Transactions ana
| ocking

April 16, 2018

Schedule

An ordering of read and write operations.

Serial Schedule

No interleaving between transactions at all

Serializable Schedule

Guaranteed to produce equivalent output
to a serial schedule

Conflict Equivalence

Possible Solution: Look at read/write, etc... conflicts!

Allow operations to be reordered as long as contlicts
are ordered the same way

Conflict Equivalence: Can reorder one schedule
into another without reordering conflicts.

Contlict Serializability: Conflict Equivalent to a serial
schedule.

Time 11 12 13
R(A)
W(A)
W(A)
W(A)

Example

Time 11 12 13

Write order irrelevant
R(A) (T3 overwrites either way)

View Serializability

Possible Solution: Look at data flow!

View Equivalence: All reads read from the same writer
Final write in a batch comes from the same writer

View Serializability: View Equivalent to a serial schedule.

How to detect conflict
serializable schedule”

13

R(b) \)F/r
TZ

Precedence Graph

Cycle!
W(d) Not Conflict serializable

Not conflict serializable but
view serializable

N

T1 . T2 Wey)

\ T3 W(y)

Satisfies 3 conditions of
view serializability W(x)

Every view serializable schedule which is not contflict
serializable has blind writes.

How can conflicts be avoided?

How can conflicts be avoided?

7N\

Optimistic Conservative
Concurrency Concurrency
Control Control

How can conflicts be avoided?

Optimistic
Concurrency
Control

Conservative \
Concurrency
Control

Conservative Concurrency
Control

* How can bad schedules be detected?
* What problems does each approach introduce?

* How do we resolve these problems”?

Iwo-Phase Locking

* Phase 1: Acquire (do not release) locks.

* Phase 2: Release (do not acquire) locks.
Why?

Iwo-Phase Locking

* Phase 1: Acquire (do not release) locks.

* Phase 2: Release (do not acquire) locks.
Why?

Can we do even better?

T1 -

/ W(a)

13

Acyclic -
Conflict Serializable W(b)
2PL exists

Example

Need for shared and
exclusive locks

T T
L(d) : 3
R(d) \ /
L(a) T2

W(a)
IF_%((kk)))) Precedence Graph
L(b) t is conflict Serializable
W(b) but requires granular
R(d) control of locks

Need for shared and
exclusive locks

13

Lock requested

SL(d) §ock rea
R(d) Lockheld S | Yes No
XI_(a) in mode X | No No
W(a)
SL(b) SL(d)
R(b) R-SL(b)
XL(b)
W(b) R-XL(b)
R(d)
R-SL(d)

XL(d) W(d)
R-XL(d)

Reader/Writer (S/X)

* When accessing a DB Entity...
* Table, Row, Column, Cell, etc...
* Before reading: Acquire a Shared (S) lock.
* Any number of transactions can hold S.
* Before writing: Acquire an Exclusive (X) lock.

e |f atransaction holds an X, no other transaction
can hold an S or X.

What do we lock”

Is it safe to allow some transactions to lock tables
while other transactions to lock tuples!?

New Lock Modes

relations @
blocks @ B? @

tuples Q @ @ @@ \contained in

Hierarchical Locks

 Lock Objects Top-Down

e Before acquiring a lock on an object, an xact must
have at least an intention lock on its parent!

 [For example:

 TJo acquire a S on an object, an xact must have an IS,
X on the object’s parent (why not S, SIX, or X7?)

 TJo acquire an X (or SIX) on an object, an xact must
have a SIX, or IX on the object’s parent.

Lock Mode Desired

New Lock Modes

Lock Mode(s) Currently Held By Other Xacts

None IS | X S X
None | valid | valid | valid | valid | valid
IS valid
| X valid
S valid
X valid

Example

* An | lock for a super-element constrains the locks
that the same transaction can obtain at a
subelement.

* |f Ti has locked the parent element P in IS, then Ti
can lock child element C in IS, S.

* |t Ti has locked the parent element P in IX, then Ti
can lock child element C in IS, S, IX, X.

Example

* [1 wants exclusive lock on tuple t2

Example

* [2 wants to request an X lock on tuple t3

T1(IX) ;IX)\
@ T1(IX)§32§2(IX)
T1(X) @ G

T2(X)

Example

T2 wants to request an S lock on block B2

Deadlocks

* Deadlock: A cycle of transactions waiting on each
other's locks

e Problem in 2PL; xact can't release a lock until it
completes

e How do we handle deadlocks?

* Anticipate: Prevent deadlocks betore they
happen.

* Detect: |[dentity deadlock situations and abort
one of the deadlocked xacts.

Deadlock Detection

 Baseline: If a lock request can not be satisfied, the
transaction Is blocked and must wait until the
resource IS avallable.

 (Create a waits-for graph:
e Nodes are transactions

 Edge from Tito Tk if Tiis waiting for Tk to release a
lock.

* Periodically check tor cycles in the graph.

Example

: 11(A4); r1(A); A := A+100; w1 (A); I1(B); u1(A); r1(B); B := B+100;
wq (B); ui1(B);

: 12(B); r2(B); B := B¥2; wa(B); la(A); u2(B); r2(A); A := A%2;
we(A); u2(A);

T T A B

l1(A); ri(A);

[2(B); r2(B);
A := A+100;

B := Bx2;
w1 (A); 125

ws (B); 50
l1(B) Denied [3(A) Denied

Time

X(B)
W(B)

X(C)

13 14
S (C)
R(C)

X(B)

X (A)

Time 11 12

X(C)

I3 T4
S(C)
R(C)
X (B)

T1

T4

T2

T3

Time T1 12 13 14
S(A)
R(A)
X(B)
W(B)
sa®)
S(C)
R(C)
X(C)
| X(B)

T1

T4

T2

T3

Time 11 12

S(A)

R(A)
X(B)
W(B)

I3 T4
s(¢c)

R(C)
X (B)

T1

T4

> T2

T3

Time 11 12
S(A)
R(A)
X(B)
W(B)
S(B)

3 T4
S(C)
R(C)

"""""" X (B)

T1

T4

> T2

Time 11 12
S(A)
R(A)
X(B)
W(B)
S(B)

I3 T4
S(C)
R(C)
X (B)

Time T1 12 13 14
S(A)
R(A)
X(B)
W(B)
S(B)
S(C)
R(C)
X(C)
| X(B)

Time T1 12 13 14
S(A)
R(A)
X(B)
W(B)
S(B)
S(C)
R(C)
X(C)
| X(B)

Handling Deadlocks

Approach 1
Avoid getting into deadlocks

Approach 2
Detect (and fix) deadlocks after they occur

Avolding Deadlocks

Approach: Require transactions to follow an
invariant that is guaranteed to be deadlock free.

Avolding Deadlocks

Example: Give each Lock an ID #.
Only allow locks to be acquired in order of their ID.

Time

X(B)
W(B)

X(C)

13 14
S (C)
R(C)

X(B)

X (A)

Time T1 T2 13 14

! Out of Order —
(T3 is not valid)

Avoliding Deadlock

Alternative: Acquire all locks at the start.

Time

X(B)
W(B)

X(C)

13 14
S (C)
R(C)

X(B)

X (A)

Time

X(B)
W(B)

X(C)

13 14
X(A)
S(C)
X(B)

Time

Example

11 12 13
S(A)
R(A)
X(B)
W(B)
S(B)
X (A)
A released — S(C)
X (C)

—C released> R (C)

X (B)

Avolding Deadlocks

Pro: No Deadlocks... Ever

Con: Not all transactions are supported.
or

Con: Transactions need to maintain all locks
that might possibly ever be required at all times.

Handling Deadlocks

Approach 1
Avoid getting into deadlocks

Approach 2
Detect (and fix) deadlocks after they occur

Deadlock Detection

 Baseline: If a lock request can not be satisfied, the
transaction Is blocked and must wait until the
resource IS avallable.

 (Create a waits-for graph:
e Nodes are transactions

 Edge from Tito Tk if Tiis waiting for Tk to release a
lock.

* Periodically check tor cycles in the graph.

Time 11 12

X(C)

I3 T4
S(C)
R(C)
X (B)

T1

T4

T2

T3

Time T1 12 13 14
S(A)
R(A)
X(B)
W(B)
sa®)
S(C)
R(C)
X(C)
| X(B)

T1

T4

T2

T3

Time 11 12

S(A)

R(A)
X(B)
W(B)

I3 T4
s(¢c)

R(C)
X (B)

T1

T4

> T2

T3

Time 11 12
S(A)
R(A)
X(B)
W(B)
S(B)

3 T4
S(C)
R(C)

"""""" X (B)

T1

T4

> T2

Time 11 12
S(A)
R(A)
X(B)
W(B)
S(B)

I3 T4
S(C)
R(C)
X (B)

Time T1 12 13 14
S(A)
R(A)
X(B)
W(B)
S(B)
S(C)
R(C)
X(C)
| X(B)

Time T1 12 13 14
S(A)
R(A)
X(B)
W(B)
S(B)
S(C)
R(C)
X(C)
| X(B)

Deadlock Detection

What happens when a deadlock is detected?

(GAME o [DEADLOCKS

YOU WIN OR YOU DIl

(GAME o [DEADLOCKS

YOU WIN OR YOU DIl

(and get restarted)

Deadlock Detection

Default: Kill as many deadlocked transactions as needed.
(killed transactions may be restarted or “replayed”)

Optional: App-specific recovery logic

Detecting Deadlocks

Pro: No limitations on transactions

Pro: Best-case is faster than upfront acquisition

Con: Worst-case is much much slower.

Con: Cycle detection is slow and expensive

Detecting Deadlocks

Pro: No limitations on transactions

Pro: Best-case is faster than upfront acquisition

Con Worst-case is much much slower

——— o —
e — ————

on Cycle detectlon is slovv and -*'f*

—_—

Simpler Detection Schemes

Approach: Accept false positives for
faster deadlock detection

Simpler Detection Schemes

 Trivial Solution: Time-outs.

* Invariant-Based Solution: Enforce monotonicity

property about which transactions are allowed to
block which transactions.

Simpler Detection Scheme 1

Intuition: Never block on an ‘younger’ transaction

Simpler Detection Scheme 1

T1

Intuition: Never block on an ‘younger’ transaction

Simpler Detection Scheme 1

T2 =y T1

Intuition: Never block on an ‘younger’ transaction

Simpler Detection Scheme 1

T2 =y T1

/

T3

Intuition: Never block on an ‘younger’ transaction

Simpler Detection Scheme 1

T2 =y T1

X

T3 T4

Intuition: Never block on an ‘younger’ transaction

Simpler Detection Scheme 1

T2 =y T1

e\’

Intuition: Never block on an ‘younger’ transaction

Simpler Detection Scheme 1

T2 % T1
T3 T4

Intuition: Never block on an ‘younger’ transaction

Simpler Detection Scheme 1

I'1 holds a lock on A
12 tries to acquire the lock on A (and would block)

12 holds a lock on A
['1 tries to acquire the lock on A (and would block)

Simpler Detection Scheme 1

I'1 holds a lock on A
12 tries to acquire the lock on A (and would block)

the invariant is preserved

12 holds a lock on A
['1 tries to acquire the lock on A (and would block)

Simpler Detection Scheme 1

I'1 holds a lock on A
12 tries to acquire the lock on A (and would block)

the invariant is preserved

12 holds a lock on A
['1 tries to acquire the lock on A (and would block)

avold deadlock by Killing T1

Simpler Detection Scheme 1

I'1 holds a lock on A
12 tries to acquire the lock on A (and would block)

the invariant is preserved

12 holds a lock on A
['1 tries to acquire the lock on A (and would block)

avold deadlock by Killing T1

“Wait-Die”

Simpler Detection Scheme 2

Intuition: Never block on a ‘'younger’ transaction

Simpler Detection Scheme 2

T1

Intuition: Never block on a ‘'younger’ transaction

Simpler Detection Scheme 2

T2 =y T1

Intuition: Never block on a ‘'younger’ transaction

Simpler Detection Scheme 2

T2 =y T1

/

T3

Intuition: Never block on a ‘'younger’ transaction

Simpler Detection Scheme 2

T2 =y T1

X

T3 T4

Intuition: Never block on a ‘'younger’ transaction

Simpler Detection Scheme 2

T2 =y T1

e\’

Intuition: Never block on a ‘'younger’ transaction

Simpler Detection Scheme 2

T2 =y T1

XX

T3 T4

Intuition: Never block on a ‘'younger’ transaction

Simpler Detection Scheme 1

I'1 holds a lock on A
12 tries to acquire the lock on A (and would block)

12 holds a lock on A
['1 tries to acquire the lock on A (and would block)

Simpler Detection Scheme 1

I'1 holds a lock on A
12 tries to acquire the lock on A (and would block)

the invariant is preserved

12 holds a lock on A
['1 tries to acquire the lock on A (and would block)

Simpler Detection Scheme 1

I'1 holds a lock on A
12 tries to acquire the lock on A (and would block)

the invariant is preserved

12 holds a lock on A
['1 tries to acquire the lock on A (and would block)

avoid deadlock by killing T2 and giving T1 the lock

Simpler Detection Scheme 1

I'1 holds a lock on A
12 tries to acquire the lock on A (and would block)

the invariant is preserved

12 holds a lock on A
['1 tries to acquire the lock on A (and would block)

avoid deadlock by killing T2 and giving T1 the lock

“Wound-Wait”

Which transaction”

Policy 1: Wait-Die Policy 2: \Wound-Walit
“Those in power stay in power” “Take everything you can”
Blocking Xact Dies Blocking Xact Kills Other

Simpler Detection Schemes

Preserve fairness: A killed transaction is restarted
with the same timestamp

Managing Deadlocks

 Approach 1: Avoidance
* |nvariant on lock acquisition order.
* Aquire all locks upfront.
 Approach 2: Recovery
* Detect cycles (or conditions that indicate cycles)

* Kill/Restart transactions until there are no cycles.

