Embedded Databases

® MicroBenchmark
Team CodeBlooded

YCSB Results - WorkLoad A

Throughput vs Target Throughput

[

- EEEEEEEEE 8

Workload A (50% reads, 50% updates)

Overall Runtime(ms) vs Target Throughput

20000

70000 o—'—'—"’_/\v‘

60000

L T] L

1 M J
L LR

50000 =
5000 G000 7000 5000 9000 10000

40000
i 2 e HEQLDE sl D bry i S0 it e s B rkeley DB ==li==MongoDE

30000

20000

Read Latency(ps) vs Target Throughput
10000 m——" > —~

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

e H? emf@gumHSOLDB ==@==Derby ==@pmmSQLite ==@==Berkeley DB ==@==MongoDB

I = =

1000 2000 3000 4000 5000 G000 TDOO E000 9000 10000

S EEEBEEEEEEE

e H? e HZ0LDE sl Derby i 50 ite s Berieley DB sl MonzoDB

YCSB Results - WorkLoad B

Throughput vs Target Throughput

1000
900
B0
Workload B (95% reads, 5% updates) 700
G600
. 500
Overall Runtime(ms) vs Target Throughput 200
10000 300 -
000 200 .___....-—.____.__.____...-——-“— - Ty
2000 100 H-h—w..‘-_-_._.
7000 o
6000 100 2000 3000 4000 5000 G000 TO0DO 3000 000 10000
5000 i H? e H5O LD =i Dierby s SO)Lite e Berkeley DB s=i==MongoDB
2000 \.—.'—_*—.‘-‘-L— - - ®
3000
2000 - * G
1000 Read Latency(ps) vs Target Throughput
0 1400

1000 2000 3000 4000 5000 6000 7000 8000 S000 10000

1200
=7 == H5(| DB ===Derby ==@==S0ite ==@=Bcrkeley DB ==8==NMongoDB 1000 \—..__'/‘\
= ‘\‘\"m
GO0

MR ——— — =

1000 2000 3000 4000 OO0 G000 700D 3000 2000 10000

e} e H50L DB === Derby =—fe=50)]ite ==§==perkeley DB =@#=MongoDB

YCSB Results - WorkLoad C

Workload C (100% reads) Throughput vs Target Throughput

3000

Overall Runtime(ms) vs Target Throughput 2500

6000 2000
5000 ._____._____.....-—-0-..__‘___-.‘____....___‘__.___. 1500
4000 1000
3000 SO0

——
2000 o

1000 2000 3000 4000 S000 6000 OO0 BO00 5000 10000

1000
\——.—.—.——.-H—r/. il H? el HEOLDE —.—DErh'll il 50 Lt —.—BEI"kE|E1||' DE ==l MongoDB

1000 2000 3000 4000 S0OD G000 OO0 2000 S000 10000

amfenH? ssfes H5OLDE ssies Derby sefes50) ite sefesBerkeley DB sslssMongoDB

Read Latency{ps) vs Target Throughput
1600
1400
1200
1000
BOD

GO0

200

T— *-—.__-_.__‘.-—-'-
1000 2000 2 3000 24000 25000 6000 7000 2 BOO0D SO00 10000

i H} e HE QLD === Darby =em=s0)] it ====gerkeley DB ==@==MongoDB

Observations

SQLite showed better performance in the
very first run but was seriously lagging by
the third run

Berkley DB performs best for read-only
workloads and is somewhere in between and
performs average on other workloads.

H2 and HSQLDB are neck and neck in
workloads A and B. In read-only workload,
HSQLDB seems to be the better of the two.

Observations

Apache Derby seems to perform poorly on

read-only workload. It is not very convincing
on the others either.

MongoDB seems to perform well on all 3
workloads.

Why another benchmark?

YCSB is general
embedded data

INn nature - does not address
bases or their applications

No true independent comparison of

embedded data

Need for a benc
embedded data
do

0AdSeS

nmark that understands
pases and what they aim to

The new Benchmark

Having tested on available workloads, we
now plan to develop our own micro-
benchmark for embedded databases. The
Final deliverable for the project comprises of
3 major sections:

1. The Test suite
2. The Connectors for the databases and
3. The Workloads

The new Benchmark

Workload | Target Application | Target Application Features
Type Example
A Read only Programmed 100% Reads
persistence devices, Caches
B Eev value stores Mobile apps., 50% Reads. 40% Inserts
Browser 10%Updates
cookies/Bookmarks
C Desktop Media iTunes, photos 70%% Reads, 2074 Inserts,
Applications 10% Updates
D Internet of things Sensors, Cameras, 80% Complex Inserts
Id Scanners (datatypes such as
blobs/clobs). 20% Complex
Reads (joins, aggregate
functions)
E General Purpose Version/Source 50% Reads (with joins),
Applications Control 30% Inserts, 20% Updates

Table 1:

Workload Classification

Next Steps - Design Features

In the initial phase of implementation we will
aim to measure the Runtime, Throughput,
Latency and Memory consumption at
intervals of time.

Why? - Performance & utilization of memory
are key characteristics of embedded
databases

At the end of a test run the Test Suite will log
the results of the current workload and
generate csv files with recorded results

Lightweight Runtimes

Team Sparkle

Dhinesh
Shiva

The goal again

e Understand characteristics of our intended workload (streaming data)
e Study capabilities of currently available loT hardware (Intel Galileo)
e |Intel Quark 32-bit CPU
e 400MHz processor speed
e 256MB DDR3 memory
e Debian Wheezy (7.9)
(This is the setup for all experimental results presented later)
e Design a lightweight query processor from an existing implementation (562)

Time Taken (s)

7000

6000

5000

4000

3000

2000

1000

Evaluating what we currently have

Data Scaling - T3

T I
—— SparkleDB
— SQLite

20 40 60 80 100 120 140

Data Size (MB)

TPCH-3 with increasing datasets, in

comparison with SQLite

ce (s)

Performan

200

150

100

50

TPC-H3 Memory vs Performance

T
— 10MB
— 40 MB

5000 10000 15000 20000 25000 30000 35000 40000 45000
Memory (KB)

TPCH-3 with increasing heap size
allocation

|dentifying Bottlenecks

dar.BaseCalendar.getCalendarDateFromFixedDate
sun.util.calendar.Zonelnfo.getOffsets
java.util.Arrays.copyOf

java.lang.Character.digit

java.lang.String.<init>
sun.util.calendar.Zonelnfo.getOffsetsByWall
java.util.HashMap.hash
.jsglparser.schema.Column.getWholeColumnhName
sun.util.calendar.Gregorian$Date.<init>
java.lang.String.indexOf

others (185)
sun.util.calendar.BaseCalendar.normalizeMonth
java.lang.AbstractStringBuilder.append
edu.buffalo.cse562.0TO.Datum.<init>
sun.util.calendar.BaseCalendar.getFixedDate
sun.misc.FloatingDecimal.readJavaFormatString
java.util.HashMap.get
java.io.BufferedReader.readLine
sun.misc.FloatingDecimal.parseDouble
java.lang.String.equals
sun.nio.cs.US_ASCIlI$Decoder.decodeArrayLoop

hprof entries

0_

5_

10 —
15 —
20 -

% active time

hprof cpu samples for TPCH-3 on a 50MB dataset

Narrowing Down

e Thermostat
e Possible stream sources:
e Tracking entry and exit from rooms
e Logging room temperatures
e Generate and evaluate queries that join and aggregate over both streams

Leaning towards aggregations for which some level of accuracy is expected, but
not necessarily an exact result

Other similar use-cases would also be considered

Necessary Modifications

e Query optimizer that takes into account streaming data characteristics

o Stream frequencies
o Window sizes

e Query interface that allows only a subset of SQL queries relevant to us
e An ingestion interface, which also helps track stream frequencies

A Future Evaluation Strategy

Given two streams,

Run query requiring a join over both streams

Evaluate percentage of expected results we produce over given window
Repeat with increasing stream frequencies

Repeat with increasing window sizes

Moving Forward, and the Big Picture

Ingestion Interface

Input Input Cutput
Stream Stream Stream
Raw Query
data results
Central
Infrastructure
Queries/Resulis ‘ Queries/Results
Query Interface Other Other
Database Database
Query Cuery
Optimizer Cache

Cluery Plan Executor

Index

Results
Cache

PocketData

Naveen, Sankar, Saravanan, Sathish

What did we do last week?

Completed

e Extracting joins.
e Extracting where clause conditions.
e Aggregate functions.

In progress

e Extracting data from sub queries
e Normalizing data (like converting join on to where class conditions)
e Cluster Analysis

Our findings vs TPC Mobile paper

Mostly agrees with TPC-mobile paper.
Except few cases like MAX.

- 62769 vs 314,970
- We did not account for aggregate functions in subqueries

- MAX is commonly used in subqueries of form “Give me biology class 1% rank
holder’s all subject marks”.

Cluster Analyzing

e Started analyzing apps from “real time notification” cluster.

e \What does a real time notification app do?

- Runs a service 24 x 7 unless battery saver is on to “poll” the server for
updates and notifies user in realtime.

e \We analyzed read write ratio of 8 apps: (Twitter, Facebook, Messenger,
Google+, Hangouts, LinkedIn, Whatsapp, Pinterest)

Google+ vs LinkedIn

Similarities:
e Both social networking apps
e Both have features like posts, likes, comments, publically sharing posts,

follow, connections, news feed etc.,

e No one uses any of these two.
Differences:

App SELECT INSERT PRAGMA DELETE UPDATE

Google+ 1384356 24898 (1.5%) 150477(9.09%) | 5226 (0.31%) 89391 (5.4%)
(83.67%)

LinkedIn 431 (4.29%)

7221(71.97%)

610 (6.07%)

1478 (14.72%)

294 (2.93%)

Why so much difference in select and insert?

e (Google+ being used as a content provider for other related apps.
o Profile pic & profile URL for contact, gmail, hangout etc.,

e Linkedln is independent.

e The more an app is used/opened the more SELECT queries count is. In
Google+ the users are other apps.

e |[f the app is hardly used, insert queries percentage will be very high.

What is the inference?
Number of SELECT query Vs INSERT query ratio is highly correlated with
usage.

Hangout Vs Whatsapp

Similarities:

1. Instant messaging apps
2. Stores naotification against each contacts with recent messages, sorted by
most recent message.

Differences:

App

SELECT

INSERT

PRAGMA

DELETE

UPDATE

Hangouts

631989(55.9%)

109006(9.64%)

175766(15.54%)

77892(6.88%)

135892(12.02%)

WhatsApp

75698(55%)

2734(1.98%)

22390(16.26%)

6603(4.79%)

30192(21.93%)

Hangout Vs Whatsapp

Updates:
e Updates unread notification against each contact.
e Updates the sorted by timestamp for each new message.
e Updates recent messages.
e Updates each contact that the user is available for new options like calls.

For a heavily used instant app,
Select > updates > inserts

Inference:
Heavily used instant message app with normalized tables will have huge
percentage of updates.

Next step

Finding patterns of access within a cluster.

Parallely work on parser to extract more data.

LLVM Query Runtime

VALKyrie

Ladan
Vinayak

Progress

LLVM Prototypes

e Accessing variables declared in C land
e Dereferencing pointers
e Passing function arguments

Started work on implementation -

e Schema
@ Basic table materialization

Review of Our Challenges

e Dealing with immutability that SSA entails

o LLVM does require all register values to be in SSA form

e Accessing variables and functions defined outside LLVM

O Given an array defined in C, print its elements

Dealing with immutability

e Phi Node

o Use for branching (If-Else) and simple loops

e Alloca

o LLVM does not require (or permit) memory objects to be in SSA form
o all memory accesses are explicit with load/store instructions

Accessing variables in C land

e Array.c

int array[5] = {0,1,4,9,16}

e Looper.cpp

Constant *conArray = module->getOrInsertGlobal("array", ArrayType::get(intType, 5));
Value* indices|[2];

indices[0] = ConstantInt::get(intType, 0);

indices[1] = i;

ArrayRef<Value *> indicesRef(indices);

Value *v = builder.CreatelLoad(builder.CreateGEP(conArray, indicesRef, "arr"

$> 11lc dump.ll -o dump.s

$> gcc -std=c99 dump.s array.c -o finalprog
$> ./finalprog

01409 16

Passing function args

print(array, SIZE);

auto args = printFunction->arg begin();
Value *array = args++;
Value *size = args++;

Value* indices[1];
indices[0@] = 1i;
ArrayRef<Value *> indicesRef(indices);

Value *tmp = builder.CreateGEP(array, indicesRef, "array");

Next Steps

Implementing the Scan operator
Start looking into the Java/C++ interface
e Challenges

o Mapping expressions to a good representation in c++
o Accessing structs and unions defined outside LLVM

	Slide 1
	YCSB Results – WorkLoad A
	YCSB Results – WorkLoad B
	YCSB Results – WorkLoad C
	Observations
	Observations
	Why another benchmark?
	The new Benchmark
	The new Benchmark
	Next Steps – Design Features

