
Policy Exploration of JITDs (C)
Team Twinkle

● Current implementation of cracking policy
○ crack
○ crack_one
○ pushdown_concats
○ crack_scan

● Current implementation of adaptive merge policy
○ gather_partitions
○ amerge
○ merge_partitions
○ extract_partitions

● Basic BTree test cases

What we have available:

What we have implemented: (so far…)

● JITD - printing (mostly for debugging)

/**
 * Prints the internal representation of the JITD providing a detailed layout
 * of the current cogs and data present within.
 * @param cog - the root cog
 * @param depth - depth of the current cog in the tree - set to 0 for root
 */
void printJITD(struct cog *c, int depth);

● Splaying

/**
 * The splay operation moves a given node to the root.
 * @param root - current root of the tree
 * @param node - node to be moved to the root
 * @return the new root of the rearranged tree
 */
struct cog *splay(struct cog *root, struct cog *node);

JITD - printing

● Great for debugging
● Great help for implementing splaying
● Shows cog type and data
● Reverse in-order

Splay Tree

● A splay tree is a self-adjusting binary search tree

● Additional property that recently accessed elements are quick to access again.

● Performs basic operations in O(log n) amortized time.

● For many sequences of non-random operations, splay trees perform better than other

search trees, even when the specific pattern of the sequence is unknown.

https://en.wikipedia.org/wiki/Binary_search_tree

Splaying

● Zig - NOTE: Only done when the node we are moving is at an odd depth

Splaying

● Zig-Zig

● Zig-Zag

Splaying @ 7 - Example (Concept)

Splaying @ 7 - Example (Our flavor)

Cool stuff - seems to work!

Okay… what now?

● No real performance tests (or testing framework)
● Make some performance tests for the standard approach
● Make some performance tests for splaying
● Observe results and ponder! :D
● Figure out a sweet spot for splaying
● Implement a neat policy for splaying
● And on to other policies and interesting data structures

(LSM tree, Prefix trie, HashTable, etc.)

Questions ???

Policy Exploration for JITDs
(Java)

by

Team Datum

● Looked into the Java implementation of JITD policies.
● Trying to replicate the existing experimental results.

Next steps..
● To analyze the current implementation extensively using other

benchmarking workloads like YCSB.
● Will look into the behavior of Splay Trees so as to check where it can fit

into the current implementation

What we have done till now..

Splay Tree

Working:

https://www.cs.usfca.edu/~galles/visualization/SplayTree.html

Splay Tree over Binary search Tree and Sorted Arrays

Time Complexity Sorted Arrays Splay Tree

Insertion n log n

Deletion n log n

Search or Scanning log n log n

https://www.cs.usfca.edu/~galles/visualization/SplayTree.html
https://www.cs.usfca.edu/~galles/visualization/SplayTree.html

JITDs on Disk

Team Warp
Animesh, Archit, Rishabh, Rohit

Data,5,Null Data,6,Data

Range lookups
● Fetch data if not in memory. Reconstruct required part of

the tree. Problems?
● Index it and flush when needed. What to flush? What to

keep?
● Merge it later. When to merge?

Ex- for where condition value<=2
Assume memory is empty and index on file is
● Fetch Data,5,Null from file and construct tree
● Index it in memory to produce
● Flush it to new file
● Merge it with the old file accordingly

Data,5,Null Data,6,Data

Data,2,Data Null,5,Null

Different FILE formats

Data,2,Data Null,5,Null Data,6,Data

File,2,File Null,5,Null File,6,File

Offset,2,Offset Null,5,Null Offset,6,Offset

● Ideal for sequential access

BUT

● Size of data unknown
● Binary search is difficult
● Store offset data for random access during binary search

Data,2,Data Null,5,Null Data,6,Data

● Binary search is easy

BUT

● As index grows file size becomes smaller
● Will cause more disk seeks even for range scan queries

File,2,File Null,5,Null File,6,File

● Binary search is easy

BUT

● Maintenance overheads
● Every crack will trigger entire file rewrite

Hybrid Approach !!

Offset,2,Offset Null,5,Null Offset,6,Offset

