
Optimistic 
Concurrency Control

April 18, 2018

 1



Serializability

Give transactions the illusion of isolation

Executing transactions serially wastes resources

Interleaving transactions creates correctness errors

 2



Commit

Abort

Serializability

Time

Read Read Read

Write Write

 3



The Illusion of Isolation

Preserve order of reads, writes across transactions

 4



The Illusion of Isolation

 5



The Illusion of Isolation
Option 1: Avoid situations that break the illusion

 5



Locking

Lock an object before reading or writing it 

Unlock it after the transaction ends

This is pessimistic!
 6



Locking

W(A)

W(B)

COMMIT

W(A)
W(B)
COMMIT

Time T1 T2

Not allowed!  T2 has to wait!
 7



Locking

• This is expensive! Locking costs are still 
incurred even if no conflicts ever actually occur! 

• This is restrictive! Don’t know in advance what 
an xact will do, so can’t allow all schedules.

 8



We don’t know what a transaction will do until it does.
 9



So let the transaction do it.

 10



So let the transaction do it.

(Then check if it broke anything later)

 10



Optimistic CC

• Read Phase: Transaction executes on a 
private copy of all accessed objects. 

• Validate Phase: Check for conflicts. 

• Write Phase: Make the transaction’s changes 
to updated objects public.

 11



Commit

Abort

Read Phase

Time

Read Read Read

Write Write

 12



Commit

Abort

Read Phase

Time

Read Read

Write Write

Read Set

Write Set

Read

 13



Read Phase

ReadSet(Ti): Set of objects read by Ti.

WriteSet(Ti): Set of objects written by Ti.

 14



Validation Phase

Pick a serial order for the transactions 
(e.g., assign id #s or timestamps)

 15



Validation Phase

Pick a serial order for the transactions 
(e.g., assign id #s or timestamps)

When should we assign Transaction IDs?  (Why?)
 15



Validation Phase

What can we test to make sure that transactions 
applied their effects in the right order?

 16



Simple Test
For all i and k for which i < k,  

check that Ti completes before Tk begins.

R V W

R V W

Ti

Tk

 17



Simple Test
For all i and k for which i < k,  

check that Ti completes before Tk begins.

R V W

R V W

Ti

Tk

Is this sufficient?
 17



Simple Test
For all i and k for which i < k,  

check that Ti completes before Tk begins.

R V W

R V W

Ti

Tk

Is this sufficient? Is this efficient?
 17



Test 2
For all i and k for which i < k,  

check that Ti completes before Tk begins its write phase 
AND WriteSet(Ti) ⋂ ReadSet(Tk) is empty

R V W

R V W

Ti

Tk

 18



Test 2
For all i and k for which i < k,  

check that Ti completes before Tk begins its write phase 
AND WriteSet(Ti) ⋂ ReadSet(Tk) is empty

R V W

R V W

Ti

Tk

How do these two conditions help?
 18



Test 3
For all i and k for which i < k,  

check that Ti completes its read phase first 
AND WriteSet(Ti) ⋂ ReadSet(Tk) is empty 
AND WriteSet(Ti) ⋂ WriteSet(Tk) is empty

R V W

R V W

Ti

Tk

 19



Test 3
For all i and k for which i < k,  

check that Ti completes its read phase first 
AND WriteSet(Ti) ⋂ ReadSet(Tk) is empty 
AND WriteSet(Ti) ⋂ WriteSet(Tk) is empty

R V W

R V W

Ti

Tk

How do these three conditions help?
 19



 20

Which test (or tests) should we use?

Hint: How would you implement each test?



Validation
• Assigning the transaction ID, validation, and the 

parts of the write phase are a critical section. 

• Nothing else can go on concurrently. 

• The write phase can be long; This is bad. 

• Optimization: Read-only transactions that don’t 
need a critical section (no write phase).

 21



Optimistic CC Overheads
• Each operation must be recorded in the readset/

writeset (sets are expensive to allocate/destroy) 

• Must test for conflicts during validation stage 

• Must make validated writes “public”. 

• Critical section reduces concurrency. 

• Can lead to reduced object clustering. 

• Optimistic CC must restart failed transactions.

 22



Timestamp CC
• Give each object a read timestamp (RTS) and a 

write timestamp (WTS) 

• Give each transaction a timestamp (TS) at the 
start. 

• Use RTS/WTS to track previous operations on the 
object.   

• Compare with TS to ensure ordering is 
preserved.

 23



Timestamp CC
• When Ti reads from object O: 

• If WTS(O) > TS(Ti), Ti is reading from a ‘later’ 
version. 

• Abort Ti and restart with a new timestamp. 

• If WTS(O) < TS(Ti), Ti’s read is safe. 

• Set RTS(O) to MAX( RTS(O), TS(Ti) )

 24



Timestamp CC
• When Ti writes to object O: 

• If RTS(O) > TS(Ti), Ti would cause a dirty read. 

• Abort Ti and restart it. 

• If WTS(O) > TS(Ti), Ti would overwrite a ‘later’ value. 

• Don’t need to restart, just ignore the write. 

• Otherwise, allow the write and update WTS(O).

 25



Problem: Recoverability

W(A)
R(A)
W(B)

COMMIT

Time T1 T2

 26



Problem: Recoverability

W(A)
R(A)
W(B)

COMMIT

Time T1 T2

What happens if T1 aborts (or the system crashes)?
 26



Timestamp CC and 
Recoverability

• Buffer all writes until a writer commits. 

• But update WTS(O) when the write to O is allowed. 

• Block readers of O until the last writer of O commits. 

• Similar to writers holding X locks until commit, but not 
quite 2PL.

 27



Can we avoid read after write conflicts?

 28



Multiversion TS CC

• Let writers make a “new” 
copy, while readers use an 
appropriate “old” copy. 

• Readers are always 
allowed to proceed. 

• … but may need to be 
blocked until a writer 
commits.

 29

O

O’ O”

Main Segment
(current version of DB)

Version Pool
(older versions that 
can still be useful)



Multiversion TS CC
• Each version of an object has: 

• The writing transaction’s TS as its WTS. 

• The highest transaction TS that read it as its RTS. 

• Versions are chained backwards in a linked list. 

• We can discard versions that are too old to be “of 
interest”. 

• Each transaction classifies itself as a reader or writer for 
each object that it interacts with.

 30



Reader Transactions
• Find the newest version with WTS < TS(T) 

• Start with the latest, and chain backward. 

• Assuming that some version exists for all TS, 
reader xacts are never restarted! 

• … but may block until the writer commits.

 31
Old New

O’ OWriter
Timeline

T



Writer Transactions
• Find the newest version V s.t. WTS < TS(T) 

• If RTS(V) < TS(T) make a copy of V with a pointer to 
V with WTS = RTS = TS(T). 

• The write is buffered until commit, but other 
transactions can see TS values. 

• Otherwise reject the write (and restart)

 32



Logging
• Problem 1: Supporting UNDO 

• How do we recover to an earlier state? 

• Problem 2: Mitigating Failures 

• How do we restore un-persisted changes? 

• Problem 3: Replication & Distribution 

• How do we synchronize multiple DB instances?

 33


