
TreeToaster: Towards an IVM-Optimized Compiler
Anonymous Author(s)

Abstract
A compiler’s optimizer operates over abstract syntax trees
(ASTs), continuously applying rewrite rules to replace sub-
trees of the AST with more efficient ones. Especially on large
source repositories, even simply finding opportunities for
a rewrite can be expensive, as optimizer traverses the AST
naively. In this paper, we leverage the need to repeatedly find
rewrites, and explore options for making the search faster
through indexing and incremental view maintenance (IVM).
Concretely, we consider bolt-on approaches that make use
of embedded IVM systems like DBToaster, as well as two
new approaches: Label-indexing and TreeToaster, an AST-
specialized form of IVM. We integrate these approaches into
an existing just-in-time data structure compiler and show
experimentally that TreeToaster can significantly improve
performance with minimal memory overheads.

CCSConcepts: • Information systems→Database views;
Query optimization.

Keywords: Abstract Syntax Tress, Compilers, Indexing, In-
cremental View Maintenance
ACM Reference Format:
AnonymousAuthor(s). 2021.TreeToaster: Towards an IVM-Optimized
Compiler. In Proceedings of ACM Conference (Conference’17). ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 Introduction
Typical database query optimizers, like Apache Spark’s Cat-
alyst [3] and Greenplum’s Orca [34], work with queries en-
coded as abstract syntax trees (ASTs). A tree-based encoding
makes it possible to specify optimizations as simple, compos-
able, easy-to-reason-about pattern/replacement rules. Un-
fortunately, a significant portion of the optimizer’s time is
spent simply searching the AST for nodes that match one of
these patterns. In Apache Spark (Figure 1), between 20-80%
of the optimizer’s time1 is spent finding AST nodes eligible
for rewriting2. This can be tens or even hundreds of seconds
on large queries.
In this paper, we propose TreeToaster, an compiler-

specific form of incremental view maintenance that virtually
eliminates the cost of finding nodes eligible for a rewrite. In
lieu of repeated linear scans through the AST for eligible
1The graph shows a 2𝑛-way union of 2𝑛-way joins, where n is on the x-axis.
2This is smaller in Orca, but still a significant 5-20% of the total time.

Conference’17, July 2017, Washington, DC, USA
2021. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

0 1 2 3 4 5 6 7 8
Log(AST Size)

100

101

102

103

104

T
im

e
 (

se
c)

Total Time
Total Time Rewrite
Total Time Search

Figure 1. Apache Spark Catalyst’s optimizer spends 20-80%
of its time searching for rewrites depending on AST size.

nodes, TreeToaster materializes a view for each rewrite
rule containing all nodes eligible for the rule, and incremen-
tally maintains it as the tree evolves through the optimizer.
Naively, we might implement this incremental mainte-

nance scheme by simply reducing the compiler’s pattern
matching logic to a standard relational query language, and
“bolting on” a standard database viewmaintenance system [21,
32]. This simple approach typically reduces search costs to a
(small) constant, while adding only a negligible overhead to
tree updates. However, classical view maintenance systems
come with a significant storage overhead. As we show in
this paper, TreeToaster improves on the “bolt-on” approach
by leveraging the fact that both ASTs and pattern queries
are given as trees. As we show, when the data and query
are both trees, TreeToaster achieves similar maintenance
costs without the memory overhead of caching intermediate
results (Figure 2). TreeToaster further reduces memory
overheads by taking advantage of the fact that the compiler
already maintains a copy of the AST in memory with point-
ers linking nodes together. TreeToaster combines these
compiler-specific approaches with standard techniques for
view maintenance like inlining and compiling to C++ [21]
to produce an incremental-view maintenance engine that
meets or beats state-of-the-art view maintenance systems on
AST pattern-matching workloads, while using significantly
less memory.
To best illustrate the advantages of TreeToaster, we

apply it in the context of a recently proposed Just-in-Time
Data Structure compiler [4, 18] that treats tree-based index
data structures as ASTs. Likemost AST-based optimizers, this
compiler uses pattern/replacement rules to asynchronously
identify opportunities for incremental reorganization, as in
database cracking [16] or log-structured merge trees [28].
We implement TreeToaster within JustInTimeData and
show that it virtually eliminates AST search costs — the

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Anon.

Latency

M
e
m

o
ry

Bolt-On IVM

TREETOASTER
Iterative Search

(Normal Compiler)

Figure 2. TreeToaster achieves AST pattern-matching per-
formance competitive with “bolting-on” an embedded IVM
system, but with negligible memory overhead.

(Arith, {op↦+}, ...)

(Arith, {op↦×}, ...) (Var, {name↦x}, [])

(Var, {name↦y}, [])(Const, {val↦2}, [])

Figure 3. An AST for the expression 2 * y + x

dominant cost of optimization in this system with minimal
memory overheads.

Concretely, the contributions of this paper are: (i) We for-
mally model AST pattern-matching queries and present a
technique for incrementally maintaining precomputed views
over such queries; (ii) We show how declaratively specified
rewrite rules can be further inlined into view maintenance
to further reduce maintenance costs; (iii) As a proof of con-
cept, we “bolt-on” DBToaster, an embeddable IVM system,
onto a just-in-time data-structure compiler [4, 18]. This mod-
ification dramatically improves performance, but adds sig-
nificant memory overheads; (iv) We present TreeToaster,
a novel form of IVM optimized for compiler construction.
TreeToaster that avoids the high memory overheads of
bolt-on IVM; (iv) We present experiments that show that
TreeToaster significantly outperforms “bolted-on” state-
of-the-art IVM systems and is beneficial to the just-in-time
data-structure compiler.

2 Notation and Background
In its simplest form, a typical compiler’s activities break
down into three steps: parsing, optimizing, and output.
Parsing. First, a parser converts input source code into a
structured Abstract Syntax Tree (AST) encoding the code.

Example 2.1. Figure 3 shows the AST for the expression
2 * y + x. AST nodes have labels (e.g., Arith, Var, or Const)
and attribute maps (e.g., {op ↦→ +} or {val ↦→ 2}).

We formalize an AST as a tree with labeled nodes and
annotated with zero or more attributes.

Definition 1 (Node). An Abstract Syntax Tree node 𝑁 =

(ℓ, 𝐴, 𝑁) is a 3-tuple, consisting of (i) a label ℓ drawn from an
alphabet L; (ii) annotations 𝐴 : Σ𝑀 → D, a partial map from

an alphabet of attribute names Σ𝑀 to a domain D of attribute
values; and (iii) an ordered list of children 𝑁 .

We define a leaf node (denoted isleaf(𝑁)) as a node that
has no child nodes. We assume that nodes follow a schema
S : L → 2Σ𝑀 × N; For each label (ℓ ∈ S), we fix a set
of attributes that are present in all nodes with the label
(𝑥 ∈ 2Σ𝑀), as well as an upper bound on the number of
children (𝑐 ∈ N).
Optimization. Next, the optimizer rewrites the AST, itera-
tively applying pattern-matching expressions and deriving
replacement subtrees. We note that even compilers written
in imperative languages frequently adopt a declarative style
for expressing pattern-matching conditions. For example,
ORCA [34] (written in C++) builds small ASTs to describe
pattern matching structures, while Catalyst [3] (written in
Scala) relies on Scala’s native pattern-matching syntax.

Example 2.2. A common rewrite rule for arithmetic elimi-
nates no-ops like addition to zero. For example, the subtree

(Arith, {op ↦→ +}, [(Const, {val ↦→ 0}, []),
(Var, {name ↦→ 𝑏}, [])])

can be replaced by (Var, {name ↦→ 𝑏}, []) If the optimizer
encounters a subtree with an Arith node at the root, Const
and Var nodes as children, and a 0 as the va] attribute of the
Const node; it replaces the entire subtree by the Var node.

The optimizer continues searching for subtrees matching
one of its patterns until no further matches exist (a fixed
point), or an iteration threshold or timeout is reached.
Output. Finally, the compiler uses the optimized AST as
appropriate by generating bytecode, a physical plan, etc. . . .

2.1 Pattern Matching Queries
We formalize pattern matching in the following grammar:

Definition 2 (Pattern). A pattern query 𝑞 ∈ Q is one of

Q : AnyNode | Match(L, ΣI, 𝑄,Θ)

The symbol Match(ℓ𝑞, 𝑖, 𝑄, \) indicates a structural match
that succeeds iff (i) The matched node has label ℓ𝑞 , (ii) the
children of the matched node recursively satisfy 𝑞𝑖 ∈ 𝑄 ,
and (iii) the constraint \ over the attributes of the node and
its children is satisfied. The node variable 𝑖 ∈ ΣI is used to
identify the node in subsequent use, for example to reference
the node’s attributes. The symbol AnyNode matches any
node. Figure 5 formalizes the semantics of Q.
The grammar for constraints is given in Figure 4, and

its semantics are typical. A variable atom 𝑖 .𝑥 is a 2-tuple
of a Node name (𝑖 ∈ ΣI) and an Attribute name (𝑥 ∈ Σ𝑀),
respectively, and evaluates to Γ(𝑖) (𝑥), given some scope Γ :
ΣI → Σ𝑀 → D. This grammar is expressive enough to
capture the full range of comparisons (>, ≥, ≤, <, =, <), and
so we use these freely throughout the rest of the paper.

2

TreeToaster: Towards an IVM-Optimized Compiler Conference’17, July 2017, Washington, DC, USA

Θ : atom = atom | atom < atom | Θ ∧ Θ | Θ ∨ Θ | ¬Θ | T | F
atom : const | ΣI .Σ𝑀 | atom [+,−,×,÷] atom

Figure 4. Constraint Grammar

⟦𝑞(ℓ, 𝐴, [𝑁1 . . . 𝑁𝑛])⟧ =

T, ∅ if 𝑞 = AnyNode

T, Γ if 𝑞 = Match(ℓ𝑞, 𝑖, [𝑞1 . . . 𝑞𝑛], \)
ℓ𝑞 = ℓ, \ (Γ),
⟦𝑞1 (𝑁1)⟧ = T, Γ1
. . . ⟦𝑞𝑛 (𝑁𝑛)⟧ = T, Γ𝑛,
Γ = { 𝑖 → 𝐴 } ∪⋃𝑘∈[𝑛]Γ𝑘

F, ∅ otherwise

Figure 5. Semantics for pattern queries (𝑞 ∈ Q)

Example 2.3. Returning to Example 2.2, only Arith nodes
over Const and Var nodes as children are eligible for the
simplification rule. The corresponding pattern query is:

Match(Arith, 𝐴, [Match(Const, 𝐵, [], {𝐵.val = 0}),
Match(Var,𝐶, [],T)], {𝐴.op = +})

Note the constraint on the Const match pattern; This sub-
pattern only matches a node who’s val(ue) attribute is 0.

We next formalize pattern matching over ASTs. First, we
define the descendants of a node (denoted Desc(𝑁)) to be
the set consisting of 𝑁 and its descendants:

Desc(𝑁) △= { 𝑁 }
⋃

𝑘∈[𝑛]
Desc(𝑁𝑘) s.t. 𝑁 = (ℓ, 𝐴, [𝑁1, . . . , 𝑁𝑛])

Definition 3 (Match). A match result, denoted 𝑞(𝑁), is the
subset of 𝑁 or its descendents on which 𝑞 evaluates to true.

𝑞(𝑁) △= { 𝑁 ′ | 𝑁 ′ ∈ Desc(𝑁) ∧ ∃Γ : 𝑞(𝑁 ′) = T, Γ }

Pattern Matching is Expensive. Optimization is a tight
loop in which the optimizer searches for a pattern match,
applies the corresponding rewrite rule to the matched node,
and repeats until convergence. Pattern matching typically
requires iteratively traversing the entire AST. Every applied
rewrite creates or removes opportunities for further rewrites,
necessitating repeated searches for the same pattern. Even
with intelligent scheduling of rewrites, the need for repeated
searches can not usually be eliminated outright, and as shown
in Figure 1 can take up to 80% of the optimizer’s time.

Example 2.4. Continuing the example, the optimizer would
traverse the entire AST looking for Arith nodes with the
appropriate child nodes. A depth-first traversal ensures that
any replacement happens before the optimizer checks the
parent for eligibility. However, another rewrite may intro-
duce new opportunities for simplification (e.g., by creating
new Const nodes), and the tree traversal must be repeated.

𝑅𝑞
△
=

∅ if 𝑞 = AnyNode

{ (𝑅ℓ AS 𝑖) } ⋃
𝑥 ∈[𝑛]

𝑅𝑞𝑥 if 𝑞 = Match(ℓ, 𝑖, [𝑞1, . . . , 𝑞𝑛], \)

\𝑞
△
=

T if 𝑞 = AnyNode

\
∧

𝑥 ∈[𝑛]
\𝑞𝑥 ∧ join(𝑖 .child𝑥 , 𝑞𝑥)

if 𝑞 = Match(ℓ, 𝑖, [𝑞1, . . . , 𝑞𝑛], \)

join(𝑎, 𝑞) △=
{
T if 𝑞 = AnyNode

𝑎 = 𝑖 .id if 𝑞 = Match(ℓ, 𝑖, [𝑞1, . . . , 𝑞𝑛], \)

𝑞 ≡ SELECT * FROM 𝑅𝑞 WHERE \𝑞

Figure 6. Converting a pattern𝑞 to an equivalent SQL query.

3 Bolting-On IVM for Pattern Matching
As a warm-up, we start with a simple, naive implementa-
tion of incremental view maintenance for compilers by map-
ping our pattern matching grammar to relational queries
and “bolting on” an existing system for incremental view
maintenance (IVM). Although this specific approach falls
short, it illustrates how IVM maps onto the pattern search
problem. To map the AST to a relational encoding, for
each label/schema pair ℓ → ⟨ { 𝑥1, . . . , 𝑥𝑘 } , 𝑐 ⟩ ∈ S, we
define a relation 𝑅ℓ (id, 𝑥1, . . . , 𝑥𝑘 , child1, . . . , child𝑐) with
an id field, and one field per attribute or child. Each node
𝑁 = (ℓ, 𝐴, [𝑁1, . . . , 𝑁𝑐]) is assigned a unique identifier id𝑁
and defines a row of relation 𝑅ℓ .〈

id𝑁 , 𝐴(𝑥1), . . . , 𝐴(𝑥𝑘), id𝑁1 , . . . , id𝑁𝑐

〉
A pattern 𝑞 can be reduced to an equivalent query over

the relational encoding, as shown in Figure 6. A pattern with
𝑘 Match nodes becomes a 𝑘-ary join over the relations 𝑅𝑞
corresponding to the label on each Match node. Each relation
is aliased to its node variable. Join constraints are given by
parent/child relationships, and pattern constraints transfer
directly to the WHERE clause.

Example 3.1. Continuing Example 2.2, the AST nodes are
encoded as relations: Arith(id, op, child1, child2),
Const(id, val), and Var(id, name). The corresponding
pattern match query, following the process in Figure 6 is:

SELECT * FROM Arith a, Const b, Var c

WHERE a.child1 = b.id AND a.child2 = c.id

AND a.op = '+' AND b.val = 0

3.1 Background: Incremental View Maintenance
Materialized views are used in production databases to ac-
celerate query processing. If a view is accessed repeatedly,
database systems materialize the view query 𝑄 by precom-
puting its results𝑄 (𝐷) on the database𝐷 . When the database
changes, the view must be updated to match: Given a set of
changes, Δ𝐷 (e.g., insertions or deletions), a naive approach

3

Conference’17, July 2017, Washington, DC, USA Anon.

would be to simply recompute the view on the updated data-
base 𝑄 (𝐷 + Δ𝐷). However, if Δ𝐷 is small, most of this com-
putation will be redundant. A more efficient approach is to
derive a so-called “delta query” (Δ𝑄) that computes a set of
updates to the (already available) 𝑄 (𝐷). That is, denoting
the view update operation by⇐:

𝑄 (𝐷 + Δ𝐷) ≡ 𝑄 (𝐷) ⇐ Δ𝑄 (𝐷,Δ𝐷)

Example 3.2. Recall 𝑄 (Arith, Const, Var) from the prior
example. After inserting a row 𝑐 into Const, we want:
𝑄 (Arithmetic, Const ⊎ 𝑐, Var)

= Arith ⊲⊳ (Const ⊎ 𝑐) ⊲⊳ Var
= (Arith ⊲⊳ Const ⊲⊳ Var) ⊎ (Arith ⊲⊳ 𝑐 ⊲⊳ Var)
= 𝑄 (Arith, Const, Var) ⊎ (Arith ⊲⊳ 𝑐 ⊲⊳ Var)

Instead of computing the full 3-way join, we can replace 𝑐
with a singleton and compute the cheaper query (Arith ⊲⊳

𝑐 ⊲⊳ Var), and union the result with our original materialzed
view to obtain an updated view.

The cost of Δ𝑄 (𝐷,Δ𝐷) and⇐ is generally lower than re-
running the query, making this a win when database updates
are small and infrequent. However, Δ𝑄 can still be expensive.
For larger or more frequent changes, we further reduce the
cost of computing Δ𝑄 by caching intermediate results. Ross
et. al. [32] proposed a form of cascading IVM that caches all
intermediate results in the physical plan of the view query.

Example 3.3. Continuing the example, we use the follow-
ing execution order:

(Arithmetic ⊲⊳ Var) ⊲⊳ Const
In addition to materializing 𝑄 (·), Ross’ scheme also mate-
rializes the results of 𝑄1 = (Arithmetic ⊲⊳ Var). When 𝑐

is inserted into Const, the update only requires a simple
2-way join 𝑐 ⊲⊳ 𝑄1. However, updates are now (slightly) more
expensive as multiple views may need to be updated.

Ross’ approach of caching intermediate state is analogous
to typical approaches to fixpoint computation (e.g., Differ-
ential Dataflow [24]), but penalizes updates to tables early
in the query plan. With DBToaster [21], Koch et. al. pro-
posed instead materializing all possible query plans. Counter-
intuitively, this added materialization significantly reduces
the cost of view maintenance. Although far more tables need
to be updated with every database change, the updates are
generally small and efficiently computable.

3.2 Bolting DBToaster onto a Compiler
DBToaster [21] in particular is designed for embedded use.
It compiles a set of queries down to a C++ or Scala data
structure that maintains the query results. The data struc-
ture exposes insert, delete, and update operations for each
source relation; and materializes the results of each query
into an iterable collection. One strategy for improving com-
piler performance is to make the minimum set of changes

required (i.e., “bolt-on”) to allow it to use an incremental
view maintenance data structure generated by DBToaster:

1. The reduction above generates SQL queries for each
pattern-match query used by the optimizer.

2. DBToaster builds a view maintenance data structure.
3. The compiler is instrumented to register changes in

the AST with the view maintenance data structure.
4. Iterative searches in the optimizer for candidate AST

nodes are replaced with a constant-time lookup on the
view maintenance data structure.

As we show in Section 7, this approach significantly out-
performs naive iterative AST scans. Although DBToaster
requires maintaining supplemental data structures, the over-
head of maintaining these structures is negligible compared
to the benefit of constant-time pattern match results.
Nevertheless, there are three major shortcomings to this

approach. First, DBToaster effectively maintains a shadow
copy of the entire AST — at least the subset that affects
pattern-matching results. Second, DBToaster aggressively
caches intermediate results. For example, our running ex-
ample requires materializing 2 additional view queries, and
this number grows combinatorially with the join width. Fi-
nally, DBToaster-generated view structures register updates
at the granularity of individual node insertions/deletions,
making it impossible for them to take advantage of the fact
that most rewrites follow very structured patterns. For a
relatively small number of pattern-matches, the memory use
of the compiler with a DBToaster view structure bolted in-
creases by a factor of 2.5×. Given that memory consumption
is already a pain point for large ASTs, this is not viable.
Before addressing these pain points, we first assess why

they arise. First, DBToaster-generated view maintenance
data structures are self-contained. When an insert is reg-
istered, the structure needs to preserve state for later use.
Although unnecessary fields are projected away, this still
amounts to a shadow copy of the AST. Second, DBToster has
a heavy focus on aggregate queries. Caching intermediate
state allows aggressive use of aggregation and selection push-
down into intermediate results, both reducing the amount
of state maintained and the work needed to maintain views.
Both benefits are of limited use in pattern-matching on

ASTs. Pattern matches are SPJ queries, mitigating the value
of aggregate push-down. The value of selection push-down
is mitigated by the AST’s implicit foreign key constraints:
each child has a single parent and each child attribute refer-
ences at most one child. Unlike a typical join where a single
record may join with many results, here a single node only
participates in a single join result3. This also limits the value
of materializing for the sake of cache locality.

In summary, for ASTs, the cached state is either redundant
or minimally beneficial. Thus a view maintenance scheme

3To clarify, a node may participate in multiple join results in different
positions in the pattern match, but only in one result at the same position.

4

TreeToaster: Towards an IVM-Optimized Compiler Conference’17, July 2017, Washington, DC, USA

ℓ3

ℓ2

ℓ1

Figure 7. Indexing the AST by Label

designed specifically for compilers should be able to achieve
the same benefits, but without the memory overhead.

4 Pattern Matching on a Space Budget
We have a set of patterns 𝑞1, . . . , 𝑞𝑚 and an evolving abstract
syntax tree 𝑁 . Our goal is, given some 𝑞𝑘 , to be able to ob-
tain a single, arbitrary element of the set 𝑞𝑘 (𝑁) as quickly as
possible. Furthermore, this should be possible without signif-
icant overhead as 𝑁 evolves into 𝑁 ′, 𝑁 ′′, and so forth. Recall
that there are three properties that have to hold for a node 𝑁
to match 𝑞: (i) The node and pattern labels must match, (ii)
Any recursively nested patterns must match, and (iii) The
constraint must hold over the node and its descendants.

4.1 Indexing Labels
A standard first approach to accelerating queries is indexing,
for example by building a secondary index over the node
labels, as illustrated in Figure 7. For each node label, the
index maintain a set of pointers to all nodes in the AST with
that label. Updates to the AST are propagated into the index.
Pattern match queries can use this index to scan a subset of
the AST that includes only nodes with the appropriate label,
as shown in Algorithm 1.

Algorithm 1: IndexLookup(𝑁,𝑞, Index𝑁)
Input: 𝑁 ∈ N , 𝑞 ∈ Q, Index𝑁 : ℓ → { Desc(𝑁) }
Output: 𝑁𝑚𝑎𝑡𝑐ℎ ∈ Desc(𝑁)

1 if 𝑞 = AnyNode then
2 return 𝑁𝑚𝑎𝑡𝑐ℎ ← 𝑁

3 else if 𝑞 = Match(ℓ, 𝑖, [𝑞1, . . . , 𝑞𝑛], \) then
4 for 𝑁𝑖𝑑𝑥 ∈ Index𝑁 [ℓ] do
5 if 𝑞(𝑁) = T, Γ then
6 return 𝑁𝑚𝑎𝑡𝑐ℎ ← 𝑁𝑖𝑑𝑥

Indexing the AST by node label is simple, and has a rela-
tively small memory overhead: approximately 28 bytes per
AST node using the C++ standard library unordered_set,
with significant space for improvement. Similarly, themainte-
nance overhead is low — one hash table insert and/or remove
per AST node changed.

Example 4.1. To find matches for the rule of Example 2.2,
we retrieve a list of all Arith nodes from the index and itera-
tively check each for a patternmatch. Note that this approach
only supports filtering on labels; Recursive matches and con-
straints both need to be re-checked with each iteration.

4.2 Incremental View Maintenance
While indexing works well for single-node patterns, recur-
sive patterns require a heavier-weight approach. Concretely,
when a node in the AST is updated, we need to figure out
which new pattern matches the update creates, and which
pattern matches it removes. As we saw in Section 3, this
could be accomplished by “joining” the updated node with
all of the other nodes that could participate in the pattern.
However, to compute these joins efficiently DBToaster and
similar systems need to maintain a significant amount of
supporting state: (i) The view itself, (ii) Intermediate state
needed to evaluate subqueries efficiently (iii) A shadow copy
of the AST. The insight behind TreeToaster is that the latter
two sources of state are unnecessary when the AST is already
available: (i) Subqueries (inter-node joins) reduce to pointer
chasing when the AST is available, and (ii) A shadow copy
of the AST is unnecessary if the IVM system can navigate
the AST directly.

We begin to outline TreeToaster in Section 5 by defining
IVM for immutable (functional) ASTs. This simplified form
of the IVM problem has a useful property: When a node is
updated, all of its ancestors are updated as well. Thus, we
are guaranteed that the root node of a pattern match will
be part of the change set (i.e., Δ𝐷) and can simply look for
pattern matches rooted at these nodes. We then refine the
approach to mutable ASTs, where only a subset of the tree is
updated. Then, in Section 6 we describe how declarative
specifications of rewrite rules can be used to streamline
the derivation of update sets and to eliminate unnecessary
checks. Throughout Sections 5 and 6, we focus on the case of
a single pattern query, but note that this approach generalizes
trivially to multiple patterns.

5 IVM for ASTs
We first review a generalization of multisets proposed by
Blizard [7] that allows for elements with negative multiplic-
ities. A generalized multiset M : dom(M) → Z maps a set
of elements from a domain dom(M) to an integer-valued
multiplicity. We assume finite-support for all generalized
multisets: only a finite number of elements are mapped to
non-zero multiplicities. Union on a generalized multiset, de-
noted ⊕, is defined by summing multiplicities.

(M1 ⊕M2) (𝑥)
△
= M1 (𝑥) +M2 (𝑥)

Difference, denoted ⊖, is defined analogously:

(M1 ⊖M2) (𝑥)
△
= M1 (𝑥) −M2 (𝑥)

5

Conference’17, July 2017, Washington, DC, USA Anon.

We write 𝑥 ∈ M as a shorthand forM(𝑥) ≠ 0. When combin-
ing sets and generalized multisets, we will abuse notation
and lift sets to the corresponding generalized multiset, where
each of the set’s elements is mapped to 1.
A view View𝑞 is a generalized multiset. We define the

correctness of a view relative to the root of an AST. Without
loss of generality, we assume that any node appears at most
once in any AST.

Definition 4 (View Correctness). A view View𝑞 is correct
for 𝑁 if it maps exactly the subset of 𝑁 and its descendents
that match 𝑞 to 1:

View𝑞 = {| 𝑁 ′→ 1 | 𝑁 ′ ∈ 𝑞(𝑁) |}

If we start with a view View𝑞 that is correct for the root of
an AST 𝑁 and rewrite the AST’s root to 𝑁 ′, we would like to
update the view accordingly. We assume for the moment that
we have an easy way to obtain a delta between the two ASTs:
the difference: Desc(𝑁 ′) ⊖ Desc(𝑁). This delta is generally
small for a rewrite, including only the nodes of the rewritten
subtree and their ancestors. We revisit this assumption in the
following section. Algorithm 2 shows a simple algorithm for
maintaining the View𝑞 , given a small change Δ, expressed
as a generalized multiset.

Algorithm 2: IVM(𝑞, View𝑞,Δ)
Input: 𝑞 ∈ Q, View𝑞 ∈ {| N |}, Δ ∈ {| N |}
Output: View′𝑞

1 View′𝑞 ← View𝑞
2 for 𝑁𝑖 ∈ Δ /* nodes with multiplicity ≠ 0 */

3 do
4 if 𝑞(𝑁𝑖) = T, Γ then
5 View′𝑞 ← View′𝑞 ⊕ {| 𝑁𝑖 → Δ(𝑁𝑖) |}

Example 5.1. Consider the AST of Figure 3, which contains
five nodes, and our ongoing example rule. Let us assume
that the left subtree is replaced by Const(0) (e.g., if Var(y)
is resolved to 0). The multiset of the corresponding delta is:

{| (Const, {val ↦→ 0}, []) ↦→ 1, (Arith, {op ↦→ +}, [. . .]) ↦→ 1,
(Const, {val ↦→ 2}, []) ↦→ −1, (Var, {name ↦→ y}, []) ↦→ −1,

(Arith, {op ↦→ ×}, [. . .]) ↦→ −1 |}

Only one of the nodes with nonzero multiplicities matches,
making the update: {| (Arith, {op ↦→ +}, [. . .]) ↦→ 1 |}

For Algorithm 2 to be correct, we need to show that it
computes exactly the update to View𝑞 .

Lemma 5.2 (Correctness of IVM). Given two ASTs 𝑁 and 𝑁 ′

and assuming that View𝑞 is correct for 𝑁 , then the generalized
multiset returned by IVM(𝑞, View𝑞, Desc(𝑁 ′) ⊖ Desc(𝑁)) is
correct for 𝑁 ′.

Proof Sketch.We examine the multiplicity of each node 𝑁 ′′
over different cases of 𝑁 ′′ ∈ Desc(𝑁), 𝑁 ′′ ∈ Desc(𝑁 ′)
and 𝑞(𝑁 ′′) = T/F, Γ and show equivalence between the
incrementally maintained and naively recomputed view. If
𝑞(𝑁 ′′) = F, Γ then the multiplicity remains unchanged for
node 𝑁 ′′. Otherwise, The condition on line 2 would apply
and the multiplicity gets recalculated according to line 3.
The full proof appears in an associated tech report.

5.1 Mutable Abstract Syntax Trees
Although correct, IVM assumes that the AST is immutable:
When a node changes, each of its ancestors must be updated
to reference the new node as well. Even when TreeToaster
is built into a compiler with immutable ASTs, many of these
pattern matches will be redundant. By lifting this restriction
(if in spirit only), we can decrease the overhead of view
maintenance by reducing the number of nodes that need
to be checked with each AST update. To begin, we create
a notational distinction between the root node 𝑁 and the
node being replaced 𝑅. For clarity of presentation, we again
assume that any node 𝑅 occurs at most once in 𝑁 . 𝑁 [𝑅\𝑅′]
is the node resulting from a replacement of 𝑅 with 𝑅′ in 𝑁 :

𝑁 [𝑅\𝑅′] =

𝑅′ if 𝑁 = 𝑅

(ℓ, 𝐴, [𝑁1 [𝑅\𝑅′], . . . , 𝑁𝑛 [𝑅\𝑅′]])
if 𝑁 = (ℓ, 𝐴, [𝑁1, . . . , 𝑁𝑛])

We also lift this notation to collections:

View [𝑅\𝑅′] = {| 𝑁 [𝑅\𝑅′] → 𝑐 | (𝑁 → 𝑐) ∈ View |}

We emphasize that although this notationmodifies each node
individually, this complexity appears only in the analysis.
The underlying effect being modeled is a single pointer swap.

Example 5.3. The replacement of Example 5.1 is written:

𝑁 [(Arith, {op ↦→ ×}, [. . .]) \ (Const, {val ↦→ 0}, [])]

In the mutable model, the root node itself does not change.

Definition 5 (Pattern Depth). The depth 𝐷 (𝑞) of a pattern 𝑞
is the number of edges along the longest downward path from
root of the pattern to an arbitrary pattern node 𝑞𝑖 .

𝐷 (𝑞) =

0 if 𝑞 = AnyNode

1 +𝑚𝑎𝑥
𝑖∈[𝑛]
(𝐷 (𝑞𝑖)) if 𝑞 = Match(ℓ, 𝑖, [𝑞1, . . . , 𝑞𝑛], \)

The challenge posed by mutable ASTs is that the modified
node may make one of its ancestors eligible for a pattern-
match. However, as we will show, only a bounded number of
ancestors are required. Denote by Ancestor𝑖 (𝑁) the 𝑖th an-
cestor of 𝑁 4. The maximal search set, which we now define,
includes all nodes that need to be checked for matches.
4We note that ASTs do not generally include ancestor pointers. The ancestor
may be derived by maintaining a map of node parents, or by extending the
AST definition with parent pointers.

6

TreeToaster: Towards an IVM-Optimized Compiler Conference’17, July 2017, Washington, DC, USA

Definition 6 (Maximal Search Set). Let 𝑅 and 𝑅′ be an ar-
bitrary node in the AST and its replacement. The maximal
search set for 𝑅 and 𝑅′ and pattern 𝑞, ⌈𝑅, 𝑅′⌉𝑞 is the difference
between the generalized multiset of the respective nodes, their
descendents, and their ancestors up to a height of 𝐷 (𝑞).

⌈𝑅, 𝑅′⌉𝑞
△
= Desc(𝑅) ⊕ {| Ancestor𝑖 (𝑅) → 1 | 𝑖 ∈ [𝑛] |}
⊖ Desc(𝑅′) ⊖

{�� Ancestor𝑖 (𝑅′) → 1 | 𝑖 ∈ [𝑛]
��}

Lemma 5.4. Let 𝑁 be the root of an AST, 𝑞 be a pattern, and
𝑅 and 𝑅′ be an arbitrary node in the AST and its replacement.
If View𝑞 is correct for 𝑁 . and View′𝑞 = IVM(𝑞, View𝑞, ⌈𝑅, 𝑅′⌉𝑞),
then View′𝑞 [𝑅\𝑅′] is correct for 𝑁 [𝑅\𝑅′]

Proof Sketch. Shown by building on the proof of Lemma 5.2
with a recursive proof that changing a subtree can not affect
the matchability of a node more than 𝐷 (𝑞) ancestors above.

Example 5.5. The pattern depth of our running example is
1. Continuing the prior example, only the node, its 1-ancestor
(i.e., parent), and the 1-descendents (i.e., children) of the re-
placement node would need to be examined for view updates.

6 Inlining into Rewrite Rules
Algorithm 2 takes the set of changed nodes as an input. In
principle, this information could be obtained by manually in-
strumenting the compiler to record node insertions, updates,
and deletions. However, many rewrite rules are structured:
The rule replaces exactly the matched set of nodes with a
new subtree. Unmodified descendants are re-used as-is, and
with mutable ASTs a subset of the ancestors of the modified
node are re-used as well. TreeToaster provides a declar-
ative language for specifying the output of rewrite rules.
This language serves two purposes. In addition to making it
easier to instrument node changes for TreeToaster, declar-
atively specifying updates opens up several opportunities for
inlining-style optimizations to the view maintenance system.
The declarative node generator grammar follows:

G : Gen(L, atom, G) | Reuse(ΣI)
A Gen term indicates the creation of a new node with the
specified label, attributes, and children. Attribute values are
populated according to a provided attribute scope Γ : ΣI →
Σ𝑀 → D. A Reuse term indicates the re-use of a subtree from
the previous AST, provided by a node scope ` : ΣI → N .
Node generators are evaluated by the ⟦·⟧Γ,` : G → N
operator, defined as follows:

⟦𝑔⟧Γ,` =

` (𝑖) if 𝑔 = Reuse(𝑖)
(ℓ, {𝑎1 (Γ), . . . , 𝑎𝑘 (Γ)}, ⟦𝑔1⟧Γ,` , . . . , ⟦𝑔𝑛⟧Γ,`)

if 𝑔 = Gen(ℓ, [𝑎1, . . . , 𝑎𝑘], [𝑔1, . . . , 𝑔𝑛])

A declaratively specified rewrite rule is given by a 2-tuple:
⟨ 𝑞,𝑔 ⟩ ∈ Q × G, a match pattern describing the nodes to
be removed from the tree, and a corresponding generator
describing the nodes to be re-inserted into the tree. As a
simplification for clarity of presentation, we require that

Reuse nodes reference nodes matched by AnyNodepatterns.
Define the set of matched node pairs as the set

pair(𝑞, 𝑅) = { ⟨ 𝑞, 𝑅 ⟩ } ∪ . . .

. . .

{ ⟨ AnyNode, 𝑅 ⟩ } if 𝑞 = AnyNode⋃
𝑘∈[𝑛]

pair(𝑞𝑘 , 𝑁𝑘) if 𝑞 = Match(ℓ, 𝑥, [𝑞1, . . . , 𝑞𝑛], \)
𝑅 = (ℓ, 𝐴, [𝑁1, . . . , 𝑁𝑛])

A set of generated node pairs pair(𝑔, Γ, `) is defined analo-
gously relative to the node ⟦𝑔⟧Γ,`
Definition 7 (Safe Generators). Let 𝑁 be an AST root, 𝑞 be
a pattern query, and 𝑅 ∈ 𝑞(𝑁) be a node of the AST matching
the pattern. We call a generator 𝑔 ∈ G safe for ⟨ 𝑞, 𝑅 ⟩ iff 𝑔

reuses exactly the wildcard matches of 𝑞. Formally:

⟨ AnyNode, 𝑁 ⟩ ∈ pair(𝑞, 𝑅) ⇔ ⟨ Reuse(𝑁), 𝑁 ⟩ ∈ pair(𝑔, Γ, `)

Let 𝑔 ∈ G be a generator that is safe for ⟨𝑚,𝑅 ⟩, where
𝑚 ∈ Q is a pattern. The mutable update delta from 𝑁 to
𝑁 [𝑅\⟦𝑔⟧Γ,`] is:

Δ = {| 𝑁 ′→ 1 | ⟨ 𝑔′, 𝑁 ′ ⟩ ∈ pair(𝑔, Γ, `) |} ⊖
{| 𝑁 ′→ 1 | ⟨ 𝑞′, 𝑁 ′ ⟩ ∈ pair(𝑚,𝑅) |}

Note that the size of this delta is linear in the size of 𝑔 and𝑚.

6.1 Inlining Optimizations
Up to now, we have assumed that no information about
the nodes in the update delta is available at compile time.
For declarative rewrite rules, we are no longer subject to
this restriction. The labels and structure of the nodes being
removed and those being added are known at compile time.
This allows TreeToaster to generate more efficient code by
eliminating impossible pattern matches.

Algorithm 3: Inline𝑔𝑒𝑛 (𝑞,𝑔)
Input: 𝑞 ∈ Q, 𝑔 ∈ G
Output: 𝑓 : N ↦→ { N }

1 if 𝑞 = AnyNode ∨ 𝑔 = Reuse(`) then
2 𝑓 ′← (𝑁 ↦→ { 𝑁 })
3 else if 𝑞 = Match(ℓ, 𝑖, [𝑞1, . . . , 𝑞𝑛], \) then
4 𝑔 = Gen(ℓ ′, 𝑖 ′, [𝑔1, . . . , 𝑔𝑛]);
5 if Align0 (𝑞,𝑔) then
6 𝑓 ′′← (𝑁 ↦→ { 𝑁 })
7 else
8 𝑓 ′′← (𝑁 ↦→ ∅)
9 for 𝑖 ∈ [𝑛] do
10 𝑓𝑖 ← Inline𝑔𝑒𝑛 (𝑞,𝑔𝑖)
11 𝑓 ′← (𝑁 ↦→ 𝑓 ′′(𝑁) ∪⋃𝑖∈[𝑛] 𝑓𝑖 (𝑁)
12 A = { 𝑖 | 𝑖 ∈ [𝐷 (𝑞)] ∧ Align𝑖 (𝑞,𝑔) };
13 𝑓 ← (𝑁 ↦→ 𝑓 ′(𝑁) ∪ { Ancestor𝑖 (𝑁) | 𝑖 ∈ A }

The process of elimination is outlined for generated nodes
in Algorithm 3. A virtually identical process is used for

7

Conference’17, July 2017, Washington, DC, USA Anon.

matching removed nodes. The algorithm outputs an func-
tion that, given the generated replacement node (i.e., ⟦𝑔⟧Γ,`)
that is not available until runtime, returns the set of nodes
that could match the provided pattern. Matching only hap-
pens by label, as attribute values are also not available until
runtime. If the pattern matches anything or if the node is re-
used (i.e., its label is not known until runtime), the node is a
candidate for pattern match (Lines 1-2). Otherwise, the algo-
rithm proceeds in two stages. It checks if a newly generated
node can be the root of a pattern by recursively descending
through the generator (Lines 3-11). Finally, it checks if any
of the node’s ancestors (up to the depth of the pattern) could
be the root of a pattern match by recursively descending
through the pattern to see if the root of the generated node
could match (Lines 12-13). On lines 5 and 12, Algorithm 3
makes use of a recursive helper function: Align. In the base
case Align0 checks if the input pattern and generator align –
whether they have equivalent labels at equivalent positions.

Align0 (𝑞,𝑔) =

T if 𝑞 = AnyNode ∨ 𝑔 = Reuse(`)
F if 𝑞 = Match(ℓ,𝐴, [. . .], \)

𝑔 = Gen(ℓ′, 𝑖, [. . .]) ∧ ℓ ≠ ℓ′

∀𝑘 : Align0 (𝑞𝑘 , 𝑔𝑘) if 𝑞 = Match(ℓ,𝐴, [. . .], \)
𝑔 = Gen(ℓ, 𝑖, [. . .])

The recursive case Align𝑑 checks for the existence an align-
ment among the 𝑑th level descendants of the input pattern.

Align𝑑 (𝑞,𝑔) = ∃𝑘 : Align𝑑−1 (𝑞𝑘 , 𝑔)

Example 6.1. Continuing the running example, only the
Var node appears in both the pattern and replacement. Thus,
when a replacement is applied we need only check the parent
of a replaced node for new view updates.

7 Evaluation
To evaluate TreeToaster, we incorporated four IVM mech-
anisms into the JustInTimeData [4, 5] compiler, a JIT com-
piler for data structures built around a complex AST that
can adapt at runtime. The JustInTimeData compiler nat-
urally works with large ASTs and requires low latencies,
making it a compelling use case. As such JustInTimeData’s
provide an infrastructure to test TreeToaster. Our tests
compare: (i) The JustInTimeData compiler’s existingNaive
iteration-based optimizer, (ii) Indexing labels, as proposed
in Section 4.1, (iii) Classical incremental view maintenance
implemented by bolting on a view maintenance data struc-
ture created by DBToaster with the –depth=1 flag, (iv)
DBToaster’s full recursive view maintenance bolted onto
the compiler, and (v) TreeToaster (TT)’s view maintenance
built into the compiler.
Our experiments confirm the following claims: (i) Tree-

Toaster significantly outperforms JustInTimeData’s naive
iteration-based optimizer, (ii) TreeToaster matches or out-
performs bolt-on IVM systems, while consiming significantly
less memory, (iii) On complex workloads, TreeToaster’s
view maintenance latency is half of bolt-on approaches,

YCSB Workload A-F

Evaluation Module

AST

View Materialization View Maintenance

View Structure

{Select, Insert, Update}

{Insert(), Remove()} methods

Select 1 in View {Insert, Delete} row

{Naive, Set, Classic
DBT, TreeToaster}

{Set, Classic, DBT,
TreeToaster}

Figure 8. Benchmark Infrastructure

7.1 Workload
To evaluate TreeToaster, we rely on a benchmark workload
created by JustInTimeData [5, 19], an index designed like
a just-in-time compiler. JustInTimeData’s underlying data
structure is modeled after an AST, allowing a JIT runtime
to incrementally and asynchronously rewrite it in the back-
ground using pattern-replacement rules [4] to support more
efficient reads. Data is organized through 5 node types that
closely mimic the building blocks of typical index structures:

(Array, data:Seq[<key:Int,value:Int>], ∅)
(Singleton, data:<key:Int,value:Int>, ∅)
(DeleteSingleton, key:Int, 𝑁1)
(Concat, ∅, 𝑁1, 𝑁2)
(BinTree, sep:Int, 𝑁1, 𝑁2)

JustInTimeDatawas configured to use five pattern-replacement
rules that cause it to mimic Database Cracking [16] incre-
mentally building a tree, while pushing updates (Singleton
and DeleteSingleton respectively) down into the tree.
CrackArray: This rule matches Array nodes and partitions
them on a randomly selected pivot sep ∈ data.
Match(Array, [data], ∅,T) → Gen(BinTree, [sep], [

Gen(Array, [{ 𝑥 | 𝑥 .key < sep }], []),
Gen(Array, [{ 𝑥 | 𝑥 .key ≥ sep }], []),])

PushDownSingletonBtreeLeft/Right: These rules push
Singleton nodes down into BinTree depending on the separator.

Match(Concat,𝐶, [Match(BinTree, 𝐵, 𝑞1, 𝑞2, ∅),
Match(Singleton, 𝑆, ∅, ∅)], 𝑆 .key < sep) →

Gen(BinTree, [sep], [Gen(Concat, [], [
Reuse(𝑞1), Reuse(𝑆),]), Reuse(𝑞2),])

PushDownSingletonBtreeRight is defined analogously.
PushDownDeleteSingletonBtreeLeft/Right: These rules
push DeleteSingleton nodes depending on the separator
and are defined analogously to PushDownSingletonBtreeLeft.

Although these rewrite rules appear relatively simple,
their pattern structures are representative of the vast major-
ity of optimizer in both Apache Spark [3] and ORCA [34].

8

TreeToaster: Towards an IVM-Optimized Compiler Conference’17, July 2017, Washington, DC, USA

 PushDownDontDelete
 SingletonBtreeRight

NaiveIndexClassicDBT TT
 PushDownDontDelete

 SingeltonBtreeLeft

NaiveIndexClassicDBT TT
 PushDownSingletonRight

NaiveIndexClassicDBT TT
 PushDownSingletonLeft

NaiveIndexClassicDBT TT
 CrackArray

NaiveIndexClassicDBT TT
0

10000

20000

30000

40000

50000
Se

ar
ch

 L
at

en
cy

(C
PU

 t
ic

ks
)

(a)Workload A

 PushDownDontDelete
 SingletonBtreeRight

NaiveIndexClassicDBT TT
 PushDownDontDelete

 SingeltonBtreeLeft

NaiveIndexClassicDBT TT
 PushDownSingletonRight

NaiveIndexClassicDBT TT
 PushDownSingletonLeft

NaiveIndexClassicDBT TT
 CrackArray

NaiveIndexClassicDBT TT
0

10000

20000

30000

40000

50000

Se
ar

ch
 L

at
en

cy
(C

PU
 t

ic
ks

)

(b) Workload B

 PushDownDontDelete
 SingletonBtreeRight

NaiveIndexClassicDBT TT
 PushDownDontDelete

 SingeltonBtreeLeft

NaiveIndexClassicDBT TT
 PushDownSingletonRight

NaiveIndexClassicDBT TT
 PushDownSingletonLeft

NaiveIndexClassicDBT TT
 CrackArray

NaiveIndexClassicDBT TT
0

10000

20000

30000

40000

50000

Se
ar

ch
 L

at
en

cy
(C

PU
 t

ic
ks

)

(c) Workload C

 PushDownDontDelete
 SingletonBtreeRight

NaiveIndexClassicDBT TT
 PushDownDontDelete

 SingeltonBtreeLeft

NaiveIndexClassicDBT TT
 PushDownSingletonRight

NaiveIndexClassicDBT TT
 PushDownSingletonLeft

NaiveIndexClassicDBT TT
 CrackArray

NaiveIndexClassicDBT TT
0

10000

20000

30000

40000

50000

Se
ar

ch
 L

at
en

cy
(C

PU
 t

ic
ks

)

(d)Workload D

 PushDownDontDelete
 SingletonBtreeRight

NaiveIndexClassicDBT TT
 PushDownDontDelete

 SingeltonBtreeLeft

NaiveIndexClassicDBT TT
 PushDownSingletonRight

NaiveIndexClassicDBT TT
 PushDownSingletonLeft

NaiveIndexClassicDBT TT
 CrackArray

NaiveIndexClassicDBT TT
0

10000

20000

30000

40000

50000

Se
ar

ch
 L

at
en

cy
(C

PU
 t

ic
ks

)

(e)Workload F

Figure 9. Relative Average Search Technique Performance by Rewrite Rule

9

Conference’17, July 2017, Washington, DC, USA Anon.

 PushDownDontDelete
 SingletonBtreeRight

Index ClassicDBT TT
 PushDownDontDelete

 SingeltonBtreeLeft

Index ClassicDBT TT
 PushDown

 SingletonRight

Index ClassicDBT TT
 PushDown

 SingletonLeft

Index ClassicDBT TT
 CrackArray

Index ClassicDBT TT
0

5000

10000

15000

20000

O
pe

ra
ti

on
 la

te
nc

y
(C

PU
 t

ic
ks

)

(a)Workload A

 PushDownDontDelete
 SingletonBtreeRight

Index ClassicDBT TT
 PushDownDontDelete

 SingeltonBtreeLeft

Index ClassicDBT TT
 PushDown

 SingletonRight

Index ClassicDBT TT
 PushDown

 SingletonLeft

Index ClassicDBT TT
 CrackArray

Index ClassicDBT TT
0

5000

10000

15000

20000

O
pe

ra
ti

on
 la

te
nc

y
(C

PU
 t

ic
ks

)

(b) Workload B

 PushDownDontDelete
 SingletonBtreeRight

Index ClassicDBT TT
 PushDownDontDelete

 SingeltonBtreeLeft

Index ClassicDBT TT
 PushDown

 SingletonRight

Index ClassicDBT TT
 PushDown

 SingletonLeft

Index ClassicDBT TT
 CrackArray

Index ClassicDBT TT
0

5000

10000

15000

20000

O
pe

ra
ti

on
 la

te
nc

y
(C

PU
 t

ic
ks

)

N/A -- Workload C has no delete or singleton operations

(c) Workload C

 PushDownDontDelete
 SingletonBtreeRight

Index ClassicDBT TT
 PushDownDontDelete

 SingeltonBtreeLeft

Index ClassicDBT TT
 PushDown

 SingletonRight

Index ClassicDBT TT
 PushDown

 SingletonLeft

Index ClassicDBT TT
 CrackArray

Index ClassicDBT TT
0

5000

10000

15000

20000

O
pe

ra
ti

on
 la

te
nc

y
(C

PU
 t

ic
ks

)

N/A -- Workload D has no delete operations

(d)Workload D

 PushDownDontDelete
 SingletonBtreeRight

Index ClassicDBT TT
 PushDownDontDelete

 SingeltonBtreeLeft

Index ClassicDBT TT
 PushDown

 SingletonRight

Index ClassicDBT TT
 PushDown

 SingletonLeft

Index ClassicDBT TT
 CrackArray

Index ClassicDBT TT
0

5000

10000

15000

20000

O
pe

ra
ti

on
 la

te
nc

y
(C

PU
 t

ic
ks

)

(e)Workload F

Figure 10. Relative Total Maintenance Cost by Rewrite Rule

10

TreeToaster: Towards an IVM-Optimized Compiler Conference’17, July 2017, Washington, DC, USA

0 2000 4000 6000 8000 10000 12000 14000
Average total latency (search + maintenance)

0

10000

20000

30000

40000

50000

60000

70000

80000

Av
er

ag
e

m
em

or
y

pa
ge

s
al

lo
ca

te
d

Latency / Memory Crossplot
Naive
Set
Classic
DBT
TT
Workload A
Workload B
Workload C
Workload D
Workload F

Figure 11. Total Latency (search cost + maintenance opera-
tions) and Memory Use, by method and node type

7.2 Data Gathering and Measurement
We instrumented JustInTimeData to collect updates to AST
nodes as instantiations (insert()) and garbage collections
(remove()) operations. To vary the distribution of optimiza-
tion opportunities we used each of the six baseline YCSB [11]
benchmark workloads as input to JustInTimeData. Each
workload exercises a different set of node operations, result-
ing in ASTs composed of different node structures, patterns,
and the applicability of different rewrite rules. To facilitate
our experimental comparison we built a testing module in
C++, allowing us to replace JustInTimeData’s naive tree
traversal with each the view maintenance schemes described
above for an apples-to-apples comparison. Figure 8 illustrates
the benchmark generation process.

Views forTreeToaster and label indexingwere generated
by declarative specification as described in Section 6 and
views for DBToaster were generated by hand, translating
rules to equivalent SQL as described in Section 2.

For data gathering we instrument TreeToaster to collect
in-structure information pertaining to view materialization
and maintenance: the time required to identify potential
JustInTimeData transform operations (rows in the mate-
rialized views), and the time to perform view maintenance
operations upon each structure reorganization step. The test
harness also records database operation latency and process
memory usage, as reported by the Linux /proc interface. To
summarize, we measure performance along three axes: (i)
Time spent finding a pattern match, (ii) Time spent maintain-
ing support structures (if any), and (iii) Memory allocated.

7.3 Evaluation
As noted in Section 7.1, JustInTimeData is configured to use
5 representative rewrite rules. Detailed results are grouped by
the triggering rule. Each combination was run 10 times, with
the search and operation results aggregated. We obtained

 Workload A

Index
Classic

DBT
TT

 Workload B

Index
Classic

DBT
TT

 Workload C

Index
Classic

DBT
TT

 Workload D

Index
Classic

DBT
TT

 Workload F

Index
Classic

DBT
TT

Maintenance type and workload

0

20000

40000

60000

80000

100000

Av
er

ag
e

m
em

or
y

pa
ge

s
al

lo
ca

te
d

Average Process Memory Usage By Workload

Figure 12. Average Process Memory Usage Summary.

 Workload A

Index
Classic

DBT
TT

 Workload B

Index
Classic

DBT
TT

 Workload C

Index
Classic

DBT
TT

 Workload D

Index
Classic

DBT
TT

 Workload F

Index
Classic

DBT
TT

Maintenance type and workload

0

2000

4000

6000

8000

10000

Av
er

ag
e

Vi
ew

O
pe

ra
ti

on
 L

at
en

cy

Average View Operation Latency By Workload

Figure 13. Average IVM operation performance Summary.

our results on a server running Ubuntu 16.04.06 LTS with
192GB RAM and 24 core Xeon 2.50GHz processors.

7.4 Results
We first evaluate how IVM performs relative to other meth-
ods of identifying target nodes in tree structure views. To do
so, we compare the latency in identifying potential nodes (i.e.
materializing views) using the 5 methods described above.
Figure 9 shows results obtained for several YCSB work-

loads using 300M keys. There were 5 sets of views that were
materialized, representing target nodes in the underlying
tree structure, which were candidates for each of 5 structure
reorganization transforms (e.g. CrackArray). The 5 boxplot
clusters compare the relative average performance of identi-
fying 1 such node, using each of our 5 identification methods
(e.g. Naive, Index). In each case, the naive search approach
exhibits the worst performance. The label index approach
also yields worse results than either of the IVM approaches.
For identifying target nodes (i.e. emitting 1 row in the view),
we thus conclude that an IVM approach performs better.

We compare TreeToaster to IVM alternatives, including
label indexing as well as a classic IVM system and a hash-
based IVM implemented using DBToaster. Figure 11 shows
the results for different loads using 300M keys. For each sys-
tem, the graph shows both memory and overall performance,
in terms of the combined access latency and search costs per

11

Conference’17, July 2017, Washington, DC, USA Anon.

optimizer iteration. TreeToaster easily outperforms naive
iteration and has an advantage over the label index, with only
a slight memory penalty relative to the former. It slightly
outperforms DBToaster in general, but the total system
memory for TreeToaster is less than half of DBToaster.

Figure 10 shows the average total latency spent searching
for a target node for a JustInTimeData reorganization step,
plus all maintenance steps in the reorganization, for each
of the 4 IVM target node identification methods. While the
label index approach starts off well (loads B and D, contain-
ing 5% writes), it scales poorly. Under increased pressure
(write heavy loads A and F), average total time was signifi-
cantly worse than that of TreeToaster. Figure 10 also shows
that, in terms of total cost, TreeToaster outperforms the
reference platforms: slightly better than classic IVM, and
significantly better than of DBToaster IVM.
Finally, we want to measure the importance of differing

approaches on systemmemory usage. Figure 12 shows the av-
eragememory usage in pages. For all themethods used, mem-
ory footprint did not change appreciably across time within
each run. There was a small inter-run variance. Comparing
across materialization and maintenance methods, both clas-
sic IVM and DBToaster IVM exhibited significantly greater
memory consumption – an expected result due to its strat-
egy of maintaining large pre-computed tables. Despite using
significantly less memory to optimize performance, Tree-
Toaster performs as well as if not significantly better than
these 2 alternatives. Figure 13 shows an aggregate summary
across all workloads. Overall, TreeToaster offers a mini-
mum bound of both memory and latency to IVM across our
evaluated alternatives.

8 Related Work
TreeToaster builds on decades of work in Incremental View
Maintenance (IVM)— See [10] for a survey. The area has been
extensively studied, with techniques developed for incremen-
tal maintenance support for of a wide range of data mod-
els [6, 9, 32, 38] and query language features [17, 20, 23, 30].
Particularly notable are techniques that obtain perfor-

mance gains through different forms of dynamic program-
ming [21, 24, 32, 39]. Ross et. al. [32] propose materializing
the set of intermediate relations in the query plan, while
Koch et. al [21] propose materializing the set of intermediate
relations for all possible query plans. A key feature of both
approaches is computing the mininmal update – or slice –
of the query result, an idea also at the root of systems like
Differential Dataflow [24]. Both approaches show signifi-
cant performance gains on general queries. However as we
previously discussed, the sources of these gains: selection-
pushdown, aggregate-pushdown, and cache locality are all
less relevant in the context of abstract syntax trees. Similarly-
spirited approaches can be found in other contexts, including
graphical inference [39], and fixed point computations [24].

Also relevant is the idea of embedding query processing
logic into a compiled application [2, 15, 21, 25, 27, 29, 31, 33].
Systems like BerkeleyDB, SQLite, and DuckDB embed full
query processing logic, while systems like DBToaster [2, 21,
27] and LinQ [25] compile queries along with the application,
making it possible to generate native code optimized for the
application. Most notably, this makes it possible to aggres-
sively inline SQL and imperative logic, often avoiding the
need for boxing, expensive VM transitions for user-defined
functions, and more [25, 33, 37]. Major database engines
have also recently been extended to compile queries to na-
tive code [8, 12, 26], albeit at query compile time.

To our knowledge, IVM over Abstract Syntax Trees specif-
ically has not been studied directly. A related effort, the
Cascades framework [14] considers streamlined approaches
to scheduling rule application, a strategy that is used by
the Orca [34] compiler. There are also several related ef-
forts in the more general category of IVM for general tree
and graph query languages and data models like XPath [13],
Cypher [35, 36], and the Nested Relational Calculus [22].
These schemes address recursion, with which join widths
are no longer bounded; as well as aggregates without an
abelian group representation (e.g., min/max), for which sup-
porting deletion efficiently is more difficult.
However, two approaches aimed at the object exchange

model [1, 40], are very closely related to our own approach.
One approach proposed by Abiteboul et. al. [1] first deter-
mines the potential positions at which an update could affect
a view and then uses the update to recompute the remain-
ing query fragments. However, its more expressive query
language limits optimization opportunities, creating situa-
tions where it may be faster to simply recompute the view
query from scratch. The other approach proposed by Zhuge
and Molina [40] follows a similar model to our immutable
IVM scheme, enforcing pattern matches on ancestors by
recursively triggering shadow updates to all ancestors.

9 Conclusion
In this paperwe introduce a formalizedmechanism for pattern-
matching queries over ASTs and IVM over such queries. Our
realization of the theory in the just-in-time data-structure
compiler highlights the viability of our system as compared
to tradition IVM approaches.

Our future work includes extending our approach to work
with graphs. This will allow for recursive pattern matches
and efficient IVM over graph structures. This is particularly
interesting for traditional compilers as there exist many opti-
mizations that rely on fixed-points while traversing control-
flow graphs. Similarly, we plan on integrating our approach
into compiler, like GCC, which provides a number of AST
based optimization passes.

12

TreeToaster: Towards an IVM-Optimized Compiler Conference’17, July 2017, Washington, DC, USA

References
[1] Serge Abiteboul, Jason McHugh, Michael Rys, Vasilis Vassalos, and

Janet L.Wiener. 1998. Incremental Maintenance forMaterialized Views
over Semistructured Data. In VLDB. Morgan Kaufmann, 38–49.

[2] Yanif Ahmad, Oliver Kennedy, Christoph Koch, andMilos Nikolic. 2012.
Dbtoaster: Higher-order delta processing for dynamic, frequently fresh
views. arXiv preprint arXiv:1207.0137 (2012).

[3] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu,
Joseph K. Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin,
Ali Ghodsi, and Matei Zaharia. 2015. Spark SQL: Relational Data
Processing in Spark. In SIGMOD Conference. ACM, 1383–1394.

[4] Darshana Balakrishnan, Lukasz Ziarek, and Oliver Kennedy. 2019.
Fluid data structures. In DBPL. ACM, 3–17.

[5] Darshana Balakrishnan, Lukasz Ziarek, and Oliver Kennedy. 2019. Just-
in-Time Index Compilation. arXiv preprint arXiv:1901.07627 (2019).

[6] José A. Blakeley, Per-Åke Larson, and Frank Wm. Tompa. 1986. Ef-
ficiently Updating Materialized Views. In SIGMOD Conference. ACM
Press, 61–71.

[7] Wayne D. Blizard. 1990. Negative Membership. Notre Dame J. Formal
Log. 31, 3 (1990), 346–368.

[8] Dennis Butterstein and Torsten Grust. 2016. Precision Performance
Surgery for PostgreSQL: LLVM-based Expression Compilation, Just in
Time. Proc. VLDB Endow. 9, 13 (2016), 1517–1520.

[9] Surajit Chaudhuri, Ravi Krishnamurthy, Spyros Potamianos, and
Kyuseok Shim. 1995. Optimizing Queries with Materialized Views. In
ICDE. IEEE Computer Society, 190–200.

[10] Latha S. Colby, Timothy Griffin, Leonid Libkin, Inderpal SinghMumick,
andHoward Trickey. 1996. Algorithms for Deferred ViewMaintenance.
In SIGMOD Conference. ACM Press, 469–480.

[11] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking cloud serving systems with
YCSB. In Proceedings of the 1st ACM symposium on Cloud computing.
143–154.

[12] Databricks. 2015. Project Tungsten.
https://databricks.com/glossary/tungsten. (2015).

[13] Katica Dimitrova, Maged El-Sayed, and Elke A. Rundensteiner. 2003.
Order-Sensitive View Maintenance of Materialized XQuery Views. In
ER (Lecture Notes in Computer Science, Vol. 2813). Springer, 144–157.

[14] Goetz Graefe. 1995. The Cascades Framework for Query Optimization.
IEEE Data Eng. Bull. 18, 3 (1995), 19–29.

[15] D. Richard Hipp. 2000. SQLite: Small. Fast. Reliable. Choose any three.
https://sqlite.org/.

[16] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. 2007. Database
Cracking. In CIDR. www.cidrdb.org, 68–78.

[17] Akira Kawaguchi, Daniel F. Lieuwen, Inderpal Singh Mumick, and
Kenneth A. Ross. 1997. Implementing Incremental View Maintenance
in Nested Data Models. In DBPL (Lecture Notes in Computer Science,
Vol. 1369). Springer, 202–221.

[18] Oliver Kennedy and Lukasz Ziarek. 2015. Just-In-Time Data Structures.
In CIDR. www.cidrdb.org.

[19] Oliver Kennedy and Lukasz Ziarek. 2015. Just-In-Time Data Structures..
In CIDR. Citeseer.

[20] Christoph Koch. 2010. Incremental query evaluation in a ring of
databases. In PODS. ACM, 87–98.

[21] Christoph Koch, Yanif Ahmad, Oliver Kennedy, Milos Nikolic, Andres
Nötzli, Daniel Lupei, and Amir Shaikhha. 2014. DBToaster: higher-
order delta processing for dynamic, frequently fresh views. VLDB J.
23, 2 (2014), 253–278.

[22] Christoph Koch, Daniel Lupei, and Val Tannen. 2016. Incremental View
Maintenance For Collection Programming. In PODS. ACM, 75–90.

[23] Per-Åke Larson and Jingren Zhou. 2007. Efficient Maintenance of
Materialized Outer-Join Views. In ICDE. IEEE Computer Society, 56–
65.

[24] Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael
Isard. 2013. Differential Dataflow. In CIDR. www.cidrdb.org.

[25] Erik Meijer, Brian Beckman, and Gavin M. Bierman. 2006. LINQ: rec-
onciling object, relations and XML in the .NET framework. In SIGMOD
Conference. ACM, 706.

[26] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans
for Modern Hardware. Proc. VLDB Endow. 4, 9 (2011), 539–550.

[27] Milos Nikolic, Mohammad Dashti, and Christoph Koch. 2016. How to
Win a Hot Dog Eating Contest: Distributed Incremental View Mainte-
nance with Batch Updates. In SIGMOD Conference. ACM, 511–526.

[28] Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J.
O’Neil. 1996. The Log-Structured Merge-Tree (LSM-Tree). Acta Infor-
matica 33, 4 (1996), 351–385.

[29] Oracle. 1994. Oracle BerkeleyDB.
https://www.oracle.com/database/berkeley-db/.

[30] Themistoklis Palpanas, Richard Sidle, Roberta Cochrane, and Hamid
Pirahesh. 2002. Incremental Maintenance for Non-Distributive Aggre-
gate Functions. In VLDB. Morgan Kaufmann, 802–813.

[31] Mark Raasveldt and Hannes Mühleisen. 2019. DuckDB: an Embeddable
Analytical Database. In SIGMOD Conference. ACM, 1981–1984.

[32] Kenneth A. Ross, Divesh Srivastava, and S. Sudarshan. 1996. Material-
ized View Maintenance and Integrity Constraint Checking: Trading
Space for Time. In SIGMOD Conference. ACM Press, 447–458.

[33] Amir Shaikhha. 2013. An Embedded Query Language in Scala. http:

//infoscience.epfl.ch/record/213124

[34] Mohamed A. Soliman, Lyublena Antova, Venkatesh Raghavan, Amr
El-Helw, Zhongxian Gu, Entong Shen, George C. Caragea, Carlos
Garcia-Alvarado, Foyzur Rahman, Michalis Petropoulos, Florian Waas,
Sivaramakrishnan Narayanan, Konstantinos Krikellas, and Rhonda
Baldwin. 2014. Orca: a modular query optimizer architecture for big
data. In SIGMOD Conference. ACM, 337–348.

[35] Gábor Szárnyas. 2018. Incremental View Maintenance for Property
Graph Queries. In SIGMOD Conference. ACM, 1843–1845.

[36] Gábor Szárnyas, József Marton, János Maginecz, and Dániel Varró.
2018. Reducing Property Graph Queries to Relational Algebra for
Incremental View Maintenance. CoRR abs/1806.07344 (2018).

[37] ThomasWürthinger. 2014. Graal and truffle:modularity and separation
of concerns as cornerstones for building a multipurpose runtime. In
MODULARITY. ACM, 3–4.

[38] Jun Yang and Jennifer Widom. 2003. Incremental computation and
maintenance of temporal aggregates. VLDB J. 12, 3 (2003), 262–283.

[39] Ying Yang and Oliver Kennedy. 2017. Convergent Interactive Inference
with Leaky Joins. In EDBT. OpenProceedings.org, 366–377.

[40] Yue Zhuge and Hector Garcia-Molina. 1998. Graph Structured Views
and Their Incremental Maintenance. In ICDE. IEEE Computer Society,
116–125.

13

http://infoscience.epfl.ch/record/213124
http://infoscience.epfl.ch/record/213124

	Abstract
	1 Introduction
	2 Notation and Background
	2.1 Pattern Matching Queries

	3 Bolting-On IVM for Pattern Matching
	3.1 Background: Incremental View Maintenance
	3.2 Bolting DBToaster onto a Compiler

	4 Pattern Matching on a Space Budget
	4.1 Indexing Labels
	4.2 Incremental View Maintenance

	5 IVM for ASTs
	5.1 Mutable Abstract Syntax Trees

	6 Inlining into Rewrite Rules
	6.1 Inlining Optimizations

	7 Evaluation
	7.1 Workload
	7.2 Data Gathering and Measurement
	7.3 Evaluation
	7.4 Results

	8 Related Work
	9 Conclusion
	References

