
Lightweight Runtimes
(Galileo IoT)

Team Sparkle

Dhinesh
Shiva
Keno
Guru

Central Infrastructure
● Web Interface

○ Queries in form of HTTP GET/POST
○ Most queries decided apriori
○ Insert:

■ http://128.205.39.183/insert?timestamp=1446175861&temp=17.4&room=2
○ Query Patterns:

■ http://128.205.39.183/query?room=1&start=1446175932&end=1446176532
■ http://128.205.39.183/query?room=2&windowsize=900

■ http://128.205.39.183/query?sql=SELECT+%2Aroom%

2C+temperature+FROM+tempdb+WHERE+timestamp+%3E+1446175932%3B

Data Stream
● Data generated by ITG3200 (Gyroscope)
● Temperature sensor for calibration
● timestamp(uint64_t) temperature(double) room(uint8_t)
● 4 samples/second

○ Each sample assigned to a ‘room’

● ~68bytes/second -> ~240KB/hour
○ Easily stored in main memory

Data Stream
● Room readings almost equal
● Looking into alternate temperature sources

○ lm-sensors

○ Multiple sensors

Ingestion Interface
● Sync vs Async
● Everything is in memory
● ArrayDeque of fixed size.
● Frequency of inserts calculated
● Formula for windowSize

Size of Records = Insert freq * Time Window

Data Structure Used
● ArrayList<LeafValue> -----> Tuple;
● ArrayDeque<Tuple> -----> WindowedTable;
● ArrayList<WindowedTable> -----> TableList;

insert_tuple(tuple1):

queue.add(tuple1)

if queue.size() > threshold : queue.remove()

Server Client
SparkeDB is the server listening for any query requests

The Central Infrastructure is the client.

JSON is used for data communication.

JSON
{

 “type” : “request” || “response”,

 “queryType” : “insert” || “query",

 “query” : “select ...” || “insert ...",

 “status” : “success” || “failure”,

 “timeTaken” : 10

}

Conclusion
Given two streams,

● Run query requiring a join over both streams
● Evaluate percentage of expected results we produce over given window
● Repeat with increasing stream frequencies
● Repeat with increasing window sizes

