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Schedule

An ordering of read and write operations.

Serial Schedule

No interleaving between transactions at all

Serializable Schedule

Guaranteed to produce equivalent output
to a serial schedule




Conflict Equivalence

Possible Solution: Look at read/write, etc... conflicts!

Allow operations to be reordered as long as contlicts
are ordered the same way

Conflict Equivalence: Can reorder one schedule
into another without reordering conflicts.

Contlict Serializability: Conflict Equivalent to a serial
schedule.
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Example

Time 11 12 13

Write order irrelevant
R(A) (T3 overwrites either way)




View Serializability

Possible Solution: Look at data flow!

View Equivalence: All reads read from the same writer
Final write in a batch comes from the same writer

View Serializability: View Equivalent to a serial schedule.




How to detect conflict
serializable schedule”
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Precedence Graph

Cycle!
W(d) Not Conflict serializable



Not conflict serializable but
view serializable

N

T1 . T2 Wey)

\ T3 W(y)

Satisfies 3 conditions of
view serializability W(x)

Every view serializable schedule which is not contflict
serializable has blind writes.



How can conflicts be avoided?
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How can conflicts be avoided?

Optimistic
Concurrency
Control

Conservative \
Concurrency
Control



Conservative Concurrency
Control

* How can bad schedules be detected?
* What problems does each approach introduce?

* How do we resolve these problems”?



Iwo-Phase Locking

* Phase 1: Acquire (do not release) locks.

* Phase 2: Release (do not acquire) locks.
Why?



Iwo-Phase Locking

* Phase 1: Acquire (do not release) locks.

* Phase 2: Release (do not acquire) locks.
Why?

Can we do even better?
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Conflict Serializable W(b)
2PL exists



Example




Need for shared and
exclusive locks

T T
L(d) : 3
R(d) \ /
L(a) T2

W(a)
IF_%((kk)))) Precedence Graph
L(b) t is conflict Serializable
W(b) but requires granular
R(d) control of locks



Need for shared and
exclusive locks
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Lock requested

SL(d) §ock rea
R(d) Lockheld S | Yes No
XI_(a) in mode X | No No
W(a)
SL(b) SL(d)
R(b) R-SL(b)
XL(b)
W(b) R-XL(b)
R(d)
R-SL(d)

XL(d) W(d)
R-XL(d)



Reader/Writer (S/X)

* When accessing a DB Entity...
* Table, Row, Column, Cell, etc...
* Before reading: Acquire a Shared (S) lock.
* Any number of transactions can hold S.
* Before writing: Acquire an Exclusive (X) lock.

e |f atransaction holds an X, no other transaction
can hold an S or X.



What do we lock”

Is it safe to allow some transactions to lock tables
while other transactions to lock tuples!?



New Lock Modes

relations @
blocks @ B? @

tuples Q @ @ @@ \contained in




Hierarchical Locks

 Lock Objects Top-Down

e Before acquiring a lock on an object, an xact must
have at least an intention lock on its parent!

 [For example:

 TJo acquire a S on an object, an xact must have an IS,
X on the object’s parent (why not S, SIX, or X7?)

 TJo acquire an X (or SIX) on an object, an xact must
have a SIX, or IX on the object’s parent.



Lock Mode Desired

New Lock Modes

Lock Mode(s) Currently Held By Other Xacts

None IS | X S X
None | valid | valid | valid | valid | valid
IS valid
| X valid
S valid
X valid




Example

* An | lock for a super-element constrains the locks
that the same transaction can obtain at a
subelement.

* |f Ti has locked the parent element P in IS, then Ti
can lock child element C in IS, S.

* |t Ti has locked the parent element P in IX, then Ti
can lock child element C in IS, S, IX, X.



Example

* [1 wants exclusive lock on tuple t2




Example

* [2 wants to request an X lock on tuple t3

T1(IX) ;IX)\
@ T1(IX)§32§2(IX)
T1(X) @ G

T2(X)




Example

T2 wants to request an S lock on block B2




Deadlocks

* Deadlock: A cycle of transactions waiting on each
other's locks

e Problem in 2PL; xact can't release a lock until it
completes

e How do we handle deadlocks?

* Anticipate: Prevent deadlocks betore they
happen.

* Detect: |[dentity deadlock situations and abort
one of the deadlocked xacts.



Deadlock Detection

 Baseline: If a lock request can not be satisfied, the
transaction Is blocked and must wait until the
resource IS avallable.

 (Create a waits-for graph:
e Nodes are transactions

 Edge from Tito Tk if Tiis waiting for Tk to release a
lock.

* Periodically check tor cycles in the graph.



Example

: 11(A4); r1(A); A := A+100; w1 (A); I1(B); u1(A); r1(B); B := B+100;
wq (B); ui1(B);

: 12(B); r2(B); B := B¥2; wa(B); la(A); u2(B); r2(A); A := A%2;
we(A); u2(A);

T T A B

l1(A); ri(A);

[2(B); r2(B);
A := A+100;

B := Bx2;
w1 (A); 125

ws (B); 50
l1(B) Denied [3(A) Denied




Time

X(B)
W(B)

X(C)

13 14
S (C)
R(C)

X(B)

X (A)



Time 11 12
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Handling Deadlocks

Approach 1
Avoid getting into deadlocks

Approach 2
Detect (and fix) deadlocks after they occur




Avolding Deadlocks

Approach: Require transactions to follow an
invariant that is guaranteed to be deadlock free.



Avolding Deadlocks

Example: Give each Lock an ID #.
Only allow locks to be acquired in order of their ID.
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X(B)
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13 14
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Time T1 T2 13 14

! Out of Order —
(T3 is not valid)




Avoliding Deadlock

Alternative: Acquire all locks at the start.
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Time

X(B)
W(B)

X(C)

13 14
X(A)
S(C)
X(B)



Time

Example

11 12 13
S(A)
R(A)
X(B)
W(B)
S(B)
X (A)
A released — S(C)
X (C)

—C released> R ( C )

X (B)



Avolding Deadlocks

Pro: No Deadlocks... Ever

Con: Not all transactions are supported.
or

Con: Transactions need to maintain all locks
that might possibly ever be required at all times.



Handling Deadlocks

Approach 1
Avoid getting into deadlocks

Approach 2
Detect (and fix) deadlocks after they occur




Deadlock Detection

 Baseline: If a lock request can not be satisfied, the
transaction Is blocked and must wait until the
resource IS avallable.

 (Create a waits-for graph:
e Nodes are transactions

 Edge from Tito Tk if Tiis waiting for Tk to release a
lock.

* Periodically check tor cycles in the graph.
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Deadlock Detection

What happens when a deadlock is detected?



(GAME o [ DEADLOCKS

YOU WIN OR YOU DIl



(GAME o [DEADLOCKS

YOU WIN OR YOU DIl

(and get restarted)



Deadlock Detection

Default: Kill as many deadlocked transactions as needed.
(killed transactions may be restarted or “replayed”)

Optional: App-specific recovery logic



Detecting Deadlocks

Pro: No limitations on transactions

Pro: Best-case is faster than upfront acquisition

Con: Worst-case is much much slower.

Con: Cycle detection is slow and expensive



Detecting Deadlocks

Pro: No limitations on transactions

Pro: Best-case is faster than upfront acquisition

Con Worst-case is much much slower

——— o —
e — ————

on Cycle detectlon is slovv and -*'f*

—_—



Simpler Detection Schemes

Approach: Accept false positives for
faster deadlock detection



Simpler Detection Schemes

 Trivial Solution: Time-outs.

* Invariant-Based Solution: Enforce monotonicity

property about which transactions are allowed to
block which transactions.



Simpler Detection Scheme 1

Intuition: Never block on an ‘younger’ transaction



Simpler Detection Scheme 1

T1

Intuition: Never block on an ‘younger’ transaction



Simpler Detection Scheme 1

T2 =y T1

Intuition: Never block on an ‘younger’ transaction



Simpler Detection Scheme 1

T2 =y T1

/

T3

Intuition: Never block on an ‘younger’ transaction



Simpler Detection Scheme 1

T2 =y T1

X

T3 T4

Intuition: Never block on an ‘younger’ transaction



Simpler Detection Scheme 1

T2 =y T1

e\’

Intuition: Never block on an ‘younger’ transaction



Simpler Detection Scheme 1

T2 % T1
T3 T4

Intuition: Never block on an ‘younger’ transaction



Simpler Detection Scheme 1

I'1 holds a lock on A
12 tries to acquire the lock on A (and would block)

12 holds a lock on A
['1 tries to acquire the lock on A (and would block)



Simpler Detection Scheme 1

I'1 holds a lock on A
12 tries to acquire the lock on A (and would block)

the invariant is preserved

12 holds a lock on A
['1 tries to acquire the lock on A (and would block)



Simpler Detection Scheme 1

I'1 holds a lock on A
12 tries to acquire the lock on A (and would block)

the invariant is preserved

12 holds a lock on A
['1 tries to acquire the lock on A (and would block)

avold deadlock by Killing T1



Simpler Detection Scheme 1

I'1 holds a lock on A
12 tries to acquire the lock on A (and would block)

the invariant is preserved

12 holds a lock on A
['1 tries to acquire the lock on A (and would block)

avold deadlock by Killing T1

“Wait-Die”



Simpler Detection Scheme 2

Intuition: Never block on a ‘'younger’ transaction



Simpler Detection Scheme 2

T1

Intuition: Never block on a ‘'younger’ transaction



Simpler Detection Scheme 2

T2 =y T1

Intuition: Never block on a ‘'younger’ transaction



Simpler Detection Scheme 2

T2 =y T1

/

T3

Intuition: Never block on a ‘'younger’ transaction



Simpler Detection Scheme 2

T2 =y T1

X

T3 T4

Intuition: Never block on a ‘'younger’ transaction



Simpler Detection Scheme 2

T2 =y T1

e\’

Intuition: Never block on a ‘'younger’ transaction



Simpler Detection Scheme 2

T2 =y T1

XX

T3 T4

Intuition: Never block on a ‘'younger’ transaction



Simpler Detection Scheme 1

I'1 holds a lock on A
12 tries to acquire the lock on A (and would block)

12 holds a lock on A
['1 tries to acquire the lock on A (and would block)
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Simpler Detection Scheme 1

I'1 holds a lock on A
12 tries to acquire the lock on A (and would block)

the invariant is preserved

12 holds a lock on A
['1 tries to acquire the lock on A (and would block)

avoid deadlock by killing T2 and giving T1 the lock



Simpler Detection Scheme 1

I'1 holds a lock on A
12 tries to acquire the lock on A (and would block)

the invariant is preserved

12 holds a lock on A
['1 tries to acquire the lock on A (and would block)

avoid deadlock by killing T2 and giving T1 the lock

“Wound-Wait”



Which transaction”

Policy 1: Wait-Die Policy 2: \Wound-Walit
“Those in power stay in power” “Take everything you can”
Blocking Xact Dies Blocking Xact Kills Other




Simpler Detection Schemes

Preserve fairness: A killed transaction is restarted
with the same timestamp



Managing Deadlocks

 Approach 1: Avoidance
* |nvariant on lock acquisition order.
* Aquire all locks upfront.
 Approach 2: Recovery
* Detect cycles (or conditions that indicate cycles)

* Kill/Restart transactions until there are no cycles.



