Embedded Database Benchmark

Team CodeBlooded

Weekly Report

YCSB connected with H2, Derby and SQLite.
HSQLDB benchmarked last week was in server mode.
Still working on HSQLDB (embedded) and BerkeleyDB connection.

Benchmarking with loads A (50% reads and 50% updates) and B (95%
reads and 5% updates)

Went through more papers/material on existing or on-going projects in
benchmarking like OLTP-bench

Initial Observations

H2 gives better throughput at the cost of runtime.

SQLite throughput was surprisingly low.
SQLite has locking issues in multi-threaded runs. Much poorer than what
we expected

Run Time (ms)

Run times

14000

12000 /
A
10000
% *::":Q//'A
8000 Y
—A—H2

6000 ‘/\ ~—Derby
s \/

=—¢—SQLite

4000

2000

500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Target Throughput

Throughput

1600

1400

1200

1000

800

600

400

200

Throughput

/‘/A\.ﬂy/\///

500

1000

2000

3000

4000 5000 6000

Target Throughput

7000

8000

9000

10000

= H2
—i—Derby
—o—SQLite

(Read) Avg Latency in ms

2000

1800

1600

1400

1200

1000

800

600

400

200

Read Latency

+—II/.\I\.

—s o — o—*,/“*ﬂ/'

500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Target Throughput

= H2
—i—Derby
——SQLite

Notes

* YCSB has several issues with Windows
— Our benchmark should be OS agnostic
— Does OS play a role in the DB performance?
* NoSQL DBs can also be used in embedded form
— Should we take them into consideration while designing benchmark

 Can we go beyond benchmarking?

Questions?

PocketData Benchmark

[Week #2]

Naveen, Sankar, Saravanan, Sathish

Progress

* Classification based on business domain.

— 173 applications.
— 26 clusters

* Finding features (In Progress)
— Read & Write percentage,

— Bursts,
— Complexity of queries etc.

26 Clusters

SySte m Se rViceS Utility MUSIC Pre-Installed NEtworking
e-Commerce Messaging & Callscame

Cloud Video Services srowser IMage Forum New/RsS Reader

Cloud Storage Email search ereader Dating
N aVigat i O n Media Player | Finance Health | Programming | Productivity |

Personalization | Antivirus | Miscellaneous

Observations from ‘Pocket Data: The Need for TPC-MOBILE’ paper

Types and numbers of SQL statements executed during the one-month trace

Operation SELECT INSERT UPSERT UPDATE DELETE Total

Count | 33,470,310 | 1,953,279 | 7,376,648 | 1,041,967 | 1,248,594 | 45,090,798
Runtime (ms) 1.13 2.31 0.93 6.59 3.78
Features Used

OUTER JOIN| 391,052 236 391,288
DISTINCT| 1,888,013 25 5,586 1,893,624
LIMIT| 1,165,096 422 1,165,518
ORDER BY| 3,168,915 194 3,169,109
Aggregate| 638,137 25 3,190 641,352
GROUP BY| 438,919 25 438,944

UNION 13,801 65 13,866

s 74% Select | 71% of INSERT/UPDATE statements are UPSERTS

s ~10% Select has Order By | Unions seldom used

*» Deletes are complex (Cache Invalidation: Invalidating the offline cache data as
soon as it connects to internet?)

Reference: http://odin.cse.buffalo.edu/wp-content/uploads/2015/06/2015-TPCTC-SQLite-submitted.pdf

Observations from ‘Pocket Data: The Need for TPC-MOBILE’ paper

Client App Statements Executed
Google Play services w
Media Storage 13,592,982
Gmail 2,259,907
Google+ 2,040,793
Facebook 1,272,779
Hangouts 974,349
Messenger 676,993
Calendar Storage 530,535
User Dictionary 252,650
Android System 237,154

(a)

33% queries from a single service
63% queries summing up top two services

Reference: http://odin.cse.buffalo.edu/wp-content/uploads/2015/06/2015-TPCTC-SQLite-submitted.pdf

Observations from ‘Pocket Data: The Need for TPC-MOBILE’ paper

. 1x10° o 1x108
£ Ix10 £ 1x10]
6

& 1x10 & 1x10°
E) 1‘1)8888 E) 100000
- = 10000
@ 1000 =

¥ 100 g 1000
P 10 3 100
g 1 E 10
“ 0.1 “ 1

1 2 3 4 5 6 71 8 1 2 3 4

Number of Tables Accessed Maximum Nesting Depth

> 86% of all queries are simple single table scans/look-ups.

» Extreme — ‘Google Play Services’ queries accessing 8 distinct
tables.

Reference: http://odin.cse.buffalo.edu/wp-content/uploads/2015/06/2015-TPCTC-SQLite-submitted.pdf

Observations from ‘Pocket Data: The Need for TPC-MOBILE’ paper

Join Width

Where Clauses 1 2 3 4 6 Total
0 1,085,154 > 1,085,154
1 26,932,632 > 26,941,737
2 1,806,843 é 5,970 2,092,624
3 384,406 80,183 29,101 i 493,691
4 115,107 70,891 10,696 939 197,633
5 28,347 15,061 1,162 17 11 44,598
6 912 524 591 471 3 1,801
T 349 22,574 333 1,048 8 24,312
8 35 18 6 59
9 541 2,564 4 3,109
10 159 159
il 545 545

Total 30,353,789 | 478,708 | 50,417 | 2,480 | 28 | 30,885,422

Reference: http://odin.cse.buffalo.edu/wp-content/uploads/2015/06/2015-TPCTC-SQLite-submitted.pdf

Observations from ‘Pocket Data: The Need for TPC-MOBILE’ paper

Expression Type Expression Form Count
Exact Lookups Const = Expr 30,974,814
Other Equality Expr = Expr 1,621,556

Membership Test Expr [NOT] IN (List or Query)| 1,041,611

Inequality on 1 constant Const 6 Expr 677,259
Disjunction [NOT] Expr V Expr 631,404
Bitwise AND Expr & Expr @

Other Inequality Expr 6 Expr 442,164
Boolean Column Cast [NOT] Column @
No-op Clause Const or (Const = Const) 229,247

Patterned String Lookup Expr [NOT] LIKE Pattern 156,309
Validity Test Expr IS [NOT] NULL 87,873

Functional If-Then-Else CASE WHEN ... 2,428
Range Test Expr BETWEEN Const AND Const 2,393
Function Call Function(Expr) 1,965

Subquery Membership [NOT] EXISTS (Query) 1,584

WHERE clause expression structures, and the number of SELECT queries in
which the structure appears as a conjunctive clause.

Reference: http://odin.cse.buffalo.edu/wp-content/uploads/2015/06/2015-TPCTC-SQLite-submitted.pdf

Observations from ‘Pocket Data: The Need for TPC-MOBILE’ paper

1.0 1.0 1.0

09 - 09 - 0.9 :_‘_,_,/’F
0.8 |- 0.8 | 0.8
0.7 | 0.7 - 0.7 |
0.6 |- 0.6 |- 0.6 |
& 05L & 05L = 051
© 04} © 04 © 04l
03 | 0.3 | 0.3
0.2 L 0.2 b 0.2 -
0.1 0.1 | 0.1 F
00 EET| EFEEETI BT ET] B AR BrETET| BrErET] A e T BT 00 MR WY 11 T WATENRTITT BETETRTTTT EETETRTTTT EETATRETT 00 | | v sl L1
10° 10! 10% 103 10* 10° 10° 107 108 10! \L@/Mﬁ?’ 104 105 10% 107 100 10! 102 103 104
Previous Query Arrival Time (us) Query Runtime (pLs) Returned Row Count
(a) (b) (c)

Fig. 12: Summary Statistics for Android SQLite Queries. Distributions of (a) inter-query
arrival times, (b) query runtimes, and (c) rows returned per query.

+*20% queries periodic (File Locks?)
**85% queries run in 0.1ms
**80% queries returned single row (key-value lookup)

Reference: http://odin.cse.buffalo.edu/wp-content/uploads/2015/06/2015-TPCTC-SQLite-submitted.pdf

ldeation

* Analysis per Application (Read % , Read/Write ratio)

— Long tail distribution skews results.

* Cluster based analysis
— Analyze patterns within cluster
— Generalize the behavior
— Explain the behavior

— How certain that a new app of this cluster will
behave same?

ldeation

* Cluster Analysis [Contd..]

— Finding similar clusters for each feature. Combine
them into one if they behave same.

— Split a cluster into two if there are two sets of
guery access patterns and they can be explained.

— Frequency of app usage within cluster should not
demand different benchmarks.

* |t should be driven by scale factor and burst factors?

Steps ahead

dentifying and finalizing the right features
Phone data log file extraction.

mplement the ideas.

— Per app basis analysis & cluster based analysis

Lightweight Runtimes

Team Sparkle

Dhinesh
Shiva

Project Objectives

Re-design a database to support the Internet of Things
Study capabilities of currently available hardware
Understand streaming data characteristics

Intel
Galileo
Board

Next Steps

Study behaviour under memory pressure
Java and GC effects on Galileo

Study behaviour under memory pressure

Memory and Performance are related.
A smaller Java memory heap - 256 MB

Memory heap fills lot quicker
Is garbage collected more frequently, so longer run time.

May lead to out-of-memory errors.

Heap Size?

Dataset size : 10mb

Set min heap size : Java -Xmx100m Main

Do a binary search on the binary heap size, to find the
exact minimum amount of heap memory needed for the
program to run.

Heap Size (cont...)

What is max heap allocated for the program?
The threshold of allocated heap after which additional memory does not
yield any (significant) performance gain
How did we find max heap?

Increase min heap by multiplier (0.4x) every iteration
Stop when performance is within 3% over 5 (consecutive) iterations

Performance (s)

L]

Runtime vs Heap Size -Host Machine

Memory vs Performance

——

' TPCH-1 Query
Environment:

8gb RAM
i7 processor

1 1 1 L

1

1

6000 8000 10000 12000
Memory (MB)

14000

16000 18000

™~

KB

RunTime vs Heap Size - Galileo board

Memory vs Performance

1.0 T T T T T T T

60.5 - TPCH-1

600 = .

Environment:

59.5 o -256 mb ram
-Intel Quark
2 59.0 - Processor
-.:::E 385 —
&I:

58.0 L

57.5 -

57.0 —

56.5 1 1 1 1 1 l 1

1 000 1500 2000 2500 3000 31500 4000 4500 SO00

Memory (KB)

Runtime vs Heap Size TPC-H 3

Results are non deterministic for min heap!
Java -Xmx49m Main does not always work for tpch3
why?? java.lang.OutOfMemoryError

Next Steps

Study behaviour under memory pressure
Java and GC effects on Galileo
To do : Design decisions based on the findings

LLVM Query Runtime

VALKyrie

Ladan
Vinayak

https://docs.google.com/a/buffalo.edu/presentation/d/1fz_-Rj3YVb0-RdFZIe5u3WzCqjk1hJCROesg-E_IXtM/edit?usp=sharing
https://docs.google.com/a/buffalo.edu/presentation/d/1fz_-Rj3YVb0-RdFZIe5u3WzCqjk1hJCROesg-E_IXtM/edit?usp=sharing

Progress

- LLVM Intermediate Representation (IR)
- Ways of generating IR
- Benchmark setup and initial experiments

LLVM Intermediate Representation

Source . Machine
Code Frontend Optimizer Backend Code
C -#»| C Frontend X86 Backend - X86
e e ——
Common
Fortran -#| Fortran Frontend Optimizer PowerPC Backend |- PowerPC
e —- e ——
Ada # | Ada Frontend ARM Backend -» ARM
e -

(IR)

sample.c sample.ll sample.s

sample.c

clang -0s -S -emit-1llvm sample.c -o sample.ll

sample.1ll (IR)

opt-3.0 -S sample.ll

sample.1ll (IR Optimized)

11c-3.0 -03 sample.ll -march= -0 sample.s .
11c-3.0 -03 sample.ll -march= -0 sample.s > 111 sample.ll
11c-3.0 -03 sample.ll -march= -0 sample.s

sample.s (machine code) Hello World! (Output)

LLVM IR

#include<stdio.h> int main() { printf(“Hello World!\n”); }

> clang -emit-11lvm -S helloworld.c -o helloworld.ll

@.str = private unnamed_addr constant [14 x i8] c"Hello World!\B6A\00"

define 132 @main() {
%1 = call i32 (i8*, ...)* @printf(i8* getelementptr inbounds ([14 x i8]* @.str, i32 @, i32

9))
ret 132 0

}
declare i32 @printf(i8*, ...)

> 11i helloworld.1l1l
Hello World!

Ways to generate IR

- Java bindings
- robovm
- Java Library for creating LLVM IR

- Manual Translation
- Python bindings [llvmlite]
- Official C++ API

Baseline Benchmark

w

[pS]

[y

Query Times

111

TPCH-1

TPCH-3

TPCH-5
TPCH-6

QUERY

TPCH-10

TPCH-12

Bl Sqlite3
I Mushroom
Cloud

Scale Factor 0.1
i3 3120M @ 2.5 GHz
4 GB RAM

Average of 3

Warm cache

Plan of action

- In memory benchmarks
- Implement IR generation prototypes

