
Embedded Databases 

MicroBenchmark
Team CodeBlooded



YCSB Results – WorkLoad A



YCSB Results – WorkLoad B



YCSB Results – WorkLoad C



Observations

 SQLite showed better performance in the 
very first run but was seriously lagging by 
the third run 

 Berkley DB performs best for read-only 
workloads and is somewhere in between and 
performs average on other workloads. 

 H2 and HSQLDB are neck and neck in 
workloads A and B. In read-only workload, 
HSQLDB seems to be the better of the two. 



Observations

 Apache Derby seems to perform poorly on 
read-only workload. It is not very convincing 
on the others either. 

 MongoDB seems to perform well on all 3 
workloads. 



Why another benchmark?

 YCSB is general in nature – does not address 
embedded databases or their applications

 No true independent comparison of 
embedded databases

 Need for a benchmark that understands 
embedded databases and what they aim to 
do



The new Benchmark

 Having tested on available workloads, we 
now plan to develop our own micro-
benchmark for embedded databases. The 
Final deliverable for the project comprises of 
3 major sections: 

1. The Test suite 

2. The Connectors for the databases and 

3. The Workloads 



The new Benchmark



Next Steps – Design Features

 In the initial phase of implementation we will 
aim to measure the Runtime, Throughput, 
Latency and Memory consumption at 
intervals of time. 

 Why? - Performance & utilization of memory 
are key characteristics of embedded 
databases 

 At the end of a test run the Test Suite will log 
the results of the current workload and 
generate csv files with recorded results 



Lightweight Runtimes
Team Sparkle

Dhinesh
Shiva
Keno
Guru



The goal again
● Understand characteristics of our intended workload (streaming data)
● Study capabilities of currently available IoT hardware (Intel Galileo)

● Intel Quark 32-bit CPU
● 400MHz processor speed
● 256MB DDR3 memory
● Debian Wheezy (7.9)

(This is the setup for all experimental results presented later)
● Design a lightweight query processor from an existing implementation (562)



Evaluating what we currently have

TPCH-3 with increasing datasets, in 
comparison with SQLite

TPCH-3 with increasing heap size 
allocation



Identifying Bottlenecks

hprof cpu samples for TPCH-3 on a 50MB dataset



Narrowing Down
● Thermostat 
● Possible stream sources:

● Tracking entry and exit from rooms
● Logging room temperatures

● Generate and evaluate queries that join and aggregate over both streams

Leaning towards aggregations for which some level of accuracy is expected, but 
not necessarily an exact result

Other similar use-cases would also be considered



Necessary Modifications
● Query optimizer that takes into account streaming data characteristics

○ Stream frequencies
○ Window sizes

● Query interface that allows only a subset of SQL queries relevant to us
● An ingestion interface, which also helps track stream frequencies



A Future Evaluation Strategy
Given two streams,

● Run query requiring a join over both streams
● Evaluate percentage of expected results we produce over given window
● Repeat with increasing stream frequencies
● Repeat with increasing window sizes



Moving Forward, and the Big Picture



PocketData
Naveen, Sankar, Saravanan, Sathish 



What did we do last week?
Completed

● Extracting joins.
● Extracting where clause conditions.
● Aggregate functions.

In progress

● Extracting data from sub queries
● Normalizing data (like converting join on to where class conditions)
● Cluster Analysis



Our findings vs TPC Mobile paper
Mostly agrees with TPC-mobile paper.

Except few cases like MAX.

- 62769 vs 314,970
- We did not account for aggregate functions in subqueries
- MAX is commonly used in subqueries of form “Give me biology class 1st rank 

holder’s all subject marks”.



Cluster Analyzing
● Started analyzing apps from “real time notification” cluster.

● What does a real time notification app do?
- Runs a service 24 x 7 unless battery saver is on to “poll” the server for 

updates and notifies user in realtime.

● We analyzed read write ratio of 8 apps: (Twitter, Facebook, Messenger, 
Google+, Hangouts, LinkedIn, Whatsapp, Pinterest)



Google+ vs LinkedIn
Similarities:
● Both social networking apps
● Both have features like posts, likes, comments, publically sharing posts, 

follow, connections, news feed etc.,
● No one uses any of these two.
Differences:



Why so much difference in select and insert?
● Google+ being used as a content provider for other related apps.

○ Profile pic & profile URL for contact, gmail, hangout etc.,

● LinkedIn is independent.
● The more an app is used/opened the more SELECT queries count is. In 

Google+ the users are other apps.
● If the app is hardly used, insert queries percentage will be very high.

What is the inference?
Number of SELECT query Vs INSERT query ratio is highly correlated with 

usage.



Hangout Vs Whatsapp
Similarities:
1. Instant messaging apps
2. Stores notification against each contacts with recent messages, sorted by 

most recent message.
Differences:

Inference:



Hangout Vs Whatsapp
Updates:
● Updates unread notification against each contact.
● Updates the sorted by timestamp for each new message.
● Updates recent messages.
● Updates each contact that the user is available for new options like calls.

For a heavily used instant app,
 Select > updates > inserts

Inference:
Heavily used instant message app with normalized tables will have huge 
percentage of updates.



Next step
Finding patterns of access within a cluster.

Parallely work on parser to extract more data.





●
●
●

●
●



●
○

●

○

8:19 PM Today

Resolve

Arindam , you said you commit your code?



●
○

●
○
○



●

●







●
○
○


	Slide 1
	YCSB Results – WorkLoad A
	YCSB Results – WorkLoad B
	YCSB Results – WorkLoad C
	Observations
	Observations
	Why another benchmark?
	The new Benchmark
	The new Benchmark
	Next Steps – Design Features

