JITDs Policy Exploration C

Team Twinkle
Nov 4, 2015

PREVIOUS. . ON

JITDs Policy Exploration With C

Recap from Last Week

How can we make things more interesting?

Exploring a new paradigm of smart(er) JITDs + Policies
Zipfian distributions & why they are interesting

A proposed policy based on Zipfian and smart(er) JITDs
Best case scenario and our actual aim

A little bit of math & theory

A bit more in depth look into the actual policy

Implementation Details

Naive implementation

Encode the read-count in the cog.(Make an extra element to store it).
Increment the counter when ever the cog is accessed.

|[dentify the cog with maximum read.

Perform splay operation on that particular cog.

Repeat it for the particular initially determined interval.

Challenges

Challenges?

- How to rewrite the rewrite of read counts splay is done ?

- How can we change the interval in a smart way so that the number of splays
can be adjusted so that convergence is attained faster.

Make smart decision on when to splay.

Rewrite policy for readcount

On each rotation maintain the invariance or the cumulative read count
updated.

Using cumulative read count make this problem a lot easier to work on.
Figure showing cumulative read count.

e e cumulative_root_count = |hs_count + rhs_count +root_count
e root_count = cumulative_root_count -(Ihs_count + rhs_count)

Updated Cog Structure.

struct { struct cog *lhs; struct cog *rhs; long sep; long rds; } btree;
struct { int start; int len; buffer records; long rds; } array;
struct { int start; int len; buffer records; long rds; } sortedarray;

Memory overhead is only one extra long value.

Sample code for Zig operation.

struct cog *zig(struct cog *root, struct cog *node) {

#ifdef _ ADVANCED

long root_count = root->data.btree.rds - (root->data.btree.rhs->data.btree.rds+root->data.btree.lhs->data.btree.
rds);

long node_count = node->data.btree.rds - (node->data.btree.rhs->data.btree.rds + node->data.btree.lhs->data.
btree.rds);

root->data.btree.rds = root->data.btree.rhs->data.btree.rds + node->data.btree.rhs->data.btree.rds+root_count;

node->data.btree.rds = node->data.btree.lhs->data.btree.rds + root->data.btree.rds;

Read Count Updation for Zig Operation

Splaying heuristically

Next big idea is varying splay interval

Why vary the interval?

More number of splays initially.

Do the splay for particular number of levels passed as arguments.
No need of splay after the convergence.

How to do this?

Keep track of the number of splays.
If it is beyond the maxcount then it is an indication of further away from

convergence. Decrease interval and splay more often.
If the count is less it is an indication maximum count nodes are at the top of

tree.Increase splay and splay less often.

|dentifying the data of interest:

For a 100000 elements and CDF .5;
-n=236.4 levels =8

CDF .6

-n =793.3 levels =10
CDF .7

-n = 2658.8 levels = 12
CDF .8

-n =8908.8 levels = 14

Splaying over different levels.

Use the formula to identify the levels then splay across the levels.

Splay recursively across the different levels until the end of level of interest.
Keep track of the number of splays after each interval and use it for updating
interval.

Interesting results

e Naive implementation performance improved to almost 50%.

e Graphs for splaying for max reads with different splay interval compared with
no splaying.

e Splay for 10000 reads with selectivity of 100 reads.

e Splay interval varied from 100 to 2000.

e Found that splaying more often is good initially.

Time taken in milliseconds

Max_Read Policy and No Splay Policy

400 — Max_Read
— Mo Splay

300

200

100

400 800 1200 1600 2000

Splay Interval

Future Work

Working on making the splay adaptive rather than doing it for constant
interval.

Finding the best algorithm to update splay interval.

If time permits figure out if we can have plug-in a machine learning model to
update the splay interval learning on the data distribution.

Questions ?

