
Embedded Database
Benchmark

Team CodeBlooded

Architecture

Case Study - IoT Thermostat

• Model 1 – Application state storage

• Device used only to monitor
temperature and humidity with time
stamp

• Decision making onus shifted onto
central RDBMS

• Workload type 100% insert

Case Study - IoT Thermostat
• Model 2 – Application state storage with programmatic decisions

• Device used to monitor temperature and humidity with time stamp

• Application keeps running values of all important variables and averages. On
finding an outlier application performs an action. Eg Sending an email/dropping
the temperature.

• Two sub implementations seen

– DB stores only running values at a fixed interval (first insert followed by updates)

– DB stores both running value at an interval and each reading for logging purposes (write
dominant, insert heavy with updates performed at defined intervals)

• Workload types

– 1 insert + rest update

– Average case : temperature logged every 5 seconds, updates logged every minute

– Updates = 1/13*100= 8% appx Inserts = 12/13*100 = 92% appx

Case Study - IoT Thermostat
• Model 3 – Modelling actions as SQL queries

• Application queries the database in order to check for outliers (read queries)

• Actions are performed with the help of after insert triggers

• Values for outliers in the selection predicate are predefined by application
programmer

• Workload type 50% insert, 50% read
– Insert and select happen at the same time due to the trigger monitoring the application

– Updates may or may not happen depending on implementation. The number however is marginal
and the overall workload is dominated by the above two queries

• Type of select query – Considering a thermostat that works records temperature
and humidity the select query for threshold monitoring is a simple select with an
attached where clause

• Possible complex query – select query which checks if the average temperature
and average humidity over the entire day is above predefined thresholds

Case Study – Crowd Sensing

•Mote Class Sensor
Networks

Mobile Crowd
Sensing Networks

Traditional Mote Class Sensor
Networks

Mobile Crowd Sensing

● Lesser number of sensors
● Less resources such as compute
power, memory.
● Conditions or environment is
comparably static.

● Large number of mobile sensors. No
need to install, as they already exist in
numbers.
● More compute power, memory and
communication resources.
● Dynamic conditions – type of
sensors, data quality energy level of
device.

Local Analytics in Mobile Crowd
Sensing

●Preprocessing of Raw Data to detect features.
Eg: Pothole detection from 3-axis acceleration

sensor data.
●Data Mediation: Filtering outliers, noise removal
●Context inference
Eg: Kinetics mode of humans.

Resource Limitations
● Alternating between high quality and low quality sensor depending on energy
levels.
● Variation of sampling rates according to priority.

Privacy Security
● Cryptography
● Adding random noise to mask user personal details

Model 1

Feature Detection & Context Inference

● Insert and Select do not happen at same time
● Insert 70 %
● Select 30%
● Complexity of query : Complex

Model 2

Data Mediation

● Insert and Select do not happen at same time
● Insert 50 %
● Select 50%
● Complexity : Simple to complex. Mostly threshold based.

References:

Mobile Crowdsensing: Current State and Future Challenges -
Raghu K. Ganti, Fan Ye, and Hui Lei

	Slide 1
	Architecture
	Case Study - IoT Thermostat
	Case Study - IoT Thermostat
	Case Study - IoT Thermostat
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

