
Policy Exploration for JITDs 
(Java)

By 

Team Datum



PAST : Studying Existing Implementation

• Understanding different types of Cogs: ConcatCog, 
ArrayCog, BTreeCog, SortedArrayCog

• Current implementation modes: Database Cracking, 
Adaptive Merge

• Hybrid modes : Swap, Transition



• Replicated the results from the paper by running the current 
implementation on many data sets of uniform distribution.

• Written Python scripts to generate graphs from the generated output 
file.

• Achieved near to accurate results as compared to the graphs 
presented in the paper for the modes:
 Cracking

 Adaptive Merge

 Swap

 Transition

PAST: Replication



PAST: Graphs – 1 (Cracking)

Tested with : 
mode cracker 
init 100000000 
seqread 5000 
write 10000000 
seqread 5000 

System Specifications:

Dual core 2.40 GHz Intel i5 
8 GB of RAM
Ubuntu 14.10 and JDK 1.7
JVM heap size was set to 5 GB
100MB of stack space. 



PAST: Graphs – 2 (Adaptive Merge)

Tested with : 
mode simplemerge
init 10000000 
seqread 5000 
write 10000000 
seqread 5000 

System Specifications:

Dual core 2.40 GHz Intel i5 
8 GB of RAM
Ubuntu 14.10 and JDK 1.7
JVM heap size was set to 5 GB
100MB of stack space. 



PAST: Challenges Faced
• Performance breakdown due to 

Garbage Collection

• Performance issue with Push Down 
Adaptive Merge raising the 
runtimes to exponentially 
increasing curve.

• Tuned the java garbage collector 
parameters to allocate high heap 
sizes and avoid GC invocation at 
runtime. Obtained similar 
performance.



PAST: YCSB’s Zipfian Workload

• Operated the current 
implementation on other 
workloads: Zipfian

• Challenges Faced: Irregular 
Cracking behavior on Zipfian
workload with / without 
splaying.

Figure : Cracking operation with Zipfian
Distribution, 
Tested as: 
KeyRange1000000
Load 1000000
Reads 1000



CURRENT : Profiling

• Studying the low level implementation along with Profiling to check the 
space and time complexities at various blocks of code.

• Used the Profilers :
Visual VM 

JProfiler



CURRENT : Profiling



CURRENT : Profiling



• Added splay operations to the BTree Cog to make the root cog 
nearly balanced.

• It follows the traditional approaches of Zig and Zag operations of a 
Splay Tree.

• Currently, splay policy has been integrated into the Cracking mode 
which splays the root cog with the given lower bound of the range 
query.

Splaying



Splaying Algorithm



Work in Progress..

• Debugging splaying along with cracking.

• Analyzing the issue for null pointers during merge phase, which 
happens for the initial load of 100m.

• Understanding the behavior while running the implementation 
over YCSB’s Zipfian workloads with and without splaying.



Further works to do..

• Debugging splaying along with adaptive merge.

• Splaying with Adaptive Merge on different read / write ratios 
given by YCSB (Zipfian).

• Comparing the above results with uniform workloads to 
determine final policies.



Thank you..!!

Questions?


