering fail to reach the desired trade-off point, one can
selectively choose a set of its clusters where state-of-the art
pattern-based summarization techniques are piggybacked.
One can then choose either to replace or extend existing
naive summaries on selected clusters by additional patterns
mined by pattern-based techniques.

Sub-Clustering v.s. Piggybacking Pattern-Based Ap-
proaches. Since the goal of pattern-based summarization
techniques is to achieve largest information gain by intro-
ducing smallest verbosity, piggybacking them is often more
efficient than sub-clustering with respect to summary error
reduction per verbosity increase. However, pattern-based
approaches suffer from potentially lower computational effi-
ciency. We empirically show that the time of constructing
naive mixture summaries is significantly lower than piggy-
backing our selected state-of-the-art pattern-based approaches
in Section 8.4. In additional, we also compare naive mix-
ture summaries with/without piggybacking pattern-based
approaches based on generalized error and verbosity.

8. EXPERIMENTS
In this section, we design experiments to motivate using

summary error as one of the summary evaluation measures
and constructing pattern mixture summaries as the summa-
rization approach.

8.1 Data Sets
We use two specific query logs in the experiment: (1)

SQL query logs of the Google+ app extracted from Pocket-
Data dataset [26] over a period of one month and (2) SQL
query log that capture all query activity on the majority
of databases at a major US bank over a period of approxi-
mately 30 hours.

The PocketData-Google+ query log. The query log
consists of SQL logs that capture all database activities of
11 Android phones. We selected Google+ application for
our study since it is one of the few applications where all
users created a workload.

The US bank query log. These logs are anonymized
by replacing all constants with hash values generated by
SHA-256, and manually vetted for safety. Of the nearly
73 million database operations captured, 58 million are not
directly queries, but rather invocations of stored procedures
and 13 million not able to be parsed by standard SQL parser.
Among the rest of the 2.3 million parsed SQL queries, since
we are focusing on conjunctive queries, we base our analysis
on the 1.25 million valid SELECT queries.

A summary of these two datasets is given in Table 2.

Table 2: Summary of PocketData and US bank query logs

Statistics PocketData US bank

# Queries 629582 1244243

# Distinct queries 605 188184

# Distinct queries (w/o const) 605 1712

Max query multiplicity 48651 208742

# Distinct words 863 144708

# Distinct words (w/o const) 863 5290

Average words per query 14.78 16.56

8.2 Common Experiment Settings
Experiments were performed on operating system macOS

Sierra with 2.8 GHz Intel Core i7 CPU, 16 GB 1600 MHz
DDR3 memory and apple SSD hard drive.

Constant Removal. As one can notice from Table 2, one
of the major sources of variation in queries is constants, typ-
ically used as parameters in filtering conditions. We ignore
constants that generated by SHA-256 hashing.

Query regularization. Not all SQL queries are conjunc-
tive queries. We apply query rewrite rules (similar to [7] to
regularize queries into their equivalent form of conjunctive
queries.

Data Structure. To handle potentially enormous amount
of queries in the log, we chose a scalable data structure for
storing the multivariate distribution p(Q), which is further
described in Appendix D.

Convex Optimization Solving. All convex optimization
problems involved in measuring summary error and devia-
tion are solved by successive approximation heuristic imple-
mented by Matlab CVX package [16] with Sedumi solver.

8.3 Motivate Summary Error
In this section, we aim at motivating using summary error

as the practical alternative for ambiguity and deviation. As
it is impractical to enumerate all possible summaries, we
choose a subset for both PocketData and US bank data sets.
Specifically, we first select a subset of words8 from which
patterns are constructed. We then enumerate combinations
of K (K up to 3) patterns as our chosen summaries.

8Representing occurrence of ith word as variable Xi, we
selected words withH(Xi) > T where T = −0.01 log(0.01)−
0.99 log 0.99.
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(f) Error captures KL-divergence (PocketData)
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Figure 4: Validating Summary Error Metric

Containment Captures Deviation. We then empiri-
cally prove the argument S1 ≤Ω S2 → d(S1) ≤ d(S2) made
in Section 5.2, which completes the chain of reasoning that
ordering by summary error is homomorphic to ordering by
deviation. Since S1 ⊇ S2 → S1 ≤Ω S2 and it is much eas-
ier to verify S1 ⊇ S2, we empirically prove the argument
S1 ⊇ S2 → d(S1) ≤ d(S2). Deviation d(S) is approximated
through the two-step sampling described in Appendix C,
with 100 samples for the first step and 10000 samples for
the second.

The experiment results are shown in Figure 4a and 4b.
Given S2 ⊃ S1, Y-axis measures difference d(S2) − d(S1)
in deviation and X-axis measures the deviation of the set-
difference d(S2 \ S1). For better visualization, values in X-
axis are normalized by subtracting their minimum value and
grouped into 10 bins where box plot is generated. The
boxes depict the ranges within standard deviation of Y-
values falling into the bins and red marks indicate out-
lier values. One can observe that the majority of Y-values
d(S2) − d(S1) stay above zero, which empirically proves
S2 ⊃ S1 → d(S1) < d(S2).

Additive Separability of Deviation. We also observe
from Figure 4a and 4b that the larger d(S2 \ S1), the less
d(S1)− d(S2). In other words, the following property of de-
viation holds: S2 ⊃ S1 → d(S2)− d(S1) < 0 ∧ d(S2 \S1) ≈
d(S2)−d(S1) where symbol≈ represents positive correlation.
This property, mathematically known as additive separabil-

ity, can be interpreted as: The information loss (measured
in d(S2) − d(S1)) by excluding summary S2 \ S1 from S2

closely correlates with the deviation d(S2 \ S1).

Error Captures Deviation. Furthermore, we empirically
verify that summary error closely correlates with deviation.
The experiment results are shown in Figure 4c and 4d. X-
axis is summary error e(S) and Y-axis is deviation d(S).
One can observe from the figures that the less summary
error, the tighter correlation.

Containment Captures Deviation Revisited. From
comparing summaries of different verbosity K in Figure 4c
and 4d, we observe that min|S|=K d(S) < min|S|=K−1 d(S),
e.g yellow points comparing to red points. Consider S2 =
arg min
|S|=K

d(S) and find the summary |S1| = K−1 where S2 ⊃

S1, we have d(S2) < d(S1). In other words, this observation
is another evidence supporting the argument containment
captures deviation.

Error Captures KL-Divergence. Next, we empirically
prove the argument made in Section 5.1, that summary error
is closely correlated with the KL-Divergence from the true
distribution ρ∗ to space representative distribution ρS . The
experiment results that related to this argument are shown
in Figure 4e and 4f.

Error Captures Word-Correlation. Last but not least,
we show that summary error captures word-correlation, as
discussed in Section 5.3. The experiment results related to
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Figure 5: Pattern Mixture Summaries Comparison (US bank query log)

this argument are shown in Figure 4g and 4h. X-axis is
word-correlation measure corr rank for specific pattern b
and values in Y-axis is summary error e(S+b) where S+b

denotes the naive summary extended by pattern b. We ob-
serve that, the errors of extended summaries almost linearly
correlate with corr rank. In addition, corr rank is higher
when the pattern b encodes more words (blue points com-
paring to red).

8.4 Motivate Pattern Mixture Summaries
After justifying summary error as the summary evaluation

measure, we then design experiments to motivate construct-
ing pattern mixture summaries as the preferred summariza-
tion technique.

Experiment Setup. Recall in Section 7 that constructing
a pattern mixture summary consists of two steps: (1) Con-
structing a naive mixture summary and then (2) Refining
the naive mixture summary by piggybacking on pattern-
based summarization techniques. We choose KMeans [21]
clustering with Euclidean distance from which naive mix-
ture summaries are constructed. We then choose two state-
of-the-art pattern-based algorithms in our experiments: (1)
Laserlight Strategy [12], which aims at summarizing multi-
dimensional data D = (X1, . . . , Xn, A) augmented with bi-
nary attribute A, or equivalently the conditional probabil-
ities p(A|X1, . . . , Xn)9; (2) MTV [33] algorithm, which aims
at mining maximally informative patterns as summaries from
multi-dimensional data of binary attributes10. We set up
both algorithms to mine 12 patterns from target clusters11.

In order to motivate pattern mixture summaries, we con-
struct and compare pattern mixture summaries of three
different cases: (1) Only naive mixture summary is con-
structed; (2) Pattern-based approaches are piggybacked on
naive mixture summary and (3) Pattern-based approaches
are piggybacked on but existing naive mixture summary is
ignored. Case 1 aims at motivating naive mixture summaries
and case 2 aims at showing how much improvement on gen-
eralized error are contributed by piggybacking pattern-based
approaches on naive mixture summaries. Furthermore, since

9Due to implementation restriction of the algorithm,
we project the joint distribution of word occurrences
X1, . . . , Xn onto a limited set of top 100 words ranked by
entropy H(Xi). The binary attribute A is chosen as the
word with highest entropy H(Xi) with binary Xi.

10Marginals p(Xi ≥ K) where K > 1 are thus ignored.
11Empirically MTV would take much more running time if
this parameter is set higher than 12. In addition, when both
algorithms are piggybacked on naive mixture summaries,
patterns become more duplicated if the total number of pat-
terns mined is set over 12.

the verbosity of naive summaries on data clusters is poten-
tially much larger than the summaries from pattern-based
approaches, one can optionally choose to sacrifice informa-
tion content for conciseness by summarizing each data clus-
ter solely relying on pattern-based approaches. Hence, case
3 aims at evaluating the information loss by ignoring naive
mixture summaries and solely relying on pattern-based ap-
proaches. We only show the results for US bank data set as
results for PocketData are similar.

8.4.1 Error v.s. Verbosity
Note that there are three sub-figures in a row. The first

two sub-figures evaluates generalized error (Y-axis) v.s. the
number of clusters (X-axis)12. We use two sub-figures for
better visualization: The generalized error for case 3 is much
higher than case 1 and we need to logarithmically scale the
Y-axis (generalized error) for visualizing the comparison on
all cases (shown in first sub-figure). As a result, we exclude
case 3 and provide in the second sub-figure the compari-
son results based on an unscaled Y-axis. We observe from
the second sub-figure that error reduction brought by pig-
gybacking pattern-based approaches is relatively small for
both algorithms. By investigating the data sets, we found
that this is because the major source of generalized error
for both data sets is mutual exclusiveness, a type of anti-
correlation that cannot be effectively reduced by pattern-
based approaches.

When Pattern-Based Approaches Fail. To illustrate,
consider the following example queries in the log.

Example 5. Mutual Exclusiveness

SELECT _time ,_id FROM Messages
WHERE _time >2000

SELECT _time ,_id FROM Messages
WHERE _time >3000

Queries in the example differ in right hand side (time stamps)
of filtering condition time > ?. These time stamps or more
generally the possible parameters of the filtering condition
are mutually exclusive. Specifically in above example, the
number of distinct timestamps for the filtering condition
grows with time and none of two can co-occur in the same
query. Since each distinct time stamp results in a distinct
feature/word, it requires potentially huge number of pat-
terns for encoding mutual exclusiveness among those words
and pattern-based approaches are not likely to help. One

12For better visualization, we replace the total verbosity of
pattern mixture summaries by the corresponding number of
clusters, as they are positively correlated.
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can certainly choose to ignore these parameters by taking
the risk of information loss. But in general cases where we
do not specifically ignore any set of features/words, anti-
correlation among words is the bottle neck of both pattern-
based and pattern mixture summarization.

Running Time Comparison. We also compare the run-
ning time (measured in seconds) of constructing naive mix-
ture summary with the running time of piggybacking pattern-
based approaches on all resulting clusters. Note that Y-axis
is logarithmically scaled. The experiment result is shown
in the third sub-figure. It can be observed that the run-
ning time of constructing a naive mixture summary is sig-
nificantly lower than the chosen pattern mining algorithms,
regardless of the number of clusters.

Wrap Up. To wrap up, the take aways are: (1) by
sub-clustering, naive mixture summaries are able to pro-
vide a precise representation of the query log under control-
lable conciseness (through hierarchically sub-clustering); (2)
To further refine naive mixture summaries, pattern-based
summarization approaches can be flexibly piggybacked on
naive mixture summaries with evaluable information gain;
(3) In cases where feature/word anti-correlation is the major
source of summary error, neither sub-clustering nor pattern-
based approaches can effectively reduce the summary error.

9. CONCLUSION AND FUTURE WORK
In this paper, we introduced the problem of log sum-

marization and defined two families of summary represen-
tations: pattern-based and pattern-mixture. We precisely
characterized the information content of a log as a multivari-
ate distribution p(Q) and then offered three principled mea-
sures of summary quality: Verbosity, Ambiguity and De-
viation. As neither Ambiguity nor Deviation are efficiently
computable, we defined a third measure called Summary Er-
ror that captures both Ambiguity and Deviation. Thus, we
defined log summarization problem as a search over a space
of summaries to identify the one that best trades off between
Summary Error and Verbosity. Unfortunately, searching for
such an ideal summary from the full space of pattern-based
summaries is computationally infeasible. We thus restricted
our search to a family of pattern mixture summaries which
breaks down the distribution p(Q) into several component
distributions through clustering. A pattern mixture sum-
mary summarizes each component independently and we
generalized Summary Error and Verbosity under this set-
ting. To identify an ideal pattern mixture summary, we
start by studying its simplified form—naive mixture sum-
maries. We further refined naive mixture summaries by: (1)
Sub-clustering the data to scrub through different trade-offs
between Verbosity and Summary Error, and (2) Piggyback-
ing on more complex, state-of-the-art pattern-based sum-
marization approaches to create more intricate summaries.
We selected two state-of-the-art pattern-based summariza-
tion techniques called LaserLight and MTV as comparison
methods. On one hand, we experimentally show that naive
mixture summaries are faster to create and more informative
than comparison methods. On the other hand, we also show
that pattern-based approaches are superior with respect to
conciseness/verbosity. As a result, we provided guidance on
when to piggyback on pattern-based approaches such that a
fast-to-create, informative naive mixture summary can also
be concise.

We have two directions in mind for our future work: (1)
Studying how to concisely convey anti-correlation to further
reduce generalized error of pattern mixture summaries; (2)
Generalizing bag-of-words data representation to logs of dif-
ferent data types and apply pattern mixture summarization
to logs of new data types.
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APPENDIX
A. NOMENCLATURE

Symbol Meaning

f Feature
w Word
b Bag of words/Pattern

b′ ⊆ b b′ is contained in b
q Query
L Log, a bag of queries
Q Query uniformly drawn from L

p(Q = q | L) Probability of q uniformly drawn from L
p(Q) p(Q = q | L)

p(Q ⊇ b) Marginal probability of Q containing b
corr rank(b) Word-correlation in pattern b

Smax Full mapping from patterns to marginals
S Summary, partial mapping S ⊆ Smax

dom(·) Domain of mapping

S Lossless summary
ρ Distribution of vectorized queries q ∈ Nn

ΩS Space of ρ constrained by S
S ≤Ω S′ Partial order over S, ΩS ⊆ ΩS′

PS ρ randomly drawn from ΩS
ρ∗ Same as p(Q), ρ∗ ∈ ΩS
H(·) Distribution Entropy
ρS arg max

ρ∈ΩS

H(ρ)

dm(q,q′) Multiplicity-Aware Distance (MAD)
d(S) Deviation
a(S) Ambiguity
e(S) Summary Error
|S| |dom(S)|, summary Verbosity

ρ� ρ′ ρ is absolutely continuous w.r.t ρ′

DKL(ρ||ρ′) K-L Divergence,
∑

q∈Nn
ρ(q) log ρ(q)

ρ′(q)
.

E[·] Expectation

B. MARGINAL SELECTION
As discussed in Section 4.2, a pattern conveys informa-

tion content of the log by constraining an arbitrary distri-
bution ρ (zero information content of the log) such that ρ
has the same marginal p(Q ⊇ b) or equivalently p(X1 ≥
x1, . . . , Xn ≥ xn) where b = (x1, . . . , xn). We keep includ-
ing patterns in the summary such that the constrained ρ
eventually converges to p(Q).

However, marginal p(Q ⊇ b) is not the only choice. In
fact, the marginal probability that a query q uniformly drawn
from the log exactly matches (denoted as q w b) the pattern
b can be an alternative. Specifically, given q = (x1, . . . , xn)
and b = (x′1, . . . , x

′
n),

q w b ≡ ∀x′i > 0, xi = x′i

Given that word occurrences x1, . . . , xm, m ≤ n are positive
in pattern b, the resulting marginal p(Q w b) is equivalent
to p(X1 = x1, . . . , Xm = xm). Here we explain the rationale
on choosing p(Q ⊇ b) over p(w b) in the following example.

Example 6. Convey the information that, i, jth words
never co-occur twice in any query drawn from the log.

1. Marginal Type p(Q ⊇ b): p(Xi ≥ 2, Xj ≥ 2) = 0

2. Marginal Type p(Q w b): p(Xi = 2, Xj = 2) = 0,

p(Xi = 2 + 1, Xj = 2) = 0,

p(Xi = 2, Xj = 2 + 1) = 0,

. . .

In other words, marginal p(Q ⊇ b) is able to convey the ob-
jective information using only one pattern. As a conclusion,
in general, marginal p(Q ⊇ b) offers more descriptive power
than p(Q w b).

C. SAMPLING FROM SPACE OF DISTRI-
BUTIONS

Here we discuss sampling from a space of probability dis-
tributions.

C.1 Sampling without Constraints
To sample a random distribution ρ : Nn → [0, 1] with-

out any constraint, the naive way is to treat ρ as a multi-
dimensional random vector (ρ(q1), . . . , ρ(q|Nn|)) which sums
up to 1. However, |Nn| is too large and we reduce the num-

Algorithm 1 Sampling

1: procedure TwoStepSampling
2: Step 1:
3: for each v ∈ Bm ∧ Cv 6= ∅ do
4: V ← V

⋃
v

5: end for
6: class p←UniRandDistribProb(V,1)
7: Step 2:
8: for each v ∈ V do
9: ρ← ρ

⋃
UniRandDistribProb(Cv,class p(v))

10: end for
11: return ρ
12: end procedure
13:
14: procedure UniRandDistribProb(Set S, double prob)
15: for each element e ∈ S do
16: p(e)← UniformRandNum(range = [0, 1])
17: end for
18: for each element e ∈ S do
19: p(e)← prob× p(e)÷

∑
e

p(e)

20: end for
21: return p
22: end procedure

ber of dimensions by grouping queries qi ∈ Nn into equiva-
lence classes.

Summary-equivalent Classes. The basic idea for group-
ing is based on containment relationship between query and
patterns b ∈ S in the summary S. More precisely, if qi ⊇ b,
it indicates that probability ρ(qi) is constrained by marginal
S[b] (see Equation 1 in Section 4.2). As a result, if queries
qi,qj share the same containment relationship with pattern
b, probabilities ρ(qi), ρ(qj) make no difference for satisfy-
ing the constraint derived from b. We thus define pattern-
equivalence as

qi ≡b qj ⇔ I(qi,b) = I(qj ,b)

I(qi,b) is the binary indicator function satisfying I(qi,b) =
1 ≡ qi ⊇ b. Queries are summary-equivalent qi ≡S qj if
they are pattern-equivalent for all patterns in the summary.
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Ordering patterns in the summary as b1, . . . ,bm, any bi-
nary vector v ∈ Bm maps to an equivalence class Cv =
{ q | (I(q,b1), . . . , I(q,bm)) = v ∧ q ∈ Nn }. Though the
number of non-empty equivalent classes may grow as large
as O(2m), it is much smaller than |Nn| and creating a ran-
dom distribution can be divided into two steps as shown in
line 1 of algorithm 1.

C.2 Sampling under Constraints
So far we are creating random samples from an uncon-

strained space of distributions. To make sure ρ produced
by the two-step sampling fall within space ΩS , distributions
class p produced by Step 1 must obey the linear equality
constraints derived from the summary S. Denote the space
of all possible distributions class p as U and the subspace
allowed by the summary as US ⊆ U . One naive solution
is to reject class p /∈ US . However, the subspace US con-
strained under linear equality constraints is equivalent to an
intersection of hyperplanes in the full space U . The volume
of US is thus so small comparing to that of U , such that any
random sample class p ∈ U will almost never fall within
US . To make sampling feasible, we do not reject a sample
class p ∈ U but project it onto US by finding its closest
counterpart class p′ ∈ US . In other words, given summary
S, we assume we are sampling class p′ from allowed sub-
space US given the probability measure,

p(class p′) ∝
∣∣{ class p | class p ∈ U ∧ proj(class p) = class p′

}∣∣
The projection can be achieved by solving an optimization
problem that minimizes some distance function d(class p, class p′),
e.g. d(class p, class p′) = ||class p′ − class p|| under the
constraints.

D. DATA STRUCTURE
We choose FP Tree [18] as our solution for storing distri-

bution p(Q) because it is lossless and reasonably scalable on
large data sets (See frequent pattern mining [17]). Here we
show that it can seamlessly work for our case by translat-
ing any bag of words into a set of items: Suppose a word
w occurs k times in query q. This implies that it also oc-
curs 1 to k − 1 times. We thus create k correlated items
(w, 1), (w, 2)..(w, k) for query q.
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