JITDs Java and C
Comparison

Teams Twinkle & Datum

CogsinC

typedef struct cog| {

cog.type type;

union {
struct { struct cog *lhs; struct cog *rhs; } concat;
struct { struct cog *lhs; struct cog *rhs; long sep; } btree;
struct { int start; int len; buffer records; } array;
struct { int start; int len; buffer records; } sortedarray;

} data;

} cog;

CogsinC

Basic struct which abstracts cogs based on type
Acts sort of as an interface

Each type of cog has its own basic structure
Operations on cogs provided in header files

- Cracking

- Adaptive Merge

- Related Operations/Etc.

e Memory management built into basic functions

Cogs in Java

import java.util.*;

public abstract dass Cog

{

public abstract KeyValuelterator iterator();

public abstract int length();

public abstract long min();

public abstract long max();

public String toString(String prefix){ return prefix + toString(); }
public String tolLocalString(){ return toString(); }

public List<Cog> children() { return Arrays.asList(new Cog[0]); }

\J} ArrayCog.java

\J} BTreeCog.java

1J} ConcatCog.java
J) LeafCog.java

[J} SubArrayCog.java

Data in C

e Qperation on data similarly provided in header files
- Sort
- Search
- Min/Max
- Iteration
- Concatenate
- Related Operations/Etc.
e Memory management built into basic functions

Delving deeper into C Data & Memory Management

e Main memory allocation happens on buffer creation/deletion
e There is some memory management done for helper structs such as iterators

e \Whatis a buffer?
- contains an array of data records [key/value pairs]
- holds a reference count to itself
- also contains a size value (number of records)

Cracking and Merging C vs Java Comparison

Standard algorithm are used

The implementations of cracking and merging is basically the same

The only difference is that C uses structs and pointers

C is proactive in memory management through the use of malloc and free
Java uses the garbage collector for memory management

Single Read Comparison on Java vs C

All tested 1000000 data key range 1000000 crack-1 single split at 500000 and crack and amerge are single split at 333333 and 666666:

Java C
Crack-1 22.4407 ms 26.276 ms
Crack 24.426775 ms 36.057 ms

merge 2730.864164 ms 4568.007 ms

Single Read Comparison on Java vs C

40

5

30

25

20

[[
o w [=] w

crack-1

Cracking in Milliseconds

Hjaa BC

crack

5000
4500

3500

Adaptive Merge in Milliseconds

Chart Area

amerge

Hjaa BC

Cracking - C vs Java

Tested with :
Data: 1000000,
Key Range: 1000000

Random Reads: 1000

Environment:

Ubuntu 14.04 / CPU 1.7 GHz / Processor Intel i5

Time Taken (milliseconds)

300

225

150

75

C and Java

25.34

Implementation

Il C
Bl Java

Adaptive Merging
:(

Questions??

JL1DS ON DISK

CODEWRITTEN FOR DTFFERENT FILE FORMATS

Data , Separator, Data

Data,2,Data | Null,5,Null | Data,6,Data

File Pointer, Separator, File Pointer

File,2,File | Null,5,Null | File,6,File

SAVING AND RESTORING TREES

e Considering memory constraints, previously we were only
restoring a part of the entire index tree for further
indexing based on the incoming query

e Also, saving that indexed sub-tree on the disk
accordingly

e This introduced problems while merging partial trees
together to create updated index structure

PAGING

e Page-in and Page-out specific portions of the 1index tree

based on the incoming query
e Each page will have a file structure similar to that of

an index file

AN INDEX TREE

7,8

1,2,3,4

10

AN INDEX TREE WITH PAGES

, _ 6 | In memory logical representation
P1 (Logical Representation) 5 |

1,2,3,4 5 ‘

File,4,File | Null,5,File

P1 (Physical Representation)

