
Optimistic 
Concurrency Control

April 18, 2018

 1



Serializability

Give transactions the illusion of isolation

Executing transactions serially wastes resources

Interleaving transactions creates correctness errors
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The Illusion of Isolation

Preserve order of reads, writes across transactions
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The Illusion of Isolation
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The Illusion of Isolation
Option 1: Avoid situations that break the illusion
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Locking

Lock an object before reading or writing it 

Unlock it after the transaction ends

This is pessimistic!
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Locking
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Not allowed!  T2 has to wait!
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Locking

• This is expensive! Locking costs are still 
incurred even if no conflicts ever actually occur! 

• This is restrictive! Don’t know in advance what 
an xact will do, so can’t allow all schedules.
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We don’t know what a transaction will do until it does.
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So let the transaction do it.
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So let the transaction do it.

(Then check if it broke anything later)
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Optimistic CC

• Read Phase: Transaction executes on a 
private copy of all accessed objects. 

• Validate Phase: Check for conflicts. 

• Write Phase: Make the transaction’s changes 
to updated objects public.
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Read Phase

ReadSet(Ti): Set of objects read by Ti.

WriteSet(Ti): Set of objects written by Ti.
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Validation Phase

Pick a serial order for the transactions 
(e.g., assign id #s or timestamps)
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Validation Phase

Pick a serial order for the transactions 
(e.g., assign id #s or timestamps)

When should we assign Transaction IDs?  (Why?)
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Validation Phase

What can we test to make sure that transactions 
applied their effects in the right order?
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Simple Test
For all i and k for which i < k,  

check that Ti completes before Tk begins.
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Simple Test
For all i and k for which i < k,  

check that Ti completes before Tk begins.
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Is this sufficient?
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Simple Test
For all i and k for which i < k,  

check that Ti completes before Tk begins.

R V W

R V W

Ti

Tk

Is this sufficient? Is this efficient?
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Test 2
For all i and k for which i < k,  

check that Ti completes before Tk begins its write phase 
AND WriteSet(Ti) ⋂ ReadSet(Tk) is empty
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Test 2
For all i and k for which i < k,  

check that Ti completes before Tk begins its write phase 
AND WriteSet(Ti) ⋂ ReadSet(Tk) is empty
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Tk

How do these two conditions help?
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Test 3
For all i and k for which i < k,  

check that Ti completes its read phase first 
AND WriteSet(Ti) ⋂ ReadSet(Tk) is empty 
AND WriteSet(Ti) ⋂ WriteSet(Tk) is empty

R V W

R V W

Ti

Tk
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Test 3
For all i and k for which i < k,  

check that Ti completes its read phase first 
AND WriteSet(Ti) ⋂ ReadSet(Tk) is empty 
AND WriteSet(Ti) ⋂ WriteSet(Tk) is empty
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How do these three conditions help?
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Which test (or tests) should we use?

Hint: How would you implement each test?



Validation
• Assigning the transaction ID, validation, and the 

parts of the write phase are a critical section. 

• Nothing else can go on concurrently. 

• The write phase can be long; This is bad. 

• Optimization: Read-only transactions that don’t 
need a critical section (no write phase).
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Optimistic CC Overheads
• Each operation must be recorded in the readset/

writeset (sets are expensive to allocate/destroy) 

• Must test for conflicts during validation stage 

• Must make validated writes “public”. 

• Critical section reduces concurrency. 

• Can lead to reduced object clustering. 

• Optimistic CC must restart failed transactions.
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Timestamp CC
• Give each object a read timestamp (RTS) and a 

write timestamp (WTS) 

• Give each transaction a timestamp (TS) at the 
start. 

• Use RTS/WTS to track previous operations on the 
object.   

• Compare with TS to ensure ordering is 
preserved.
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Timestamp CC
• When Ti reads from object O: 

• If WTS(O) > TS(Ti), Ti is reading from a ‘later’ 
version. 

• Abort Ti and restart with a new timestamp. 

• If WTS(O) < TS(Ti), Ti’s read is safe. 

• Set RTS(O) to MAX( RTS(O), TS(Ti) )
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Timestamp CC
• When Ti writes to object O: 

• If RTS(O) > TS(Ti), Ti would cause a dirty read. 

• Abort Ti and restart it. 

• If WTS(O) > TS(Ti), Ti would overwrite a ‘later’ value. 

• Don’t need to restart, just ignore the write. 

• Otherwise, allow the write and update WTS(O).
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Problem: Recoverability

W(A)
R(A)
W(B)

COMMIT

Time T1 T2
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Problem: Recoverability

W(A)
R(A)
W(B)

COMMIT

Time T1 T2

What happens if T1 aborts (or the system crashes)?
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Timestamp CC and 
Recoverability

• Buffer all writes until a writer commits. 

• But update WTS(O) when the write to O is allowed. 

• Block readers of O until the last writer of O commits. 

• Similar to writers holding X locks until commit, but not 
quite 2PL.
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Can we avoid read after write conflicts?
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Multiversion TS CC

• Let writers make a “new” 
copy, while readers use an 
appropriate “old” copy. 

• Readers are always 
allowed to proceed. 

• … but may need to be 
blocked until a writer 
commits.
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Multiversion TS CC
• Each version of an object has: 

• The writing transaction’s TS as its WTS. 

• The highest transaction TS that read it as its RTS. 

• Versions are chained backwards in a linked list. 

• We can discard versions that are too old to be “of 
interest”. 

• Each transaction classifies itself as a reader or writer for 
each object that it interacts with.
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Reader Transactions
• Find the newest version with WTS < TS(T) 

• Start with the latest, and chain backward. 

• Assuming that some version exists for all TS, 
reader xacts are never restarted! 

• … but may block until the writer commits.
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Writer Transactions
• Find the newest version V s.t. WTS < TS(T) 

• If RTS(V) < TS(T) make a copy of V with a pointer to 
V with WTS = RTS = TS(T). 

• The write is buffered until commit, but other 
transactions can see TS values. 

• Otherwise reject the write (and restart)
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Logging
• Problem 1: Supporting UNDO 

• How do we recover to an earlier state? 

• Problem 2: Mitigating Failures 

• How do we restore un-persisted changes? 

• Problem 3: Replication & Distribution 

• How do we synchronize multiple DB instances?
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