
JITDs Policy Exploration C
Team Twinkle
Nov 4, 2015

Recap from Last Week
● How can we make things more interesting?
● Exploring a new paradigm of smart(er) JITDs + Policies
● Zipfian distributions & why they are interesting
● A proposed policy based on Zipfian and smart(er) JITDs
● Best case scenario and our actual aim
● A little bit of math & theory
● A bit more in depth look into the actual policy

Implementation Details
Naive implementation

● Encode the read-count in the cog.(Make an extra element to store it).
● Increment the counter when ever the cog is accessed.
● Identify the cog with maximum read.
● Perform splay operation on that particular cog.
● Repeat it for the particular initially determined interval.

Challenges

● Challenges?
- How to rewrite the rewrite of read counts splay is done ?
- How can we change the interval in a smart way so that the number of splays
can be adjusted so that convergence is attained faster.

● Make smart decision on when to splay.

Rewrite policy for readcount
● On each rotation maintain the invariance or the cumulative read count

updated.
● Using cumulative read count make this problem a lot easier to work on.
● Figure showing cumulative read count.

9

2 5

● cumulative_root_count = lhs_count + rhs_count +root_count
● root_count = cumulative_root_count -(lhs_count + rhs_count)

Updated Cog Structure.
struct { struct cog *lhs; struct cog *rhs; long sep; long rds; } btree;

struct { int start; int len; buffer records; long rds; } array;

struct { int start; int len; buffer records; long rds; } sortedarray;

Memory overhead is only one extra long value.

Sample code for Zig operation.
struct cog *zig(struct cog *root, struct cog *node) {

#ifdef __ADVANCED

 long root_count = root->data.btree.rds - (root->data.btree.rhs->data.btree.rds+root->data.btree.lhs->data.btree.
rds);

 long node_count = node->data.btree.rds - (node->data.btree.rhs->data.btree.rds + node->data.btree.lhs->data.
btree.rds);

 root->data.btree.rds = root->data.btree.rhs->data.btree.rds + node->data.btree.rhs->data.btree.rds+root_count;

 node->data.btree.rds = node->data.btree.lhs->data.btree.rds + root->data.btree.rds;

}

Read Count Updation for Zig Operation

9

6 3

1 1

0

4

9

4

31

1

Splaying heuristically
● Next big idea is varying splay interval
● Why vary the interval?
● More number of splays initially.
● Do the splay for particular number of levels passed as arguments.
● No need of splay after the convergence.

How to do this?
● Keep track of the number of splays.
● If it is beyond the maxcount then it is an indication of further away from

convergence. Decrease interval and splay more often.
● If the count is less it is an indication maximum count nodes are at the top of

tree.Increase splay and splay less often.

Identifying the data of interest:
● For a 100000 elements and CDF .5:

- n = 236.4 levels = 8
● CDF .6

- n = 793.3 levels = 10
● CDF .7

- n = 2658.8 levels = 12
● CDF .8

- n = 8908.8 levels = 14

Splaying over different levels.
● Use the formula to identify the levels then splay across the levels.
● Splay recursively across the different levels until the end of level of interest.
● Keep track of the number of splays after each interval and use it for updating

interval.

Interesting results
● Naive implementation performance improved to almost 50%.
● Graphs for splaying for max reads with different splay interval compared with

no splaying.
● Splay for 10000 reads with selectivity of 100 reads.
● Splay interval varied from 100 to 2000.
● Found that splaying more often is good initially.

Future Work
● Working on making the splay adaptive rather than doing it for constant

interval.
● Finding the best algorithm to update splay interval.
● If time permits figure out if we can have plug-in a machine learning model to

update the splay interval learning on the data distribution.

Questions ?

