
JITDs Policy Exploration C
Team Twinkle
Nov 4, 2015

And on today’s episode…
● How can we make things more interesting?
● Exploring a new paradigm of smart(er) JITDs + Policies
● Zipfian distributions & why they are interesting
● A proposed policy based on Zipfian and smart(er) JITDs
● Best case scenario and our actual aim
● A little bit of math & theory
● A bit more in depth look into the actual policy

Why switch things up?
Read… Splay… Read… Splay…

It works but it’s not very flexible.

… or interesting for that matter.

Let’s be a little clever!
● In fact, let’s make the JITDs clever!
● What if we could put metadata into cogs?

- That could maybe work
- But what kind of data could we put?
- How can we use it in policies?

What kind of data should we encode?
● Can’t encode too much… bookkeeping is hard
● Should also consider that memory usage could get very large
● What data is actually useful and what isn’t?
● How can we encode data efficiently?

Think Reads!
● We have been working with read heavy workloads
● So how can we make decisions for them
● How about encoding read counts for BTree Cogs?
● Let’s do one better, let’s consider Zipfian Reads.

Zipfian Distributions
● Most data is naturally zipfian
● What does that mean?

- certain elements in the data set dominate in terms of frequency
● For example - linuistics/web-serach/etc.

- the most frequent word in english language is “the”
- the most frequent word will occur approximately twice as often as the
second most frequent word, three times as often as the third most frequent
word, etc.

● Think in terms of ranks!

How can we take advantage of this?
● We have splaying now and we use it to balance the tree
● We are adding read counts:

- we can now also put frequently read items at the top
● This should increase efficiency even further
● We can also be more flexible:

- make smart(er) decisions about when to splay

The dream!
● If we can arrange the tree in a completely Zipfian manner that’d be great!
● What I mean is highly ranked (high frequency terms) will go at the top
● Similarly low frequency terms will go towards the bottom

Rank 1

Rank 2 Rank 3

Rank 4 Rank 5 Rank 6 Rank 7

Alas! ‘Tis but a dream...
● Items are ranked based on key, so we can’t only consider reads.
● We can’t quite reach the dream
● But we can get close

Let’s just put highly ranked items towards the top
● Think some cumulative distribution function (CDF) value defined by a DBA
● We don’t need to arrange it perfectly on average this should do pretty well
● We don’t need to worry about low probability items towards the bottom

- They happen infrequently so they should simply create a bit of noise

Calculating number of elements based on CDF
● Given a predefined CDF (by a DBA):

- we need to know what part of the tree to consider
● Let’s find the number of elements for the given CDF
● Ceiling of log_2 of that number will give us number of levels of tree

Let’s do some math… let’s define some stuff!
● Harmonic numbers:
● Zipfian frequency:

- for rank k
- N data elements
- s is a zipfian constant (assume 1 for sake of presentation)

● Euler’s constant:
● n is the number of elements based on CDF we are looking for

Let’s derive the formula to find n
● Zipfian CDF:

● CDF is defined by DBA so the only thing we don’t know is H_k
● H_k is thus = CDF * H_N
● From this and the formulas on last slide we come up with:
● n ≈ e ^ ((CDF * H_N) - gamma) - .5

Example:
● For a 100000 elements and CDF .5:

- n = 236.4 levels = 8
● CDF .6

- n = 793.3 levels = 10
● CDF .7

- n = 2658.8 levels = 12
● CDF .8

- n = 8908.8 levels = 14

Great!!! We don’t need to really look at a lot of data.
● We can now efficiently find what data to look at
● Now we just need to describe our policy
● We also need to describe bookkeeping:

- How do you crack with read counts
- How does one splay with read counts

Read with cogs!
● We keep a cumulative count of reads at every cog for itself and its children
● This is clever encoding as we can determine some cool things from this:

- Reads at a given cog (given cumulative reads - (left + right))
- We can navigate around the tree to find highly read items (or clusters)

● For bookkeeping: Since cracking operations are recursive we need to just
increment reads going down the tree in our recursion. This is efficient and
elegant!

Splaying with cogs
● Splaying is done in zig, zigzag, and zigzig operations
● If we define read rearrangement rules for each we can recursively propagate

the read rearrangement of the tree efficiently and elegantly like with cracking.
● For example for zig here reads of B, C, and A remain the same, reads for p

are now = B + C reads
Read for x = A + B + C

Putting it all together:
● Determine amount of levels to pay attention to (readjust if writes happen)
● In some self adjusting interval (can go very smart with this - think machine

learning) run our rearrangement policy
● Move nodes up by looking at cumulative counts from top to bottom (subsets

of trees)
- This will give us both a pretty balanced tree as well as a somewhat zipfian
distributed tree

