
Parallel DBs
April 23, 2018

 1

Why Scale?
Scan of 1 PB at 300MB/s (SATA r2 Limit)

Why Scale Up?
Scan of 1 PB at 300MB/s (SATA r2 Limit)

~1 Hour

Why Scale Up?

 4

Scan of 1 PB at 300MB/s (SATA r2 Limit)

~1 Hour

…
(x1000)

~3.5 Seconds

Data Parallelism

 5

A A A CBA

Replication Partitioning

Operator Parallelism
• Pipeline Parallelism: A task breaks down into

stages; each machine processes one stage.

• Partition Parallelism: Many machines doing the
same thing to different pieces of data.

 6

Sequential
Operation

Sequential
Operation

Sequential
Operation

Sequential
OperationSequential

OperationSequential
Operation

Types of Parallelism

• Both types of parallelism are natural in a
database management system.

 7

Sequential
OperationSequential

OperationSequential
Operation

Sequential
OperationSequential

OperationSequential
Operation

Sequential
OperationSequential

OperationSequential
Operation

SELECT SUM(…) FROM Table WHERE …

LOAD SELECT AGG Combine

Sequential
Operation

DBMSes: The First ||
Success Story

• Every major DBMS vendor has a || version.

• Reasons for success:

• Bulk Processing (Partition ||-ism).

• Natural Pipelining in RA plan.

• Users don’t need to think in ||.

 8

Types of Speedup

• Speed-up ||-ism

• More resources =
proportionally less time
spent.

• Scale-up ||-ism

• More resources =
proportionally more data
processed.

 9

of Nodes

R
es

po
ns

e
T

im
e

of Nodes

T
hr

ou
gh

pu
t

Parallelism Models

 10

CPU

Memory

Disk

Parallelism Models

 11

CPU

Memory

Disk

…

How do the nodes communicate?

Parallelism Models

 12

CPU

Memory

Disk

…

Option 1: “Shared Memory” available to all CPUs

e.g., a Multi-Core/Multi-CPU System

Parallelism Models

 13

CPU

Memory

Disk

…

Used by most AMD servers

Option 2: Non-Uniform Memory Access.

Parallelism Models

 14

CPU

Memory

Disk

…

Each node interacts with a “disk” on the network.

Option 3: “Shared Disk” available to all CPUs

Parallelism Models

 15

CPU

Memory

Disk

…

Examples include MPP, Map/Reduce. Often used as basis for other abstractions.

Option 4: “Shared Nothing” in which all communication is explicit.

Parallelizing

 16

OLAP - Parallel Queries

OLTP - Parallel Updates

Parallelizing

 17

OLAP - Parallel Queries

OLTP - Parallel Updates

Parallelism & Distribution
• Distribute the Data

• Redundancy

• Faster access

• Parallelize the Computation

• Scale up (compute faster)

• Scale out (bigger data)

 18

Operator Parallelism

• General Concept: Break task into individual units
of computation.

• Challenge: How much data does each unit of
computation need?

• Challenge: How much data transfer is needed to
allow the unit of computation?

 19

Same challenges arise in Multicore, CUDA programming.

Parallel Data Flow

 20

A

No Parallelism

A

Parallel Data Flow

 21

A A1 N

N-Way Parallelism

Parallel Data Flow

 22

A A1 N

B B1 N

Chaining Parallel Operators

???

Parallel Data Flow

 23

A A1 N

B B1 N

One-to-One Data Flow (“Map”)

Parallel Data Flow

 24

A A1 N

B B1 N

One-to-One Data Flow

Parallel Data Flow

 25

A A1 N

B B1 N

Many-to-Many Data Flow

Extreme 1
All-to-All

All nodes send
all records to

all downstream
nodes

Extreme 2
Partition

Each record
goes to exactly

one downstream
node

Parallel Data Flow

 26

A A1 N

BB

Many-to-One Data Flow (“Reduce/Fold”)

Parallel Operators

 27

Select Project Union (bag)

What is a logical “unit of computation”?

Is there a data dependency between units?

(1 tuple)

(no)

Parallel Operators

 28

Select Project Union (bag)

A A1 N

1/N Tuples 1/N Tuples

Parallel Joins

 29

FOR i IN 1 to N
 FOR j IN 1 to K
 JOIN(Block i of R,
 Block j of S)

One Unit of Computation

Partition
Partition

Parallel Joins

 30

Block 1 of R
⋈

Block 1 of S

N
 P

ar
tit

io
ns

 o
f R

K Partitions of S

Block 1 of R
⋈

Block K of S

Block N of R
⋈

Block K of S

Block N of R
⋈

Block 1 of S

K

K

N N

Parallel Joins

 31

1⋈1 1⋈2 2⋈1 N⋈K

R[1] R[2] R[N]… S[1] S[2] S[K]…

UNION

Parallel Joins

 32

How much data needs to be transferred?

How many “units of computation” do we create?

Parallel Joins

 33

What if we partitioned “intelligently”?

Parallel Joins

 34

Hash(R.B)%4

0

1

2

3

√ √ √ √

R ⋈B S: Which Partitions of S Join w/ Bucket 0 of R?

H
as

h(
S.

B)
%

4

0 1 2 3

X X X

√

√

√

Parallel Joins

 35

R.B
B<25

25≤B<50

50≤B<75

75≤B

R ⋈R.B < S.B S: Which Partitions of S Can Produce Output?

S.
B

B<25 25≤B<50 50≤B<75 75≤B

√

√

√

√ √ √
√ √

√

√
X

X X

XXX

Parallel Joins

 36

Use partitioning to eliminate
units of computation

Exactly the same idea as External Hash Join
(Called Theta Join for Inequalities)

Bloom Join

 37

N
o

Sp
ec

ifi
c

Pa
rti

tio
ni

ng

No Specific Partitioning

√
√
X

√ √
√

√
√ √

X
X

X
X

XX
X

What if the join is highly selective… Can we detect which tuples are useful?

Bloom Join

 38

Goal: Summarize which tuples are useful for the join?

False positives: OK
False negatives: NOT OK

Bloom Join

 39

Strategy 1: Parity Bit

R S

<1,…>

<2,…>
<3,…>

<4,…>

<2,…>

⋈

1
0
1
0

0

Node 1 Node 2
Send me data
w/ parity bit 0

<2,…>

<4,…>

Bloom Join

 40

Strategy 1: Parity Bit

R S

<1,…>

<2,…>
<3,…>

<4,…>

<2,…>

⋈

1
0
1
0

0

Node 1 Node 2
Send me data
w/ parity bit 0

<2,…>
<4,…> <3,…>1

Send me data w/
parity bit 0 or 1

Bloom Join

 41

Strategy 2: Multiple Parity Bits

<1,…>

<2,…>
<3,…>

<4,…>

<2,…>01
10
11
00

10

Node 1 Node 2

R S⋈

Send me data w/
parity bits 10, 11

<3,…>11

What’s the problem with this?

A Simplified Bloom Join

 42

00101010

01010110

10000110

01001100

Key 1

Key 2

Key 3

Key 4

How do we summarize?

Bitwise OR

e.g. (Key 1 | Key 2)

= 01111110

How do we test for inclusion?
(Key & Summary) == Key?

(Key 1 & S) = 00101010
(Key 3 & S) = 00000110
(Key 4 & S) = 01001100

X
√

False Positive
√

Bloom Filters

 43

Generating a bit vector for a key:
M - # of bits in the bit vector

K - # of hash functions

For ONE key/record:
 For i between 0 and K:
 bitvector[hashi (key) % M] = 1

Each bit vector has ~K bits set

Bloom Filters

 44

Probability that 1 bit is set by 1 hash fn

1/m

Bloom Filters

 45

Probability that 1 bit is not set by 1 hash fn

1/m1 -

Bloom Filters

 46

Probability that 1 bit is not set by k hash fns

1/m1 -()k

Bloom Filters

 47

Probability that 1 bit is not set by k hash fns
for n records

1/m1 -()k n

So for an arbitrary record, what is the probability
that all of its bits will be set?

Bloom Filters

 48

Probability that 1 bit is set by k hash fns
for n records

1/m1 -()k n1 -

Bloom Filters

 49

Probability that all k bits are set by k hash fns
for n records

1/m1 -()k n1 -() k≈

-kn/m(1- e)≈ k

Bloom Filters

 50

Minimal P[collision]

m/n = 10

m/n = 5

m/n = 20 m/n = 30

Minimal P[collision] is at k ≈ c ∙ m/n

Bloom Filters

 51

k ≈ c ∙ m/n

≈ cn

m is linearly related to n (for a fixed k)

k
m

Bloom Join
• Node 2 Computes Bloom Filter for Local Records

• Node 2 Sends Bloom Filter to Node 1

• Node 1 Matches Local Records Against Bloom Filter

• Node 1 Sends Matched Records to Node 2

• Superset of “useful” records

• Node 2 Performs Join Locally

 52

Parallel Aggregates

 53

Algebraic: Bounded-size intermediate state
(Sum, Count, Avg, Min, Max)

Holistic: Unbounded-size intermediate state
(Median, Mode/Top-K Count, Count-Distinct;

Not Distribution-Friendly)

Fan-In Aggregation

 54

A A1 N

BSUM

Fan-In Aggregation

 55

A1 A2 A3 A4 A5 A6 A7 A8

SUM 8 Messages

Fan-In Aggregation

 56

A1 A2 A3 A4 A5 A6 A7 A8

SUM 4 Messages

SUM1 SUM2 SUM3 SUM4

2 Messages
(each)

Fan-In Aggregation

 57

A1 A2 A3 A4 A5 A6 A7 A8

SUM 2 Messages

SUM1 SUM2 SUM3 SUM4

2 Messages
(each)

SUM’
1 SUM’

2

Fan-In Aggregation

 58

If Each Node Performs K Units of Work…
(K Messages)

How Many Rounds of Computation Are Needed?

LogK(N)

Fan-In Aggregation
Components

 59

Combine(Intermediate1, …, IntermediateN)
= Intermediate

<SUM1, COUNT1> ⊗ … ⊗ <SUMN, COUNTN>
 = <SUM1+…+SUMN, COUNT1+…+COUNTN>

Compute(Intermediate) = Aggregate

Compute(<SUM, COUNT>) = SUM / COUNT

