LLVM Query Runtime

VALKyrie

Ladan
Vinayak



Progress

1. Components in LLVM IR
2. Program to Generate IR

a. (Internals of IR Builder)
3. Design decisions



Components in LLVM IR

Module 1. ‘Value’ class
Eunction a. Function
b. Basic Block
BasicBlock c. Instruction
Instruction
%0 = add i32 %1, 5




Components in LLVM IR

1. Instruction
a. C++ Instruction class
b. Members
i. opcode
ii. type
iii. 1ist of operands (pointers)
Static Single Assignment (SSA)

C.
Reaching definition analysis

i.

2. Inspecting IR
a. dump()

SSA

%
o
&

IS
11| ]
N
=

N

LI | T
N

errs () << "Function body:\n"

F.dump () ;

for (auto& B : F) {
errs () << "Basic block:\n";

B.dump () ;

for (auto& I : B) {
errs ()
I.dump () s
}
}

<< "Instruction: "




Program to Generate IR

1. Lexer
2. Parser

3. Abstract Syntax Tree (Parse Tree) - Expression AST Base
a Number : Expression
b Variable : Expression
c. Binary Operator : Expression
d Function Calls : Expression
e Function Definition : Prototype

4. *codegen()
5. f‘Builder’ object of ‘IRBuilder’ class



Design Decisions

1. Physical data layout

2. Abstractions over IRBuilder
a. Conditionals
b. Mutable variables

c. Looping constructs
3. Granularity of control between the Java plan generator and the

C++/LLVM execution strategy
a. Export as JSON/XML tree of operators?
b. Or, a minimal pseudo-language?



Next Step

Create a simple file scan operator in LLVM

Challenges

void RTFM() {
RTFM();

}



Lightweight Runtimes

Team Sparkle

Dhinesh
Shiva



Next Steps

e Study behaviour under memory pressure

e Java and GC effects on Galileo  <- still stuck here



Java and GC Effects

e Currently processing 70MB dataset

o Elapsed time > 72 hours

e Guru: Looking into GC Trigger



Performance (s)

350

300

250

200

150

100

50

Java and GC Effects

e Currently processing 70MB dataset
o Elapsed time > 72 hours
e Need more data points!
TPC-H3 Memory vs Performance
I ! I ! I I s IIOMB
i —_— — 40MB||

Memory (KB)

45000

400

350

300

250

200

150

100

50

TPC-H6 Memory vs Performance

j —

— 10MB
— 40MB [

2000 4000

6000
Memory (KB)

8000

10000 12000



Java and GC Effects

e Currently processing 70MB dataset

o Elapsed time > 72 hours

e Guru: Looking into GC Trigger



java_lang_system_gc
full_gc_alot
scavenge_alot
allocation_profiler
jvmti_force gc
gc_locker
heap_inspection
heap_dump

no_gc
allocation_failure
tenured_generation_full

metadata_GC_threshold

GC Causes

hotspot/src/share/vm/gc_interface/gccause.cpp

cms_generation_full
cms_initial_mark

cms_final_remark

cms_concurrent_mark

old_generation_expanded_on_last_scavenge
old_generation_too_full _to_scavenge

adaptive_size policy

g1_inc_collection_pause

g1_humongous_allocation

last_ditch_collection

last_gc_cause



Java and GC Effects

Currently processing 40MB dataset

o Elapsed time > 72 hours
Guru: Looking into GC Trigger
Obtained openjdk-8
Compiled openjdk-8
Yet to identify GC trigger threshold



Characterization of Workload - 1

Given n streams at frequencies <f1, 2, f3.... fn> to the galileo, and a windowed query containing joins
over the streams, what percentage of the expected results can our query engine produce? A simplistic
example:

stream_1 = screen brightness readings of the form <user, time, value> from mobile phones
stream_2 = heartbeats of the form <user, time> from PCs

Query: What times did user a use both her phone and PC at the same time in the past day? How about
with stream frequencies, window size, and number of stream sources



Characterization of Workload - 2

The challenges involved:

Selecting the optimal join algorithm

Handling windows that won't fit into memory (we have < 256MB)
Possibly taking advantage of varying frequencies for each stream
Handling increasing frequencies



Next Steps

Getting a full-fledged dataset (from our service)
o  Currently very slow. Acquired 280KB
o Increased data collection speed to 1 reading/s (from 1 reading/5s)

Raise GC Threshold and re-run experiments

Setting up a simple benchmark based on the described workload
Figuring out storage and indexing strategies

Cost Estimation for different join strategies



PocketData Benchmark

Naveen, Sankar, Saravanan, Sathish



Resolved Challenges from Last week

Parallelization of Parsing and Extraction of Log Files — user based.
|dentification of the application names for 32 million queries — removed

thread_id as the mapping criteria.

Added PRAGMA support to latest JSSQLParser provided — stil unable to parse

2266 queries of the form PRAGMA <name>(‘<value>’') & PRAGMA <name> = ‘<value>’.

Extrated few more features of SQL - # of joins (outer, left ...} , # of union...



Challenges Faced/Facing...

JSQLParser still doesn’t parse 4,207,615 queries:

s key (column name): 1,973,090
SELECT key, value FROM CalendarCache WHERE key=?

**(()) double parenthesis: 339,575
SELECT _id, contact _last _updated timestamp FROM view contacts WHERE ((_id IN default_directory))

**PRAGMA: 2,266

PRAGMA table info(‘nfcTapEvent')
PRAGMA secure _delete = ON;

More to be analyzed...



Long Tail Distribution of # of queries / app

25000000
20000000
15000000

5000000

10000000

Long Tail distribution - # of queries / app

AL3J4
2J03sddy

eyjag Al4

uteyd Aay|

|

o8uepue4
awouy)

43qQIA

19315189y aienbg
1an02s1Q
3)1IqIUA]
?dueul4

X0J2.14

UIN

ujpayun
Jasniadng
1SI[4apUNN
plieoqAay 98009
sn|d sieys Asaneg
oglam
syonqJels
Apwi

01D

JaYieap\ 19 SMaN
19204
Japuopn010yd
Japurl

Jepuaje)

s)se) 3193204
pleoqAay AayIms
Andas 09¢
NdS3

Hqu4

JanImL

3|puny uozewy
)ooqade4
a8e.03s syoeu0)
+9|8009

$921AJ3S Ae|d 918009



Maximum # of queries in 10 ms range

user_id no_of _queries avg_response_time (ps)

4 80 57673.125
7 69 56148
10 66 82759.5909
2 60 53961.0167
5 55 54337.0727
9 50 121999
8 47 145619.4681
6 39 98032.8718
11 38 89813.5263
37 124932.4324

21 87041.381




Roadmap

*»*Parse most of the SQLs.

s Extract more features.
**Prepare Report for check-point.
s*Start building the model.



Embedded Database
Benchmark

Team CodeBlooded



What makes a good embedded database?

* Small footprint
* |nstallation size

* Less memory consumption
* Heap size variations

* Self managed
« No DBA involvement, logging, recovery

* Portability
* Single file databases



What makes a good embedded database?

* May or may not require persistence
* Only in-memory mode

 Support for mobile devices
* Power consumption



Embedded Applications

» Key-Value stores
* mobile apps, browser cookies/bookmarks
* multiple inserts and reads

* Internet of Things

e sensors, cameras, id scanners

* heavy inserts, aggregate queries, joins
« Read-only persistence

« programmed devices, cache
* heavy reads



Embedded Applications

* Version/Source Control
* Fossil
« mixed load, join queries

* Desktop media applications
* iTunes, photos
* moderate inserts, heavy reads



Next Steps

* YCSB code for generating workloads

 Poleposition benchmark test suite to compare database engines
and object-relational mapping technology

« Comparing available results to find meaningful data

 Using information from these benchmarks to come up with
initial workloads




