

%0 = add i32 %1, 5

 y := 1
 y := 2
 x := y

 y1 := 1
 y2 := 2
 x1 := y2

errs() << "Function body:\n"
F.dump();

for (auto& B : F) {
 errs() << "Basic block:\n";
 B.dump();

 for (auto& I : B) {
 errs() << "Instruction: ";
 I.dump();
 }
}

Lightweight Runtimes
Team Sparkle

Dhinesh
Shiva
Keno
Guru

Next Steps
● Study behaviour under memory pressure

● Java and GC effects on Galileo

● Characterize specific workloads we want to support
○ rapid inserts
○ rapid queries
○ range queries

● Find bottlenecks in current implementations

● Benchmark streaming data eg. light sensor from phone

 <- Still stuck here

Java and GC Effects
● Currently processing 70MB dataset

○ Elapsed time > 72 hours

● Guru: Looking into GC Trigger

Java and GC Effects
● Currently processing 70MB dataset

○ Elapsed time > 72 hours

● Need more data points!

Java and GC Effects
● Currently processing 70MB dataset

○ Elapsed time > 72 hours

● Guru: Looking into GC Trigger

GC Causes

● java_lang_system_gc

● full_gc_alot

● scavenge_alot

● allocation_profiler

● jvmti_force_gc

● gc_locker

● heap_inspection

● heap_dump

● no_gc

● allocation_failure

● tenured_generation_full

● metadata_GC_threshold

● cms_generation_full

● cms_initial_mark

● cms_final_remark

● cms_concurrent_mark

● old_generation_expanded_on_last_scavenge

● old_generation_too_full_to_scavenge

● adaptive_size_policy

● g1_inc_collection_pause

● g1_humongous_allocation

● last_ditch_collection

● last_gc_cause

hotspot/src/share/vm/gc_interface/gccause.cpp

Java and GC Effects
● Currently processing 40MB dataset

○ Elapsed time > 72 hours

● Guru: Looking into GC Trigger
● Obtained openjdk-8
● Compiled openjdk-8
● Yet to identify GC trigger threshold

Characterization of Workload - 1
Given n streams at frequencies <f1, f2, f3…. fn> to the galileo, and a windowed query containing joins
over the streams, what percentage of the expected results can our query engine produce? A simplistic
example:

stream_1 = screen brightness readings of the form <user, time, value> from mobile phones

stream_2 = heartbeats of the form <user, time> from PCs

Query: What times did user a use both her phone and PC at the same time in the past day? How about
with stream frequencies, window size, and number of stream sources

Characterization of Workload - 2
The challenges involved:

● Selecting the optimal join algorithm
● Handling windows that won’t fit into memory (we have < 256MB)
● Possibly taking advantage of varying frequencies for each stream
● Handling increasing frequencies

Next Steps

● Getting a full-fledged dataset (from our service)
○ Currently very slow. Acquired 280KB
○ Increased data collection speed to 1 reading/s (from 1 reading/5s)

● Raise GC Threshold and re-run experiments
● Setting up a simple benchmark based on the described workload
● Figuring out storage and indexing strategies
● Cost Estimation for different join strategies

PocketData Benchmark
Naveen, Sankar, Saravanan, Sathish

Resolved Challenges from Last Week

Parallelization+ of+Parsing+and+Extraction+of+Log+Files+– User based.+

Identification+of+the+application+names+for+32+million+queries+– removed

thread_id as the mapping criteria.

Added+PRAGMA+support+to+latest+JSQLParser provided+– still unable to parse

2266 queries of the form PRAGMA <name>(‘<value>’) & PRAGMA <name> = ‘<value>’.

Extrated few+more+features+of+SQL+H # of joins (outer, left …) , # of union…

Challenges Faced/Facing…

JSQLParser still+doesn’t+parse+4,207,615+queries:

!key+(column+name):+1,973,090

SELECT&key,&value&FROM&CalendarCacheWHERE&key=?

!(())+double+parenthesis:+339,575

SELECT&_id,&contact_last_updated_timestamp FROM&view_contacts WHERE&((_id&IN&default_directory))

!PRAGMA:+2,266

PRAGMA&table_info('nfcTapEvent')

PRAGMA&secure_delete =&ONN

More+to+be+analyzed…

Long Tail distribution - # of queries / app

Maximum # of queries in 10 ms range

user_id no_of_queries avg_response_time (µs)
4 80 57673.125

7 69 56148

10 66 82759.5909

2 60 53961.0167

5 55 54337.0727

9 50 121999

8 47 145619.4681

6 39 98032.8718

11 38 89813.5263

3 37 124932.4324

1 21 87041.381

Roadmap

!Parse+most+of+the+SQLs.

!Extract+more+features.

!Prepare+Report+for+checkHpoint.

!Start+building+the+model.

Embedded Database
Benchmark

Team CodeBlooded

What makes a good embedded database?
• Small footprint
• Installation size

• Less memory consumption
• Heap size variations

• Self managed
• No DBA involvement, logging, recovery

• Portability
• Single file databases

What makes a good embedded database?
• May or may not require persistence
• Only in-memory mode

• Support for mobile devices
• Power consumption

Embedded Applications
• Key-Value stores
• mobile apps, browser cookies/bookmarks
• multiple inserts and reads

• Internet of Things
• sensors, cameras, id scanners
• heavy inserts, aggregate queries, joins

• Read-only persistence
• programmed devices, cache
• heavy reads

Embedded Applications
• Version/Source Control
• Fossil
• mixed load, join queries

• Desktop media applications
• iTunes, photos
• moderate inserts, heavy reads

Next Steps
• YCSB code for generating workloads
• Poleposition benchmark test suite to compare database engines

and object-relational mapping technology
• Comparing available results to find meaningful data
• Using information from these benchmarks to come up with

initial workloads

