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Abstract—Over the past decade, there has been a proliferation
of low-veracity data sources like personal sensing and data
extracted from the web. Decades of research on probabilistic
data management have explored how to make uncertainty a
first-class primitive in database management systems. However,
efforts in this space have remained largely algorithmic, focusing
more on how to efficiently perform computations over proba-
bilistic or incomplete data and less on how the data is to be
consumed. In this paper, we tackle the problem of uncertain data
management from a user-focused perspective. We conducted a
usability study in which we explored how users interact with
different representations of uncertainty. As one result of this
study, we found that low-detail representations of uncertainty
could still be effective at communicating uncertainty and could
help users to efficiently make decisions based on uncertain data.
We then identified a range of query evaluation strategies well
suited for generating these representations and implemented them
in our probabilistic data cleaning system, Mimir. Unsurprisingly,
we found a clear tradeoff between the level of detail conveyed
by the representation and the computational cost of generating
it. In summary, this paper demonstrates that, for user-facing
applications, existing techniques developed for probabilistic data
management can be simplified, and that it is possible to create
a user-facing probabilistic database competitive with classical
DBMSes.

I. INTRODUCTION

Uncertainty is increasingly relevant to all facets of data
management, from small-scale small personal sensing applica-
tions to large corporate or scientific data analytics. In these and
many other settings, heuristics play an active role in enforcing
data quality, and in doing so decide what information the
end-user is exposed to. As a simple example, several modern
calendar and address book programs populate themselves from
a linked email account. The program’s heuristics decide which
sections of text describe an event or contact. The result of
these heuristics is a table of (typically relational) data that
programs can then display to the user. Unfortunately, the crisp
precision of a table of query results — or even just a collection
of numbers and names — can conceal potential unreliability of
the values shown. In the more extreme cases, presenting this
information as if it were valid can ruin lives. Examples include
credit agencies1 and the TSA no-fly list2, both of which fre-
quently contend with automation-related issues ranging from
entity resolution to missing or untrustworthy data.

Historically, the prevailing wisdom in the database commu-
nity was to work only with precise, valid data. Unfortunately,

1http://money.cnn.com/2016/04/11/pf/john-oliver-credit-reports/index.html
2http://www.nytimes.com/2010/01/14/nyregion/14watchlist.html
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hiding uncertain information (e.g., behind NULL-value seman-
tics) dramatically decreases the utility of a data set. A value
representing a guess, such as data extracted from a web page
or an email, is information that can still be incorporated into
a user’s decision process. So-called probabilistic databases [1]
represent a more sophisticated approach to managing uncertain
data by treating data as a distribution over possible database
instances. However, work on probabilistic databases to date
has focused largely on query processing semantics, typically
through algorithms for computing distributions of possible
query results. In this work, we instead approach probabilistic
databases by starting “in the last-mile,” that is, by examining
how users consume uncertain information. As a result of a
user study, we find that simple, low-bandwidth signaling like
text color is an effective and efficient way to communicate
uncertainty in data. We also find that details like ranges and
confidence bounds can make decisions harder for some users.

Armed with this information, we revisit existing strate-
gies for evaluating answers to probabilistic database queries
within a classical deterministic DBMS. To date, there have
been two dominant strategies: provenance- and sample-based.
Provenance-based evaluation as in Sprout [2] constructs a loss-
less representation of the distribution for a query’s results.
This representation can then be used to compute statisti-
cal metrics like row confidence to arbitrary precision. In
short, provenance-based strategies can support a wide range
of uncertainty representations. By contrast, sampling-based
strategies like MCDB [3] can be faster (depending on number
of samples), but do not produce a complete characterization
of the result distribution and can not be as expressive as
a provenance-based technique. This tradeoff is illustrated in
Figure 1.

In short, provenance-based strategies can support a wider
range of uncertainty representations, while sampling-based



strategies are faster. The key insight of this paper is that for
the simplest representations, which our user study shows can
still be effective, both strategies are still computing too much.
Thus, we propose a 2-pass approach to probabilistic query
processing. In the first pass, we quickly generate a simple
summary of query results to show to the user. Then, in the
background, we begin constructing the full distribution as in
a provenance based system. We propose evaluation strategies
for each phase: (1) inline, a lightweight probabilistic evaluation
strategy that is sufficient to enable lightweight representations
and (2) partition, a more heavyweight strategy that can pro-
duce more detailed results. We implemented these strategies
in the Mimir probabilistic database framework, and use the
PDBench [4] probabilistic database benchmark to evaluate
their performance.

A. Data Uncertainty and Ambiguity

Uncertainty, imprecision, incompleteness, or ambiguity in
data arises in a number of settings. Consider the following
examples.

Imprecise data sources. Data obtained through crowd-
sourcing [5], sensors, or privacy-preserving data releases is ex-
plicitly uncertain. Often the data source defines either bounds
or a distribution for potential errors in the data.

Heuristic extraction. Numerous techniques have arisen for
extracting structured data or relationships from prose, HTML
<table> tags, JSON documents, and social networks. These
techniques are typically heuristic — they are not guaranteed to
produce correct results in all circumstances and may identify
ambiguities in the source data that require human intervention.

Data cleaning. Data cleaning, for example through constraint
enforcement [6] or entity de-duplication [7] typically creates
multiple, ambiguous interpretations of source data that a
heuristic must select from.

Approximate query processing. In interactive settings, it
is often beneficial to trade result accuracy for improved la-
tency [8].

Fuzzy queries Non-SQL query interfaces like natural lan-
guage, gestures, or keyword search frequently admit ambigu-
ous interpretations. A single query might have many possible
result sets, each valid under some interpretation of the query.

Uncertainty in relational data is typically categorized into
one of three forms: (1) Uncertainty about the value of a given
attribute in an existing row (attribute-level), (2) Uncertainty
about whether a specific row should be present in the database
(row-level), or (3) The full set of possible rows in the database
may be unknown or infinite (open-world uncertainty). In this
paper, we focus primarily on presenting forms of attribute-
level uncertainty such as dependency violation repairs, domain
violation repairs, extraction errors, or low-quality data sources.

B. Overview

The key insight driving our design is that simple represen-
tations of uncertainty are sufficient for some use cases. This
insight is validated by the user study presented in Section II.
In Section III, we define a taxonomy of uncertainty represen-
tations relative to what information is needed to generate each,

Rating Source
Product Buybeast Amazeo Targe

Samesung 3.5 – 4.5 3.0 3.5±1

Magnetbox 2.5 2.5 3.0
Mapple 5.0* 3.5 5.0

Fig. 2: Example uncertainty representations.

Fig. 3: User Interface.

and categorize existing probabilistic database systems with
respect to which representations they can produce. Finally, in
Section IV we leverage representations with lower information
requirements to create a 2-pass evaluation strategy that simul-
taneously produces a quick simple representation and a slow
detailed representation of uncertain query results. Concretely,
the contributions of this paper are: (1) We describe the results
of a user study assessing the effectiveness and efficiency of
attribute-level uncertainty representations. (2) We outline a
taxonomy of representations of uncertainty. (3) We describe a
query evaluation strategy for user-focused probabilistic query
processing. (4) We implement these strategies in the Mimir
probabilistic database framework [9], [10] and demonstrate
how the choice of representation affects query performance.

II. USER INTERFACE

Our first aim is to design a user interface for presenting
query results with attribute-level uncertainty, optimizing for
three objectives: (1) Familiarity: Replicate as much of the
deterministic querying experience as reasonable, (2) Effective-
ness: Get users to incorporate data uncertainty into decisions
they make based on uncertain query results, and (3) Efficiency:
Minimize the cognitive burden of interpreting uncertainty in
results. In the interest of optimizing for familiarity, we begin
with a classical deterministic interface: a table of query results.
We focus our efforts on modifying individual table cells to
communicate uncertainty. We select a representative sample
of representations, each illustrated in Figure 2.

1) Asterisk: Uncertain values were marked with an asterisk
(e.g., Mapple’s Buybeast rating).

2) Colored text: The text of uncertain values was colored
red (e.g., Magnetbox’s Amazeo rating).

3) Color coding: The cells containing uncertain ratings were
given a red background (e.g., Magnetbox’s Targe rating).
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(b) Results from This Study

Fig. 4: Agreement with BestOf3 order

4) Tolerance: Uncertain values were presented with an error
bound (e.g., Samesung’s Targe rating).

5) Range: Uncertain values were presented as a range of
values (e.g., Samesung’s Buybeast rating).

The first three representations are simple low-bandwidth
encodings. Each communicates precisely 1 bit of information
about each attribute, albeit with varying levels of subtlety.
Coloration, and in particular red is a common warning signal
— Coloring text is subtle, while coloring an entire cell is
more observable while decreasing the contrast of the value and
making it harder to see. Symbols like asterisks are frequently
used in tabular data for footnotes. The remaining two repre-
sentations carry a higher level of detail: a range of possible
values, expressed as a median and range in one case and as
upper and lower bounds in the other.

A. Study Design

The two primary questions that we sought to answer for
each of the representations of uncertainty were (1) Is the
representation effective at communicating uncertainty, and (2)
What is the cognitive burden of interpreting the representation?
To address these questions we conducted a series of user
studies in which participants were presented with a web form
that contained a 3x3 grid showing three ratings each for three
products. The participants were told that the ratings came from
three different sources and were normalized to a scale of 1 to
5, with 5 being best and 1 being worst. Given this information,
participants were asked to evaluate the products for purchase
by ranking the products in the order of their preference. The
interface used in the study is illustrated in Figure 3.

Interactions with the web-form — such as product selec-
tion, re-ordering the product list, and submitting the partic-
ipant’s final order — were logged along with time stamps.
In addition to interactions with the web form, the experiment
also used a think-aloud protocol. The think-aloud protocol
is defined to be a process in which participants are asked
to verbalize their thought processes while performing the
task. Audio logs were then transcribed and the anonymized
transcriptions tagged and coded for analysis.

Control Trials. Ratings for each product were generated ran-
domly for each trial, but biased to elicit a specific, predictable
ranking order. We call one product roughly better than a
second if it has (1) one extremely favorable rating (at least

one point higher), (2) one slightly favorable rating (0, 0.5,
or 1 point higher), and (3) one slightly unfavorable rating (0,
0.5, or 1 point lower). We call a product rating grid valid
if there exists a sequence of products where each product is
roughly better than the next in the sequence. For each trial,
we sampled rating grids from a uniform random distribution
on the range [0, 5] with increments of 0.5, and used rejection
sampling to ensure only valid grids. As shown in Figures 4a
and 4b, this sampling process elicited the expected ordering
from participants roughly 90% of the time. From this point
we will refer to this elicited ordering as the best two-out-of-
three ratings, or BestOf3 ordering.

Experimental Trials. Each experimental trial evaluated one
of the five forms of uncertainty described above. In each
experimental trial, the grid was generated exactly as in the
control trial. However, between 2 and 4 randomly chosen
values were labeled as being uncertain. Participants were also
informed that these fields were uncertain. For the asterisk,
colored text, and color coding representations, the label was
simply applied to the affected cells. For the range and tolerance
representations, the presented interval was uniformly selected
from {±0.5,±1,±1.5}. To emphasize, the sole difference
between an experimental trial and a control trial was the
addition of labels marking some ratings as uncertain and not
how the displayed (or median) ratings were generated.

Scale. A total of 22 participants drawn from the entire student
body of the University at Buffalo participated. Participants
were asked to complete three rounds of survey, with each round
consisting of six trials: One control trial and one experimental
trial for each of the five representations. Thus, we collected
66 rankings per representation (and for the control) for a total
of 198 pairwise product comparisons each.

For comparison, we also review some results from a
preliminary study [11]. The preliminary study included 14
participants drawn exclusively from the University at Buffalo’s
Department of Computer Science and Engineering and did not
evaluate the Range representation.

B. Quantitative Assessment

As mentioned in Section II-A, a participant’s interactions
with the web-form were logged, including the participant’s
final ranking and the time taken to reach it. We first evaluate
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the representations quantitatively for (1) effectiveness, by
comparing participant rankings with the BestOf3 raking and
(2) efficiency, by measuring the time taken to complete the
trial.

Effectiveness. A product ranking that is closer to random
relative to BestOf3 is expected if a representation of uncer-
tainty is effective. Figure 4 summarizes our results, showing
the probability of total agreement between the participant-
selected ordering and the BestOf3 ordering. Standard devi-
ations are computed under the assumption that agreement
with BestOf3 follows a Beta-Bernoulli distribution. A 16.7%
agreement would be consistent with a purely random chance
of total agreement with BestOf3. The deterministic baseline
(Certain) shows a consistent, roughly 92% agreement with
BestOf3. Figure 5 illustrates the same data as Figure 4b, but
considers the number of pairwise disagreements in relative
ranking rather than complete agreement. Both colored text and
color coding significantly altered participant behavior (50%
and 42% agreement with BestOf3). This is comparable to our
preliminary study where colored text and color coding where
45% and 56% in agreement with BestOf3 respectively. There
is an increase in agreement with BestOf3 for colored text,
but remains within one standard deviation of the preliminary
study. In the new study, color coding agrees significantly
less with BestOf3; This may be attributable to the difference
in study populations. In both studies color coding was very
effective at altering user behavior. The range representation
was not as effective at altering participant behavior (68%
agreement), although we would expect a closer agreement,
since averaging the range value would cause the participant to
follow BestOf3. As discussed in our qualitative analysis below,
this may be attributable to participants ignoring the uncertain
values altogether or selecting the lowest or highest value. The
preliminary study reveals the tolerance representation showed a
consistent (89%) agreement with BestOf3 whereas we can see
a decrease in the agreement (77%) in the broader study. Our
analysis shows that this might be because the Non CS students
took significant time in interpreting tolerance values. Asterisks
were not as effective at altering participant behavior (62%
agreement), which confirms with results from the preliminary
study [11] with asterisk at 73% agreement.

Efficiency. We measure time taken for each form of uncer-
tainty as a proxy for cognitive burden. Figure 6 illustrates
time taken by users to complete each individual ranking task.
In the case of CS participants, time taken per representation

was relatively consistent across all forms of uncertainty except
tolerance. The slowest trial for both CS Figure 6a and Non-
CS Figure 6b participants was tolerance. As seen in Figure 6b,
participants from a Non-CS background took longer to infer
tolerance, certain and range representations. However, non-
CS participants also displayed a quicker decision compared
to CS participants in case of asterisk, colored Text and color
coding representations. The comparison might suggest that
being familiar with the representation (tolerance and ranges)
reduces the cognitive burden of interpreting uncertainty.

C. Qualitative Assessment

We next analyze the results of the think-aloud protocol used
in the study. In general, consistency in the rating sources and
the products was considered as secondary sources of feedback
regarding data quality. For example, if Source 1 had uncertain
ratings for two products, then participants were more likely
to discard it as uninformative and base their rating solely on
the other two sources. If the ratings for a product had wide
(4.5, 2, 1) range then the product was considered unreliable
by a few participants. Participants were encouraged to state
whether they were using BestOf3 or taking an average of the
three ratings in order to rank the products.

For a principled analysis of the think-aloud results, we
transcribed and examined the collected audio logs. Utterances
were annotated with tags, broadly grouped into three cate-
gories: (1) Risk tags annotate utterances where the participant
describes an optimistic or pessimistic decision strategy that
incorporates uncertain values. (2) Comfort tags annotate ut-
terances where the participant indicates a positive or negative
emotion, either towards the deterministic or non-deterministic
data. (3) Context tags annotate utterances where the participant
attempts to use context (the value domain, other ratings, etc. . . )
to infer a cause for or interpretation of the uncertain values.

Risk-Aversion vs. Risk-Favor. Figure 7 illustrates the effect
of different presentations of uncertainty on participants’ will-
ingness to take risks and choose a product that has uncertain
ratings.

1) Risk-Aversion: The participant indicates that they are
making a decision that avoids risk or indicates a reduced
preference for an option based on too much uncertainty.

2) Risk-Favor: The participant indicates that they are
making a decision that takes on risk or they believe
that the risk is minimal, although their decision involves
uncertainty.

Participants were more likely to indicate risk-taking behavior
with color coding, and less likely to indicate risk-taking
behavior with the tolerance or range representations.

Comfort vs. Discomfort. Figure 8 illustrates positive and
negative emotional reactions expressed by participants with
regards to the data and the type of uncertainty.

1) Discomfort-Data: The participant expresses discom-
fort with ambiguity in the (raw, certain) data or the
difficulty of the decision process.

2) Comfort-Data: The participant expresses comfort with
the data being presented and/or being at-ease with the
decision they are being asked to make.
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3) Discomfort-Uncertainty: The participant ex-
presses discomfort or a dislike of the uncertainty in the
data.

4) Comfort-Uncertainty: The participant expresses
comfort with or a like of the uncertainty in the data.

The color coding representation made the participants most
uncomfortable followed by colored text representation as seen
in Figure 8 whereas Tolerance was considered as the most
comfortable representation of uncertainty. Asterisk, Colored
text and Ranges induced the same level of discomfort with
data. Users expressed the most discomfort with color coding
representations, followed by colored text as seen in Figure 8.
Tolerance was considered the most comfortable representation
of uncertainty. Asterisk and ranges induced the same level of
discomfort with the data.

Context-X vs. Uncertainty-X. Uncertain values were ignored
on a larger scale in color coding compared to other representa-
tions, followed by asterisk and colored text as seen in Figure 9.
Uncertainty was also considered irrelevant in these three cases.

1) Context-Row: The participant indicates a change in
behavior (e.g., discarding or retaining) with respect to
an uncertain value based on other ratings from the same
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Fig. 8: Comfort vs. Discomfort

source for the same product.
2) Context-Domain: The participant expresses a desire

to select a product because its uncertain ratings are low
(and can only increase), or a desire to avoid a product
because its uncertain ratings are high (and can only
decrease).

3) Uncertainty-Callout: The participant vocalizes a
form of uncertainty perceived in the data.

4) Uncertainty-Ignored: The participant expresses an
intent to ignore, discard, exclude, or otherwise disregard
values that are uncertain. The participant may also explic-
itly state that a decision is based exclusively on certain
data.

5) Uncertainty-Irrelevant: The participant ex-
presses awareness that the uncertainty in the values does
not affect their decision.

III. PROBABILISTIC QUERY EVALUATION

We next discuss the state of the art in in-situ probabilistic
query evaluation strategies and contrast it with the needs of the
query result presentations examined in Section II. Concretely,
we aim to enable probabilistic query processing within a
classical, deterministic database through query rewriting. The
five representations in the user study fall into two categories:
1-bit representations (Asterisk, Color Coding and Colored
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Text) that identify only which values are uncertain, and range
representations (Tolerance and Range) that provide a range of
values. More complex representations than addressed in our
user study (e.g., communicating inter-attribute correlations) are
also possible.

A. Representation-Oriented Query Processing

These categories define a hierarchy of evaluation strategies:
1-bit evaluation strategies should emit a single query result
annotated with which values are uncertain, range evaluation
strategies should emit a (probabilistic) range of possible values,
and complex evaluation strategies should be able to produce
a lossless encoding of the full distribution of query results.

Generating a complex representation. This class of repre-
sentations requires computing a full, lossless representation of
the result distribution. Although this is the most general class
of evaluation semantics, lossless representations are frequently
reduced to simpler summary representations before presenta-
tion to the user. For example, in both PIP [12] and Sprout [13],
users request specific summaries like probabilistic aggregates,
expectations, or confidence values through the query. Other
examples of systems that support complex representation se-
mantics include MYSTIQ [14], Trio [15], MayBMS [16], and
Orion 2.0 [17], as well as the partition query evaluation
strategy outlined in Section IV.

Generating a range representation. This class of representa-
tions requires computing a representative range of values. The
range presented may be either exact or probabilistic (e.g., ε-δ
bounds). Especially for data in a continuous domain, proba-
bilistic ranges are frequently more useful as many common
continuous value distributions have no hard upper or lower
bounds. Support complex representations implies support for
both exact and probabilistic bounds. As we discuss in greater
detail below, the MCDB system [3] also supports probabilistic
range representations.

Generating a 1-bit representation. This class of represen-
tations requires computing a single, representative value for
each cell in the result and a boolean value for each cell that
determines whether the value differs across possible worlds. A
key question in generating 1-bit representations is the choice of
representative value, most logically the mode or mean of some
distribution. We note two reasonable choices: The result value

that maximizes likelihood in the prior, pre-query distribution,
or the result value that maximizes likelihood in the posterior,
query result distribution.

Example 1: Consider two independent boolean variables
P (A) = P (B) = 0.4. The most likely possible world is the
one where A and B are both false, and the the value of A∨B in
this “best guess” world is false. Conversely P (A∨B) = 0.64.
Although the result of this query is most likely true, there is
a possibility that changing the best guess based on query may
be confusing to users3.

Support for complex representations implies support for
both prior and posterior distributions. MCDB’s tuple bundles
are also capable of supporting a 1-bit representation based
on the posterior distribution, and a probabilistic correctness
guarantee on the bit. Finally, the inline query evaluation
strategy proposed in Section IV supports 1-bit representations
based on the prior distribution.

B. Existing Techniques for Probabilistic Query Processing

Before discussing the current state of the art, we first need
to outline some background and terminology. Query semantics
over a non-deterministic database are given by possible worlds
semantics as an extension of deterministic query semantics. A
deterministic query Q applied to an uncertain database defines
a set of possible results Q(D) = { Q(D) | D ∈ D }. Note that
these semantics are agnostic to the data representation, query
language, and number of possible worlds |D|. The possible
worlds of an uncertain database may be annotated with a
probability measure P : D → [0, 1] to form a probabilistic
database 〈 D, P 〉. The probability measure also induces a
distribution over possible result relations R for the query:

P [Q(D) = R] =
∑

D∈D : Q(D)=R

p(D)

A single uncertain database D may be characterized as
a (potentially infinite) set of possible deterministic database
instances D ∈ D, also known as possible worlds. It is common
to assume that possible worlds share a single schema sch(D).

There are several existing solutions on query processing on
uncertain data. MCDB [3] allows the user to define the distri-
bution of the uncertain data and samples from this distribution
to represent uncertain data in “tuple bundles”, or fixed-size
arrays of tuples, all having the same schema. Each element
of the bundle represents the tuple in one (sampled) possible
world. Tuple bundles allow MCDB to evaluate queries over
all sampled worlds in parallel to produce samples from the
distribution of possible results, and can be implemented in
any classical DBMS that supports UDFs [12].

C-Tables. The number of possible worlds necessary to de-
scribe a data set may be very large (or in some cases infinite).
Fortunately, each possible world can often be interpreted
as a collection of (mostly) orthogonal decisions. For many
sources of uncertainty, these decisions follow one of two
patterns. The first examines the existence of a specific row in
a given possible world. The second evaluates the value of an

3We leave to future work the question of whether prior or posterior
distributions are more intuitive to database users.



Select * from table 
where category=“phone” 6s, whiteP123

nameid
NULL(‘X’,P123)

brand
phone

category
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Select * from 
table?123

nameSSN
Lawyer

occupation
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resolve PK 
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occupation

Clark124 Athlete

NULL(‘X’,123)=
{Alice: 0.6,
Bob: 0.4}

Bob123
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Lawyer
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(b) Data is from an unreliable source.

Select title, institution 
from table 

{  ‘submissionId ’ : 123 ,
    ‘title ’ : ‘Uncertainty in the last mile’ , 
    ‘author ’ : {‘email’ : ‘poonamku@buffalo.edu’ , ‘name’ : ‘P. Kumari’, 
                       ‘institution ’ : { ‘ name’ : ‘Buffalo’ , ‘ number ’ : 1 } } , 
    ‘reviewer’: {‘email’ : ‘ab@cd.edu’ ,  ‘name’ : ‘ef. Green’, 
                        ‘institution’ : { ‘name’:‘ABC’, ‘number’ : 14 }}}

{  ‘title ’ : ‘ Uncertainty in the last mile’, 
    ‘institution ’ : { NULL(‘X’,123) }}

NULL(‘x’,123)={
    ‘institution ’ : {‘name’: ‘Buffalo’, ‘number ’ : 1 } , 
     ‘institution’ : {‘name’:‘ABC’, ‘number’ : 14}}

(c) A fuzzy query on certain data.

Fig. 10: Input data and labeled null representation, Q and expecting query result {Q(D), P}.

attribute associated with a specific row in a the possible world.
These two patterns, respectively termed row- and attribute-
level uncertainty, form the basis of a factorized encoding called
C-Tables. A C-Table [18] is a relation instance where each
tuple is annotated with a formula φ, a propositional formula
over an alphabet of variable symbols σ. φ is often called a
local condition and the symbols in σ are referred to as labeled
nulls, or just variables. Intuitively, for each assignment to the
variables in Σ we obtain a possible relation containing all the
tuples whose formula φ is satisfied. For example:

Product
pid name brand category φ

t1 P123 Apple 6s Apple phone x1 = 1
t2 P123 Apple 6s Cupertino phone x1 = 2
t3 P125 Note2 Samsung phone >

x1 ={
1 : 0.3

2 : 0.7

The above C-Table defines a set of two possible worlds,
{t1, t3}, {t2, t3}, i.e. one world for each possible assignment
to the variables in the one-symbol alphabet Σ = {x1}. Notice
that no possible world can have both t1 and t2 at the same
time. Finally, a C-Table may be combined with a probability
measure to obtain a Probabilistic C-Table, or PC-Table [19].

VG-Relational Algebra. VG-RA (variable-generating rela-
tional algebra) [12] is a generalization of positive bag-relation
algebra. Primitive-value expressions in VG-RA (i.e., projec-
tion expressions and selection predicates) can contain a new
algebraic operator V ar(. . .), which dynamically introduce
new unique skolem symbols in Σ, deterministically derived
from the function’s parameters, which serve as labeled nulls.
These skolem symbols are not useful on their own; VG-RA
expressions are accompanied by a model that associates new
skolem symbols with probability distributions. Hence, VG-RA
can be used to define new PC-Tables.

Mimir. In prior work, we proposed the Mimir system [10],
which uses VG-RA queries to declare probabilistic constraint
repairs as views. Probability measures are constructed using
off-the-shelf machine learning tools and techniques.

Example 2: Consider the table in Figure 10a, which is
missing several values for the brand and category attributes.
Mimir defines a probabilistic repair for these missing values
as the VG-RA query:

πid←id, name←name, brand←f(brand), cat←f(cat)(Product)

Here, f denotes a validate and repair expression:

f(x) ≡ if x is null then V ar(x,ID) else x

If the value is present, is is left unchanged. If it is null, f
replaces it with a labeled null created by the skolem function
V ar(x,ROWID) — One unique variable is created for every
column and row. The value of this labeled null is given by a
model independently trained on the same data4.

The repaired tables becomes a view and can be queried
directly. A key feature of VG-RA is that any query may
be normalized into the form: πA(σφ(Q(D))), where Q(D)
is a classical, completely deterministic query and V ar op-
erators appear only in φ and A. This is not only true for
the repair views, but for queries over them as well. Thus,
to evaluate a query over a repair view, the query is first
normalized. The deterministic part Q(D) is evaluated by a
classical RDBMS, while πA and σφ are evaluated by a thin
middleware shim between the user and the database. The shim
query, FA,φ(R) ≡ πA(σφ(R)), the joint distribution over its
skolem symbols, and the results of Q(D) together form a
complete, lossless description of the distribution of possible
results. Hence Mimir’s default evaluation strategy is sufficient
for complex representations.

IV. TOWARDS INTERACTIVE PROBABILISTIC QUERIES

Supporting interactive data exploration requires rapid query
responses. As shown in Section II, even simple representations
of uncertainty can be sufficient for users to make a reasonable
choice based on the data that is available. Conversely, the
user may actually need more detailed information. In this
section we outline the design of a 2-pass query evaluation
strategy for probabilistic databases. First, a simplified form
of the full probabilistic query is run to generate a simple 1-
bit representation for immediate display to the user. Simulta-
neously in the background, the system generates a full loss-
less encoding of the result distribution, which can be used to
quickly construct supplemental details. Specifically, we outline
two new evaluation strategies, one for each pass: (1) The inline
evaluation strategy quickly produces the system’s best guess
for what the result should be and (2) The partition evaluation
strategy efficiently constructs a complete representation of the
result distribution.

4Mimir uses the popular Weka open source library for this purpose.



A. Pass 1 Strategy — Inline

During best-guess query evaluation, each labeled null is
replaced by a single, deterministic best-guess. In the simplest
case, the best-guess selection heuristic (e.g., a lookup on a
pre-trained classifier) can be embedded into the database as a
user-defined function (UDF). When this is possible, the query
can be evaluated almost unchanged by a classical database
engine by replacing all V ar terms with their matching UDF.
However, since not all DBMSes currently support program-
ming languages in-database and an alternative strategy may
be needed.

A second concern is that simply computing the best guess
result not sufficient to construct a 1-bit representation of the
uncertainty in that result. To identify which cells should be
marked, we annotate the result with an additional set of
columns marking which values are deterministic or not.

The third and final concern is linking results produced
in the best-guess analysis phase to results produced by the
second-pass evaluation run. This is accomplished by extending
the query with additional provenance attributes.

Inlining Best-Guess Values. If possible, best-guess estimates
can be inlined into the query through UDFs. However, if the
selection heuristic can not be embedded into a UDF or if the
database does not support them, a more general solution is to
materialize a table of best-guesses.

To populate the best guess tables, we simulate the execution
of the query that generates the best guesses, identifying every
variable instance used and materializing into one table for each
skolem function. When a non-deterministic query is run, all
references to V ar terms are replaced by nested lookup queries
which read the values for V ar terms from the corresponding
best guess tables. As a further optimization, the in-lined lens
query can also be pre-computed as a materialized view.

Example 3: Recall that in Example 2 a probabilistic repair
query defines a view where missing values are replaced by
labeled nulls. For instance, the missing brand of product
P123 will instantiate a null NULLbrand[′P123′]. As a pre-
processing step when this view is first created, we load
the best guess values for these nulls into a lookup table
BrandGuess(param1,value) Mentions of variables in
queries over the lens are replaced with lookups on the guess
table. A SELECT query for Product.brand would either be
inlined as

SELECT CASE WHEN p.brand IS NULL
THEN BrandGuess(ID)
ELSE p.brand END AS BRAND FROM Product

or, if UDFs are not available, it is rewritten as

SELECT CASE WHEN p.brand IS NULL THEN bg.data
ELSE p.brand END AS BRAND

FROM Product p LEFT OUTER JOIN
BrandGuess bg ON bg.param1 = p.ID,

1) Result Determinism: The 1-bit class of representations
requires that we compute, for each cell of the output, whether
it is certain or not. As an additional rewrite, we also compute
the 1-bit determinism of the row as a whole. We next describe
the process of annotating a query to track this information.

Concretely, before best guess values are inlined into a query
Q with schema sch(Q) = {ai}, we rewrite it into a new
query [[Q]]det with schema {ai, Di, φ}. Each Di is a boolean-
valued attribute that is true for rows where the corresponding
ai is deterministic. φ is a boolean-valued attribute that is true
for rows deterministically placed in the result set. We refer
to these two added sets of columns as attribute- and row-
determinism metadata, respectively. Query [[Q]]det is derived
from the input query Q by applying the operator specific
rewrite rules described below, in a top-down fashion starting
from the root operator of query Q.

Projection. The projection rewrite relies on Algorithm 1,
which rewrites columns according to the determinism of the
input. The algorithm works by recurring through an arithmetic
expression and detecting dependencies on V ar terms. A key
feature of the algorithm is the observation that non-linear
algebraic operators (∨, ∧ and CASE expressions) can remove
dependencies on non-deterministic values. For example, if the
left-hand side of a boolean and is deterministically false, the
right-hand side is irrelevant. Algorithm 1 identifies such cases
and constructs a boolean formula that is true if the algorithm
is deterministic and false otherwise. Note also that columns in
the expression are replaced by a dependency on the recursively
computed determinism of the child operator.

The rewritten projection is computed by extending the
projection’s output with determinism metadata. Attribute de-
terminism metadata is computed using the expression returned
by isDet and row determinism metadata is passed-through
unchanged from the input.

[[πai←ei(Q)]]det 7→ πai←ei,Di←isDet(ei),φ←φ([[Q]]det)

Algorithm 1 isDet(E)

In: E: An arithmetic expression that may contain V ar terms.
Out: An expression that is true when E is deterministic.

if E ∈ {R,>,⊥} then
return >

else if E is V ar then
return ⊥

else if E is Columni then
return Di

else if E is ¬E1 then
return isDet(E1)

else if E is E1 ∨ E2 then
return (E1 ∧ isDet(E1)) ∨ (E2 ∧ isDet(E2))

∨ (isDet(E1) ∧ isDet(E2))
else if E is E1 ∧ E2 then

return (¬E1 ∧ isDet(E1)) ∨ (¬E2 ∧ isDet(E2))
∨ (isDet(E1) ∧ isDet(E2))

else if E is E1 {+,−,×,÷,=, 6=, >,≥, <,≤} E2 then
return (isDet(E1) ∧ isDet(E2))

else if E is if E1 then E2 else E3 then
return isDet(E1) ∧ ( (E1 ∧ isDet(E2))

∨(¬E1 ∧ isDet(E3)) )

Selection. Like projection, the selection rewrite makes use of
isDet. The selection is extended with a projection operator
that updates the row determinism metadata if necessary.

[[σψ(Q)]]det 7→ πai←ai,Di←Di,φ←φ∧isDet(ψ)(σψ([[Q]]det))



Cross Product. Result rows in a cross product are determin-
istic if and only if both of their input rows are deterministic.
Cross products are wrapped in a projection operator that
combines the row determinism metadata of both inputs, while
leaving the remaining attributes and attribute determinism
metadata intact.

[[Q1×Q2]]det 7→ πai←ai,Di←Di,φ←φ1∧φ2([[Q1]]det×[[Q2]]det)

Union. Bag union already preserves the determinism metadata
correctly and does not need to be rewritten.

[[Q1 ∪Q2]]det 7→ [[Q1]]det ∪ [[Q2]]det

Relations. annotate each attribute and row as being deter-
ministic. During the base case of the rewrite, we annotate
each attribute and row as deterministic once we arrive at a
deterministic relation.

[[R]]det 7→ πai←ai,Di←>,φ←>(R)

Optimizations. These rewrites are quite conservative in mate-
rializing the full set of determinism metadata attributes at every
stage of the query. It is not necessary to materialize every Di

and φ if they can be computed statically based solely on each
operator’s output. For example, consider a given Di that is
data-independent, as in a deterministic relation or an attribute
defined by a V ar term. Di has the same value for every row,
and can be factored out of the query. A similar property holds
for Joins and Selections, allowing the projection enclosing the
rewritten operator to be avoided.

2) Linking the Phases: The queries evaluated by the
backend database for each of the two evaluation passes are
different. When additional information is required, it may be
necessary to link individual rows of the inlined result with the
corresponding row of the phase 2 result. This is accomplished
by adding a simple provenance marker to the query.

As the basis for provenance markers, we use an implicit,
unique per-row identifier attribute called ROWID supported by
many popular database engines. When joining two relations in
the in-lined query, their ROWIDs are concatenated (we denote
string concatenation as ◦):

Q1×Q2 7→ πai←ai,ROWID←’(’ ◦ ROWID1 ◦ ’)(’ ◦ ROWID2 ◦ ’)’(Q1×Q2)

When computing a bag union, each source relation’s ROWID
is tagged with a marker that indicates which side of the union
it came from:

Q1 ∪Q2 7→ πai←ai,ROWID←ROWID ◦ ’+1’(Q1)

∪ πaj←aj ,ROWID←ROWID ◦ ’+2’(Q2)

Selections are left unchanged, and projections are rewritten to
pass the ROWID attribute through.

In addition to linking rows of the two result sets, prove-
nance markers have another benefit. Selections for specific
result rows can be pushed down into the pass-2 query, making
it possible to obtained detailed distribution information for
just one row of the output. This process of unwrapping
the marker, summarized in Algorithm 2, illustrates how a
symmetric descent through the deterministic component of

a normal form query and a provenance marker can be used
to produce a single-row of Q′. The descent unwraps the
provenance marker, recovering the single row from each join
leaf used to compute the corresponding row of Q′.

Algorithm 2 unwrap(Q′, id)

In: Q′: The deterministic component of a VG-RA normal
form query.

In: id: A ROWID from the inlined query Q that was normal-
ized into F(Q′(D)).

Out: A query to compute row id of Q′
if Q′ is π(Q1) then

return π(unwrap(Q1, id))
else if Q′ is σ(Q1) then

return σ(unwrap(Q1, id))
else if Q′ is Q1 ×Q2 and id is (id1)(id2) then

return unwrap(Q1, id1)× unwrap(Q2, id2)
else if Q′ is Q1 ∪Q2 and id is id1+1 then

return unwrap(Q1, id1)
else if Q′ is Q1 ∪Q2 and id is id1+2 then

return unwrap(Q2, id1)
else if Q′ is R then

return σROWID=id(R)

B. Pass 2 Strategy — Partition

Most existing provenance-based evaluation strategies [13]–
[17] limit themselves to supporting finite, discrete data dis-
tributions. This is a necessary concession to efficiency, as
non-deterministic joins over data drawn from a continuous
distribution effectively devolve to cross products. However,
since time is not as pressing a concern for the background
task, our second pass can lift this restriction.

To avoid completely devolving to cross-product perfor-
mance, our second-pass query evaluation strategy is based
on the assumption that a comparatively small fraction of the
user’s data is uncertain. In this case, the backend database
can be better utilized if the query’s inputs are partitioned into
deterministic and non-deterministic segments, each computed
each independently, and unioned together at the end. For the
deterministic partition of the data, joins can be evaluated as
usual and other selection predicates can be satisfied using
indexes over the base data. Non-deterministic partitions can
be selected so that tuples in the partition share a common set
of uncertain dependencies, simplifying evaluation

In this section, in the context of a specific subquery, we
will use φi to represent a boolean expression that captures
the lineage of attributes and rows in the subquery. We use
ψi to denote the where clause for the sub-query. To par-
tition a query (Q(D)), we begin with a set of partitions,
each defined by a boolean formula ψi over attributes in
sch(Q). For each partition ψi we can simplify the selec-
tion condition φ of a query Q into a reduced form φi.
We use φ[ψi] to denote the result of propagating the im-
plications of ψi on φ. For example, (if X is null then
V ar(′X ′, ROWID) else X)[X is null] ≡ V ar(′X ′). For
a set of partitions to be used to split a query into fragments it
must be complete (

∨
ψi ≡ T ) and disjoint (∀i 6= j . φ[ψi]→

¬φ[ψj ]).



Given a set of partitions Ψ = {ψ1, . . . , ψN}, the partition
rewrite transforms the original query into an equivalent set of
partitioned queries as follows:

(F(〈 ai ← ei 〉 , φ)(Q(D)))

7→ F(〈 ai ← ei 〉 , φvar,1)(σψ1∧φdet,1
(Q(D)))

∪ · · · ∪ F(〈 ai ← ei 〉 , φvar,N )(σψN∧φdet,N
(Q(D)))

where φvar,i and φdet,i are respectively the non-deterministic
and deterministic conditions of φ (i.e., φ = φvar,i ∧ φdet,i)
for each partition. Partitioning then, consists of two stages:
(1) Obtaining a set of potential partitions Ψ from the original
condition φ, and (2) Segmenting φ into a deterministic filtering
predicate and a non-deterministic lineage component.

Algorithm 3 naivePartition(φ)

In: φ: A non-deterministic boolean expression
Out: Ψ: A set of partition conditions {ψi}
conditions← ∅
Ψ← ∅
for (if condition then α else β) ∈ subexps(φ) do
/* Check ifs in φ for candidate partition conditions */
if isDet(condition)∧ (isDet(α) 6= isDet(β)) then
conditions← conditions ∪ {condition}

/* Loop over the power-set of conditions */
for partition ∈ 2conditions do
ψi ← >
/* Conditions in the partition are true, others are false
*/
for clause ∈ conditions do

if clause ∈ partition then ψi ← ψi ∧ clause
else ψi ← ψi ∧ ¬clause

Ψ← Ψ ∪ {ψi}

Partitioning the Query.

Algorithm 3 begins with the selection predicate φ in the
shim query F(〈 ai ← ei 〉 , φ), and outputs a set of fragments
Ψ = {ψi}. Fragments are formed from the set of all possible
truth assignments to a set of candidate conditions. Candidate
conditions are obtained from if statements appearing in φ
that have deterministic conditions, and that branch between
deterministic and non-deterministic cases.

Example 4: Recall in Example 2, we generate a new C-
Table using the VG-RA query. We now issue a query:

SELECT type FROM SaneProduct
WHERE brand = ’Apple’ AND category = ’phone’

. The query has the non-deterministic condition (φ):

(if brand is null then V ar(′b′,ROWID) else brand) = ‘Apple′

∧ (if cat is null then V ar(′c′,ROWID) else cat) = ‘phone′

There are two candidate conditions in φ: brand is null
and cat is null. Thus, Algorithm 3 creates 4 par-
titions: ψ1 = (¬brand is null ∧ ¬cat is null),
ψ2 = (brand is null ∧ ¬cat is null), ψ3 =
(¬brand is null ∧ cat is null), and finally ψ4 =
(brand is null ∧ cat is null).

Segmenting φ. Using isDet from Algorithm 1, we partition
the conjunctive terms of φ[ψi] into deterministic and non-
deterministic components φi,det and φi,var, respectively so that

(φi,det ∧ φi,var) ≡ φ[ψi]

Note that Algorithm 3 may return a set of conditions that is
not disjoint. We apply an additional check for overlap before
using the output of this algorithm to partition a query.

Partitioning Complex Boolean Formulas.

We next describe a more aggressive partitioning strategy
that uses the structure of φ to create partitions where each
partition depends on exactly the same set of V ar terms. To
determine the set of partitions for each sub-query, we use a
recursive traversal through the structure of φ, as shown in in
Algorithm 4. The idea of the algorithm is that, in a fine-grained
partition, there are exactly 2N sub-queries union-ed together,
where N is the number of atoms in where clause. For each
subsets i (i from 1 to 2N ) of atoms, Algorithm 4 generates
the condition φi and the corresponding selection predicate to
select all rows having the same lineage.

Algorithm 4 generalPartition

In: φ: A non-deterministic boolean expression considered as
a tree structure, a set of atoms {ai}

Out: Ψ: A set of partitions {ψi} and corresponding conditions
{φi}
if φ is a single atom then

return
if φ.leftChild is an operator then

generalPartition(root.leftchild)
if φ.rightChild is an operator then

generalPartition(root.rightchild)
visit(φ,{ai});

The partition approach makes full use of the backend
database engine by splitting the query into deterministic and
non-deterministic fragments. The lineage of the condition
for each sub-query is simpler, and typically no longer data-
dependent. As a consequence, explanation objects can be
shared across all rows in the partition. The number of partitions
obtained with both partitioning schemes is exponential in the
number of candidate conditions. Partitions could conceivably
be combined, increasing the number of redundant tuples pro-
cessed by Mimir to create a lower-complexity query. In the
extreme, we might have only two partitions: one deterministic
and one non-deterministic. We leave the design of such a
partition optimizer to future work.

V. QUERY PERFORMANCE

In this section, we explore how specializing for narrower
representations of uncertainty can improve performance.

Mimir [10] is an existing probabilistic database framework
written in Scala. To provide an apples-to-apples comparison,
we have modified Mimir to support each of the evaluation
strategies listed above. All evaluation was performed on a 16-
core 2.6 GHz Intel Xeon with 32GB of RAM, running RHEL
6.5, Oracle Java SE 1.8, and Scala 2.10. All experiments were



Algorithm 5 visit

In: φ: A non-deterministic boolean expression considered as
a tree structure,{ai}

Out: Ψ: A set of partitions {ψi} and corresponding conditions
{φi}
if {ai} contains φ.leftChild.φi and
{ai} contains φ.rightChild.φi then
φi.combine(φ.leftChild.φi,φ.rightChild.φi);
ψi.add(φ.leftChild.ψi);
ψi.add(φ.rightChild.ψi);

else
if {ai} contains φ.leftChild.φi then
φi.add(φ.leftChild.φi);
if φ is instanceOf OR Operator then
ψi.add(NOT φ.rightChild);

if φ is instanceOf AND Operator then
ψi.add(φ.rightChild);

else
if {ai} contains φ.rightChild.φi then
φi.add(φ.rightChild.φi);
if φ is instanceOf OR Operator then
ψi.add(NOT φ.leftChild);

if φ is instanceOf AND Operator then
ψi.add(φ.leftChild);

else
ψi.add(φ);

Strategy Q1 Q2 Q3

Inline 8.2s 55.2s 9.8s
TupleBundle 85.5s 676.6s 103.3s

Partition >1hr 739.7s >1hr

Fig. 11: Evaluation Strategy Performance on PDBench

performed with a warm cache and single-threaded. As a perfor-
mance measure, we used PDBench [4], an adaptation of the
classical TPC-H [20] benchmark for probabilistic databases.
PDBench generates uncertainty in the form of functional
dependency violations throughout the seven TPC-H tables.
Our evaluation is based on the three queries specified in the
PDBench benchmark, variations of TPC-H Queries 3, 6, and
7, respectively. We used default PDBench uncertainty settings
and a Scaling Factor of 1 (1GB of raw data).

Raw data was stored as a single, bulk table rather than the
columnar representation used by PDBench. For the Customer,
Orders, Supplier, and Nation tables, we created a BTree
index on the table’s key attribute and used Mimir’s functional
dependency repair lens operator5 to repair the table’s key
attribute. We repaired and indexed the Lineitem table on a new
column of unique tuple identifiers generated by PDBench.

Our results are shown in Figure 11. Inline and Partition
denote the three algorithms described in Section III. Tuple-
Bundle denotes an approach resembling the TupleBundles of
MCDB [3] with a bundle size of 10. Times reported include
only time taken to process the query itself. We also use a
pre-processing step in which each input table is analyzed for
FD violations. Although times for this step are unreported, all

5This operator replicates the functionality of the probabilistic repair-key
operator in MayBMS

input tables completed the analysis within half an hour using
a naive implementation without optimization.

VI. RELATED WORK

Probabilistic Databases. The field of probabilistic
databases [1] explores query processing over ambiguous or
uncertain data. Numerous probabilistic database systems have
arisen, including MYSTIQ [14], Trio [15], MayBMS/Sprout
[13], [16], Pip [12], Orion 2.0 [17], MCDB [3], and Mimir [9],
[10]. Of these, only Mimir considers user interactions with
probabilistic query results, and then only informally. This
paper differentiates itself by taking user-focused approach to
the design of a probabilistic database engine.

Data Uncertainty. Uncertainty or ambiguity in data arises
in a variety of contexts. A prominent example is low-quality
data [6], [21], [22], where the emphasis is on incomplete data
curation tasks [7], [10], [23], or outliers in the data [24].
Uncertainty, incompleteness, and ambiguity have also been
explored in other data management contexts, including dis-
tributed systems [25], approximate query processing [26], [27],
semi-structured data [28], [29], querying models [30], [31], and
novel query interfaces [32], [33].

Uncertainty in Database Interfaces. Specific work from
these domains to establish the importance of visualization and
interactivity includes online aggregation (OLA) tools [8] which
presents a variety of interactions through a graphical user inter-
face, including the reading of an intuitive ”completion meter”,
access to precise statistical bounds on presented results, and the
option to halt progress at any time. More recently, several tools
have explored visualizations for expressing ambiguity in a data
set while also prioritizing interactivity and easily accessible
data provenance. Wrangler [21] is an Interactive Visual Speci-
fication of Data Transformation Types that identifies errors by
flagging inconsistent data types and inferred semantic roles.
Wrangler communicates this information by color and textual
suggestion, representing and explaining different levels of den-
igration from a complete verification. The GestureQuery [32]
system allows users to specify joins by dragging two tables
together. This initially creates an underspecified join; the
system combines a probabilistic model of join quality with
feedback about system interpretation and an easily accessible
preview of join results. MCDB [3] is a tool that uses the Monte
Carlo approach to query uncertain data. The MCDB interface
presents results through classical statistical metrics such as
expectation and standard deviation, as well as more visual
representations like histograms. Jigsaw [34] is a dashboard
for parameter-space exploration over modeled scenarios. It
generates graphical representations using box-plots and an
OLA-style progress meter, providing a visual indication of
parts of the parameter space that can be interacted with
immediately. Although these systems each employ specific
representations of uncertainty, the representations are used in
service of a different goal (e.g., quick query responses or data
cleaning interactions).

To the best of our knowledge, ours is the first effort
to explore how users are affected by perceived uncertainty
in relational data. This work extends and expands on our
preliminary study [11]. As already noted, the study presented
in this paper addresses many of the limitations of our prior



study by examining broader representation among study par-
ticipants, presenting additional representations of uncertainty,
and randomizing the presentation order.

Operations Research. Perception of uncertainty in data has
also been explored in other fields, most notably in Operations
Research [35], where decision-making must take into account
incomplete circumstantial knowledge. Efforts in this space are
often specialized and implemented at the application-layer. To
the best of our knowledge, ours is the first to explore the design
of a DBMS that incorporates the effect of uncertain data on
human interactivity.

VII. CONCLUSION

In this paper, we addressed the need for uncertain and
probabilistic data management systems to interact directly with
users. We outlined a user study that showed how users could
be convinced to incorporate uncertainty into decisions based
on imperfect data or query results. As a result of this study,
we showed that users made rational decisions more quickly
with low-bandwidth uncertainty representations like red text or
red backgrounds. In contrast to the more extensive derivation
of probability distributions performed by classical probabilistic
databases, such representations can be constructed quickly and
efficiently. We outlined and evaluated a range of strategies
for constructing low-bandwidth representations, and showed
that they can outperform classical probabilistic databases. This
work represents one of the first steps in the design of a user-
focused probabilistic database system. Future work includes
exploring interfaces other forms of uncertainty like row-level
and result incompleteness as well as interfaces for helping
users to explore, debug, and repair uncertainty in query results.
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