
Pocket	Data
Team	:	TBD

Naveen,	Sankar,	Saravanan,	Sathish



Parser	Evolution

392	
minutes

102	
minutes

43	
minutes

7.5	
minutes

3.5	
minutes 2	minutes



392	
minutes

102	
minutes

43	
minutes

7.5	
minutes

3.5	
minutes 2	minutes

• No	serialization

• Sequential	Execution

• Parsing	logs	and	Generating	analytics	took	392.0	minutes.

• Most	of	the	time	(over	90%)	is	taken	by	jsqlparser to	parse	SQL	and	

create	jsqlparser statement	objects.



392	
minutes

102	
minutes

43	
minutes

7.5	
minutes

3.5	
minutes 2	minutes

• Jsqlparser bottleneck	is	solved.

• Split	analytics	generation	into	two	phases

• Object	serialization	– Converting	SQL	quries to	jsqlparser objects,	
serializing	and	storing	it	in	file	system	(	took	approx 474	minutes)

• Analytics	generation	from	serialized	jsqlparser objects	(took	102	
minutes)	in	a	sequential	manner.

• Object	serialization	needs	to	be	done	only	once.



392	
minutes

102	
minutes

43	
minutes

7.5	
minutes

3.5	
minutes 2	minutes

• Reading	the	objects	from	file	system	took	85%	of	time	in	analytics	
generation.

• One	thread	is	assigned	for	each	user’s	log	data

• 11	threads	max

• Unequal	amount	of	data	for	each	puts	more	work	on	few	threads

• Improvement:	Assigned	threads	for	files	instead	of	user.

• Configurable	number	of	threads.

• Got	running	time	to	32	minutes.	



392	
minutes

102	
minutes

43	
minutes

7.5	
minutes

3.5	
minutes 2	minutes

• Reading	the	serialized	objects	still	took	80%	of	the	time.	

• Used	third	party	library	“Kyro”- specialized	for	this	kind	of	operation.

• Serialized	analytics	generation	took	7.5	minutes



392	
minutes

102	
minutes

43	
minutes

7.5	
minutes

3.5	
minutes 2	minutes

• Parallel	 read	to	generate	analytics	reduced	time	to	3.5	times



392	
minutes

102	
minutes

43	
minutes

7.5	
minutes

3.5	
minutes 2	minutes

• Write	took	more	than	half	of	the	time.

• Schema	generation	does	not	need	write	like	analytics	generation.



Schema	Generation

• Recreated	table	schemas	from	query	logs.
• Base	version	has	been	implemented	without	considering	constraints.
• Examples
• SELECT	R.a,	b	FROM	R

• We	can	infer	that	a	and	b	are	columns	of	table	R
• SELECT	R.a,	b	FROM	R,	S

• In	the	above	query	‘b’	can	be	in	R	or	S.	So,	we	add	them	as	potential	columns	in	both	
tables.

• SELECT	a,	b	FROM	R,	S	where	R.a =	‘4’
• Here,	we	infer	that	a	belongs	to	R	from	the	where	clause.



PRAGMA	table_info(wa_contacts)	

• Rows	returned:	19
• Rows	found	by	schema	gen:	19



PRAGMA	table_info(messages)	

• Cols	returned	by	PRAGMA:	30
• Cols	found	by	schema	gen:	25

• Cols	confirmed:	24



PRAGMA	table_info(chat_list)	

• Rows	returned:	10
• Rows	found	by	schema	gen:	29



Future	Improvements

• SELECT	a	FROM	R,	S
• In	the	above	query	‘a’	can	be	in	R	or	S.	So,	we	add	them	as	potential	columns	in	both	
tables.

• SELECT	a	FROM	R	where	R.a =	‘4’
• Here,	we	infer	that	‘a’	belongs	to	R	from	the	where	clause.
• We	also	infer	that	column	‘a’	is	NOT from	S

• SELECT	a	from	S,Q	
• We	infer	that	column	‘a’	is	from	S	or	Q.
• We	also	know	that	column	‘a’	cannot	be	from	S.
• So,	we	infer	that	column	‘a’	is	from	Q.


