
JITDs Java and C
Comparison

Teams Twinkle & Datum

Cogs in C

Cogs in C
● Basic struct which abstracts cogs based on type
● Acts sort of as an interface
● Each type of cog has its own basic structure
● Operations on cogs provided in header files

- Cracking
- Adaptive Merge
- Related Operations/Etc.

● Memory management built into basic functions

Cogs in Java

Data in C
● Operation on data similarly provided in header files

- Sort
- Search
- Min/Max
- Iteration
- Concatenate
- Related Operations/Etc.

● Memory management built into basic functions

Delving deeper into C Data & Memory Management

● Main memory allocation happens on buffer creation/deletion
● There is some memory management done for helper structs such as iterators

● What is a buffer?
- contains an array of data records [key/value pairs]
- holds a reference count to itself
- also contains a size value (number of records)

Cracking and Merging C vs Java Comparison
● Standard algorithm are used
● The implementations of cracking and merging is basically the same
● The only difference is that C uses structs and pointers
● C is proactive in memory management through the use of malloc and free
● Java uses the garbage collector for memory management

Single Read Comparison on Java vs C
All tested 1000000 data key range 1000000 crack-1 single split at 500000 and crack and amerge are single split at 333333 and 666666:

Java C

crack-1 22.4407 ms 26.276 ms

crack 24.426775 ms 36.057 ms

merge 2730.864164 ms 4568.007 ms

Single Read Comparison on Java vs C

Cracking - C vs Java
Tested with :

Data: 1000000,

Key Range: 1000000

Random Reads: 1000

Environment:

Ubuntu 14.04 / CPU 1.7 GHz / Processor Intel i5

Adaptive Merging
 :(

Questions??

JITDs on Disk

Team Warp
Animesh, Archit, Rishabh, Rohit

CODE WRITTEN FOR Different FILE formats

Data,2,Data Null,5,Null Data,6,Data

File,2,File Null,5,Null File,6,File

Data , Separator, Data

File Pointer, Separator, File Pointer

Saving and restoring trees
● Considering memory constraints, previously we were only

restoring a part of the entire index tree for further
indexing based on the incoming query

● Also, saving that indexed sub-tree on the disk
accordingly

● This introduced problems while merging partial trees
together to create updated index structure

Paging
● Page-in and Page-out specific portions of the index tree

based on the incoming query
● Each page will have a file structure similar to that of

an index file

An Index Tree

An Index Tree With pages
P1 (Logical Representation)

File,4,File Null,5,File

P1 (Physical Representation)

In memory logical representation

