4
N

Policy Exploration of JITDs (C)

Team Twinkle

What we have available:

e Current implementation of cracking policy
o crack
o crack_one
o pushdown_concats
o crack_scan
e Current implementation of adaptive merge policy
o gather_partitions
o amerge
o merge_partitions
o extract_partitions

e Basic BTree test cases

What we have implemented: (so far...)

e JITD - printing (mostly for debugging)

/**

* Prints the internal representation of the JITD providing a detailed layout
* of the current cogs and data present within.

* @param cog - the root cog

* @param depth - depth of the current cog in the tree - set to 0 for root

*|

void printdITD(struct cog *c, int depth);

e Splaying

Jrx
* The splay operation moves a given node to the root.
* @param root - current root of the tree

* @param node - node to be moved to the root

* @return the new root of the rearranged tree

*/

struct cog *splay(struct cog *root, struct cog *node);

JITD - printing

Great for debugging _5—[727, 791,875>

Great help for implementing splaying |— (826,894, 928>
——s 727

Shows cog type and data |—1[387,488,610,618,650, 666>

Reverse in-order ——< 387
|—[250,273, 296>

U
|—1[201>
= 201

|—1[128,160,217>
< 128

9>

Splay Tree

e A splay treeis a self-adjusting binary search tree
e Additional property that recently accessed elements are quick to access again.
e Performs basic operations in O(log n) amortized time.

e For many sequences of non-random operations, splay trees perform better than other

search trees, even when the specific pattern of the sequence is unknown.

https://en.wikipedia.org/wiki/Binary_search_tree

Splaying

e Zig-NOTE: Only done when the node we are moving is at an odd depth

Splaying

o Zig-Zig

Splaying @ 7 - Example (Concept)

11 11 11 [7)
/N /N /\ / \
1 12 1 12 (7] 12 1 11
/ \ 7\ / N\ /\ / N\
0 9 0 9 1 9 05 9 12
7\ / \ /NN /NN
3 10 =zig-zig=> [7] 10 =zig-zag=> 0 5 8 10 =zig=> 3 68 10

Splaying @ 7 - Example (Our flavor)

Before splay: After splay:
— 12 —s 12
= 11 —s 11
——=< 10 —s 10
f——= 8 E—
—s 7 = 7
f——= 6 —= 6
——= 5 ——=< 5
—s 4 = 4
e 3 —s 3
e 2 — 2

Cool stuff - seems to work!

Okay... what now?

No real performance tests (or testing framework)

Make some performance tests for the standard approach
Make some performance tests for splaying

Observe results and ponder! :D

Figure out a sweet spot for splaying

Implement a neat policy for splaying

And on to other policies and interesting data structures
(LSM tree, Prefix trie, HashTable, etc.)

Questions ???

Policy Exploration for JITDs
(Java)

by

Team Datum

What we have done till now..

e Looked into the Java implementation of JITD policies.
e Trying to replicate the existing experimental results.

Next steps..

e To analyze the current implementation extensively using other
benchmarking workloads like YCSB.

e Will look into the behavior of Splay Trees so as to check where it can fit
into the current implementation

Splay Tree

Working:

https://www.cs.usfca.edu/~qgalles/visualization/SplayTree.html

Splay Tree over Binary search Tree and Sorted Arrays

Time Complexity Sorted Arrays Splay Tree
Insertion n log n
Deletion n log n
Search or Scanning logn log n

https://www.cs.usfca.edu/~galles/visualization/SplayTree.html
https://www.cs.usfca.edu/~galles/visualization/SplayTree.html

JL1DS ON DISK

C1q tree Cp tree

Disk Memory

Data,5,Null | Data,6,Data

i

|2.1 |4.3.5|

RANGE LOOKUPS

e Fetch data if not in memory. Reconstruct required part of
the tree. Problems?

e Index it and flush when needed. What to flush? What to
keep?

e Merge it later. When to merge?

Ex— for where condition value<=2

Assume memory is empty and index on file js |DataSNull | Data6Data

e Fetch Data,5,Null from file and construct tree
e Index it in memory to produce
¢ Flush 1t to new file | Data,2,Data | Null,5Null
e Merge it with the old file accordingly

DIFFERENT FILE FORMATS

Data,2,Data

Null,5,Null

Data,6,Data

File,2,File

Null,5,Null

File,6,File

Offset,2,0ffset

Null,5,Null

Offset,6,0ffset

Data,2,Data | Null,5,Null | Data,6,Data

e Ideal for sequential access
BUT

e Size of data unknown
e Binary search 1is difficult
e Store offset data for random access during binary search

File,2,File Null,5,Null | File,6,File

e Binary search is easy
BUT

e As index grows file size becomes smaller
e Will cause more disk seeks even for range scan queries

Offset,2,0ffset Null,5,Null | Offset,6,0ffset

e Binary search is easy
BUT

e Maintenance overheads
e Every crack will trigger entire file rewrite

Hybrid Approach !!

