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YCSB Results - WorkLoad A

Throughput vs Target Throughput

[

- EEEEEEEEE 8

Workload A (50% reads, 50% updates)
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YCSB Results - WorkLoad B

Throughput vs Target Throughput
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YCSB Results - WorkLoad C

Workload C (100% reads) Throughput vs Target Throughput
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Observations

SQLite showed better performance in the
very first run but was seriously lagging by
the third run

Berkley DB performs best for read-only
workloads and is somewhere in between and
performs average on other workloads.

H2 and HSQLDB are neck and neck in
workloads A and B. In read-only workload,
HSQLDB seems to be the better of the two.



Observations

Apache Derby seems to perform poorly on

read-only workload. It is not very convincing
on the others either.

MongoDB seems to perform well on all 3
workloads.



Why another benchmark?

YCSB is general
embedded data

INn nature - does not address
bases or their applications

No true independent comparison of

embedded data

Need for a benc
embedded data
do

0AdSeS

nmark that understands
pases and what they aim to




The new Benchmark

Having tested on available workloads, we
now plan to develop our own micro-
benchmark for embedded databases. The
Final deliverable for the project comprises of
3 major sections:

1. The Test suite
2. The Connectors for the databases and
3. The Workloads




The new Benchmark

Workload | Target Application | Target Application Features
Type Example
A Read only Programmed 100% Reads
persistence devices, Caches
B Eev value stores Mobile apps., 50% Reads. 40% Inserts
Browser 10%Updates
cookies/Bookmarks
C Desktop Media iTunes, photos 70%% Reads, 2074 Inserts,
Applications 10% Updates
D Internet of things Sensors, Cameras, 80% Complex Inserts
Id Scanners (datatypes such as
blobs/clobs). 20% Complex
Reads (joins, aggregate
functions)
E General Purpose Version/Source 50% Reads (with joins),
Applications Control 30% Inserts, 20% Updates

Table 1:

Workload Classification




Next Steps - Design Features

In the initial phase of implementation we will
aim to measure the Runtime, Throughput,
Latency and Memory consumption at
intervals of time.

Why? - Performance & utilization of memory
are key characteristics of embedded
databases

At the end of a test run the Test Suite will log
the results of the current workload and
generate csv files with recorded results



Lightweight Runtimes
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The goal again

e Understand characteristics of our intended workload (streaming data)
e Study capabilities of currently available loT hardware (Intel Galileo)
e |Intel Quark 32-bit CPU
e 400MHz processor speed
e 256MB DDR3 memory
e Debian Wheezy (7.9)
(This is the setup for all experimental results presented later)
e Design a lightweight query processor from an existing implementation (562)
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|dentifying Bottlenecks

dar.BaseCalendar.getCalendarDateFromFixedDate
sun.util.calendar.Zonelnfo.getOffsets
java.util.Arrays.copyOf

java.lang.Character.digit

java.lang.String.<init>
sun.util.calendar.Zonelnfo.getOffsetsByWall
java.util.HashMap.hash
.jsglparser.schema.Column.getWholeColumnhName
sun.util.calendar.Gregorian$Date.<init>
java.lang.String.indexOf

others (185)
sun.util.calendar.BaseCalendar.normalizeMonth
java.lang.AbstractStringBuilder.append
edu.buffalo.cse562.0TO.Datum.<init>
sun.util.calendar.BaseCalendar.getFixedDate
sun.misc.FloatingDecimal.readJavaFormatString
java.util.HashMap.get
java.io.BufferedReader.readLine
sun.misc.FloatingDecimal.parseDouble
java.lang.String.equals
sun.nio.cs.US_ASCIlI$Decoder.decodeArrayLoop

hprof entries
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hprof cpu samples for TPCH-3 on a 50MB dataset



Narrowing Down

e Thermostat
e Possible stream sources:
e Tracking entry and exit from rooms
e Logging room temperatures
e Generate and evaluate queries that join and aggregate over both streams

Leaning towards aggregations for which some level of accuracy is expected, but
not necessarily an exact result

Other similar use-cases would also be considered



Necessary Modifications

e Query optimizer that takes into account streaming data characteristics

o Stream frequencies
o  Window sizes

e Query interface that allows only a subset of SQL queries relevant to us
e An ingestion interface, which also helps track stream frequencies



A Future Evaluation Strategy

Given two streams,

Run query requiring a join over both streams

Evaluate percentage of expected results we produce over given window
Repeat with increasing stream frequencies

Repeat with increasing window sizes



Moving Forward, and the Big Picture

Ingestion Interface

Input Input Cutput
Stream Stream Stream
Raw Query
data results
Central
Infrastructure
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What did we do last week?

Completed

e Extracting joins.
e Extracting where clause conditions.
e Aggregate functions.

In progress

e Extracting data from sub queries
e Normalizing data (like converting join on to where class conditions)
e Cluster Analysis



Our findings vs TPC Mobile paper

Mostly agrees with TPC-mobile paper.
Except few cases like MAX.

- 62769 vs 314,970
- We did not account for aggregate functions in subqueries

- MAX is commonly used in subqueries of form “Give me biology class 1% rank
holder’s all subject marks”.



Cluster Analyzing

e Started analyzing apps from “real time notification” cluster.

e \What does a real time notification app do?

- Runs a service 24 x 7 unless battery saver is on to “poll” the server for
updates and notifies user in realtime.

e \We analyzed read write ratio of 8 apps: (Twitter, Facebook, Messenger,
Google+, Hangouts, LinkedIn, Whatsapp, Pinterest)



Google+ vs LinkedIn

Similarities:
e Both social networking apps
e Both have features like posts, likes, comments, publically sharing posts,

follow, connections, news feed etc.,

e No one uses any of these two.
Differences:

App SELECT INSERT PRAGMA DELETE UPDATE

Google+ 1384356 24898 (1.5%) 150477(9.09%) | 5226 (0.31%) 89391 (5.4%)
(83.67%)

LinkedIn 431 (4.29%)

7221(71.97%)

610 (6.07%)

1478 (14.72%)

294 (2.93%)




Why so much difference in select and insert?

e (Google+ being used as a content provider for other related apps.
o Profile pic & profile URL for contact, gmail, hangout etc.,

e Linkedln is independent.

e The more an app is used/opened the more SELECT queries count is. In
Google+ the users are other apps.

e |[f the app is hardly used, insert queries percentage will be very high.

What is the inference?
Number of SELECT query Vs INSERT query ratio is highly correlated with
usage.



Hangout Vs Whatsapp

Similarities:

1. Instant messaging apps
2. Stores naotification against each contacts with recent messages, sorted by
most recent message.

Differences:

App

SELECT

INSERT

PRAGMA

DELETE

UPDATE

Hangouts

631989(55.9%)

109006(9.64%)

175766(15.54%)

77892(6.88%)

135892(12.02%)

WhatsApp

75698(55%)

2734(1.98%)

22390(16.26%)

6603(4.79%)

30192(21.93%)




Hangout Vs Whatsapp

Updates:
e Updates unread notification against each contact.
e Updates the sorted by timestamp for each new message.
e Updates recent messages.
e Updates each contact that the user is available for new options like calls.

For a heavily used instant app,
Select > updates > inserts

Inference:
Heavily used instant message app with normalized tables will have huge
percentage of updates.



Next step

Finding patterns of access within a cluster.

Parallely work on parser to extract more data.



LLVM Query Runtime
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Progress

LLVM Prototypes

e Accessing variables declared in C land
e Dereferencing pointers
e Passing function arguments

Started work on implementation -

e Schema
@ Basic table materialization



Review of Our Challenges

e Dealing with immutability that SSA entails

o LLVM does require all register values to be in SSA form

e Accessing variables and functions defined outside LLVM

O Given an array defined in C, print its elements



Dealing with immutability

e Phi Node

o Use for branching (If-Else) and simple loops

e Alloca

o LLVM does not require (or permit) memory objects to be in SSA form
o all memory accesses are explicit with load/store instructions



Accessing variables in C land

e Array.c

int array[5] = {0,1,4,9,16}

e Looper.cpp

Constant *conArray = module->getOrInsertGlobal("array", ArrayType::get(intType, 5));
Value* indices|[2];

indices[0] = ConstantInt::get(intType, 0);

indices[1] = i;

ArrayRef<Value *> indicesRef(indices);

Value *v = builder.CreatelLoad(builder.CreateGEP(conArray, indicesRef, "arr"




$> 11lc dump.ll -o dump.s

$> gcc -std=c99 dump.s array.c -o finalprog
$> ./finalprog

01409 16




Passing function args

print(array, SIZE);

auto args = printFunction->arg begin();
Value *array = args++;
Value *size = args++;

Value* indices[1];
indices[0@] = 1i;
ArrayRef<Value *> indicesRef(indices);

Value *tmp = builder.CreateGEP(array, indicesRef, "array");




Next Steps

Implementing the Scan operator
Start looking into the Java/C++ interface
e Challenges

o Mapping expressions to a good representation in c++
o Accessing structs and unions defined outside LLVM
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