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Why Scale?
Scan of 1 PB at 300MB/s (SATA r2 Limit)



Why Scale Up?
Scan of 1 PB at 300MB/s (SATA r2 Limit)

~1 Hour



Why Scale Up?
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Scan of 1 PB at 300MB/s (SATA r2 Limit)

~1 Hour

… 
(x1000)

~3.5 Seconds



Data Parallelism
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A A A CBA

Replication Partitioning



Operator Parallelism
• Pipeline Parallelism: A task breaks down into 

stages; each machine processes one stage. 

• Partition Parallelism: Many machines doing the 
same thing to different pieces of data.
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Types of Parallelism

• Both types of parallelism are natural in a 
database management system.
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SELECT SUM(…) FROM Table WHERE …

LOAD SELECT AGG Combine

Sequential
Operation



DBMSes: The First || 
Success Story

• Every major DBMS vendor has a || version. 

• Reasons for success: 

• Bulk Processing (Partition ||-ism). 

• Natural Pipelining in RA plan. 

• Users don’t need to think in ||.
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Types of Speedup

• Speed-up ||-ism 

• More resources = 
proportionally less time 
spent. 

• Scale-up ||-ism 

• More resources = 
proportionally more data 
processed.
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Parallelism Models
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Parallelism Models
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CPU

Memory

Disk

…

How do the nodes communicate?



Parallelism Models
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Disk

…

Option 1: “Shared Memory” available to all CPUs

e.g., a Multi-Core/Multi-CPU System



Parallelism Models
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…

Used by most AMD servers

Option 2: Non-Uniform Memory Access.



Parallelism Models
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…

Each node interacts with a “disk” on the network.

Option 3: “Shared Disk” available to all CPUs



Parallelism Models
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Examples include MPP, Map/Reduce.  Often used as basis for other abstractions.

Option 4: “Shared Nothing” in which all communication is explicit.



Parallelizing
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OLAP - Parallel Queries

OLTP - Parallel Updates



Parallelizing

 17

OLAP - Parallel Queries

OLTP - Parallel Updates



Parallelism & Distribution
• Distribute the Data 

• Redundancy 

• Faster access 

• Parallelize the Computation 

• Scale up (compute faster) 

• Scale out (bigger data)
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Operator Parallelism

• General Concept: Break task into individual units 
of computation. 

• Challenge: How much data does each unit of 
computation need? 

• Challenge: How much data transfer is needed to 
allow the unit of computation?
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Same challenges arise in Multicore, CUDA programming.



Parallel Data Flow
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A

No Parallelism

A



Parallel Data Flow
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A A1 N

N-Way Parallelism



Parallel Data Flow
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A A1 N

B B1 N

Chaining Parallel Operators

???



Parallel Data Flow
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A A1 N

B B1 N

One-to-One Data Flow (“Map”)



Parallel Data Flow
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A A1 N

B B1 N

One-to-One Data Flow



Parallel Data Flow
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A A1 N

B B1 N

Many-to-Many Data Flow

Extreme 1 
All-to-All 

All nodes send 
all records to 

all downstream 
nodes

Extreme 2 
Partition 

Each record 
goes to exactly 

one downstream 
node



Parallel Data Flow
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A A1 N

BB

Many-to-One Data Flow (“Reduce/Fold”)



Parallel Operators
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Select Project Union (bag)

What is a logical “unit of computation”?

Is there a data dependency between units?

(1 tuple)

(no)



Parallel Operators
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Select Project Union (bag)

A A1 N

1/N Tuples 1/N Tuples



Parallel Joins
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FOR i IN 1 to N
  FOR j IN 1 to K
    JOIN(Block i of R,
         Block j of S)

One Unit of Computation

Partition
Partition



Parallel Joins
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Parallel Joins
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1⋈1 1⋈2 2⋈1 N⋈K

R[1] R[2] R[N]… S[1] S[2] S[K]…

UNION



Parallel Joins
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How much data needs to be transferred?

How many “units of computation” do we create?



Parallel Joins

 33

What if we partitioned “intelligently”?



Parallel Joins
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Parallel Joins
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Parallel Joins
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Use partitioning to eliminate  
units of computation

Exactly the same idea as External Hash Join 
(Called Theta Join for Inequalities)



Bloom Join
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What if the join is highly selective… Can we detect which tuples are useful?



Bloom Join
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Goal: Summarize which tuples are useful for the join?

False positives: OK 
False negatives: NOT OK



Bloom Join
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Strategy 1: Parity Bit
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<1,…>

<2,…>
<3,…>

<4,…>

<2,…>

⋈

1
0
1
0

0

Node 1 Node 2
Send me data 
w/ parity bit 0

<2,…>

<4,…>



Bloom Join
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Strategy 1: Parity Bit

R S

<1,…>
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<3,…>

<4,…>

<2,…>

⋈

1
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1
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0

Node 1 Node 2
Send me data 
w/ parity bit 0

<2,…>
<4,…> <3,…>1

Send me data w/ 
parity bit 0 or 1



Bloom Join
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Strategy 2: Multiple Parity Bits
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What’s the problem with this?



A Simplified Bloom Join

 42

00101010

01010110

10000110

01001100

Key 1

Key 2

Key 3

Key 4

How do we summarize?

Bitwise OR

e.g. (Key 1 |  Key 2)

= 01111110

How do we test for inclusion?
(Key & Summary) == Key?

(Key 1 & S) = 00101010
(Key 3 & S) = 00000110
(Key 4 & S) = 01001100

X
√

False Positive
√



Bloom Filters
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Generating a bit vector for a key:
M - # of bits in the bit vector

K - # of hash functions

For ONE key/record: 
  For i between 0 and K: 
    bitvector[  hashi (key) % M  ] = 1

Each bit vector has ~K bits set



Bloom Filters
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Probability that 1 bit is set by 1 hash fn

1/m



Bloom Filters
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Probability that 1 bit is not set by 1 hash fn

1/m1 -



Bloom Filters
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Probability that 1 bit is not set by k hash fns

1/m1 -( )k



Bloom Filters
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Probability that 1 bit is not set by k hash fns 
for n records

1/m1 -( )k n

So for an arbitrary record, what is the probability 
that all of its bits will be set?



Bloom Filters
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Probability that 1 bit is set by k hash fns 
for n records

1/m1 -( )k n1 -



Bloom Filters
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Probability that all k bits are set by k hash fns 
for n records

1/m1 -( )k n1 -( ) k≈

-kn/m(1- e         )≈ k



Bloom Filters
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Minimal P[collision]

m/n = 10

m/n = 5

m/n = 20 m/n = 30

Minimal P[collision] is at k ≈ c ∙ m/n



Bloom Filters

 51

k ≈ c ∙ m/n

≈ cn

m is linearly related to n (for a fixed k)

k
m



Bloom Join
• Node 2 Computes Bloom Filter for Local Records 

• Node 2 Sends Bloom Filter to Node 1 

• Node 1 Matches Local Records Against Bloom Filter 

• Node 1 Sends Matched Records to Node 2 

• Superset of “useful” records 

• Node 2 Performs Join Locally
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Parallel Aggregates
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Algebraic: Bounded-size intermediate state 
(Sum, Count, Avg, Min, Max)

Holistic: Unbounded-size intermediate state 
(Median, Mode/Top-K Count, Count-Distinct; 

Not Distribution-Friendly)



Fan-In Aggregation

 54

A A1 N

BSUM



Fan-In Aggregation
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A1 A2 A3 A4 A5 A6 A7 A8

SUM 8 Messages



Fan-In Aggregation
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A1 A2 A3 A4 A5 A6 A7 A8

SUM 4 Messages

SUM1 SUM2 SUM3 SUM4

2 Messages 
(each)



Fan-In Aggregation
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A1 A2 A3 A4 A5 A6 A7 A8

SUM 2 Messages

SUM1 SUM2 SUM3 SUM4

2 Messages 
(each)

SUM’
1 SUM’

2



Fan-In Aggregation
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If Each Node Performs K Units of Work… 
(K Messages) 

How Many Rounds of Computation Are Needed?

LogK(N)



Fan-In Aggregation 
Components
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Combine(Intermediate1, …, IntermediateN) 
= Intermediate

<SUM1, COUNT1> ⊗ … ⊗ <SUMN, COUNTN> 
 = <SUM1+…+SUMN, COUNT1+…+COUNTN>

Compute(Intermediate) = Aggregate

Compute(<SUM, COUNT>) = SUM / COUNT


