
P2 - B+ Tree

Deadline: Sunday, March 10; 11:59 PM

Accept Assignment: https://classroom.github.com/a/gd95nzgc

Submit Assignment: https://autolab.cse.buffalo.edu/courses/cse410-s24/assessments/P1-B-
Trees

In this assignment, you will implement an on-disk B+Tree.

This assignment is intended to: - Give you experience building a paged, on-disk data structure
- Give you experience in enforcing data structure constraints - Give you experience working
with an existing codebase

You should expect to spend approximately 20-30 hours on this assignment. Plan accordingly.

To complete this assignment, you should:

1. Accept this assignment through GitHub Classroom.

2. Modify the file src/bplus_tree.rs , implementing the functions labeled todo!() .

3. Commit your changes and push them to Github.

4. Go to Autolab, select your repository, acknowledge the course AI Policy, and click
Submit.

You may repeat steps 2-4 as many times as desired. You may also modify any of the files in the
page module.

Overview

In this assignment, you will implement key parts of an on-disk B+Tree.

Documentation

You may find the following documentation useful:

The Rust Book

std::fs::File

Run cargo doc --open

The following utility methods are provided, and may be useful

bplus_tree::BPlusTree::init(path)

Initialize a fresh BPlusTree backed by the file at the specified path.

bplus_tree::BPlusTree::open(path)

Open an existing BPlusTree backed by the file at the specified path.

bplus_tree::BPlusTree::get_page(&self, idx)

Retrieve the page at the specified index. The type of the page read is determined by Rust's
typesystem. Both of the following approaches work: let page: DirectoryPage =

self.get_page(idx); let page = self.get_page::<DirectoryPage>(idx);

bplus_tree::BPlusTree::put_page(&self, idx, &page)

Write the provided page to disk at the provided index.

bplus_tree::BPlusTree::check_tree(&self)

Sanity check the contents of the tree. If any standard assumptions are not met, this method
returns Ok(Some(err_msg))

bplus_tree::BPlusTree::print_tree(&self)

Print out the tree to standard out

The page module

The page module (src/page/mod.rs) provides functionality for reading and writing different
types of pages. Each implementation of the page trait (DirectoryPage , LeafPage ,
FreePage , and MetadataPage) provides functionality for manipulating the page. See the

project documentation (cargo doc --open) for more details.

General File Structure

We're going to assume that page 0 contains a MetadataPage . After calling ::init() or
::open() , the metadata page contents will be available as the .meta field of the returned

tree.

Note that you must manually write changes to the metadata page back to disk. There is a
convenience method for this: put_meta()

Note the contents of the MetadataPage object. Test cases assume the following:

next_free_page : A pointer to the first free page or NULL_IDX otherwise.

root_page : A pointer to the root directory page.

data_head : A pointer to the first leaf page.

data_tail : A pointer to the last leaf page.

pages_allocated : The number of pages allocated in the file (including the metadata
page).

depth : The number of levels of directory pages in the file.

There must always be at least one directory page and one leaf page, even in an empty file.

Finally, recall the B+Tree constraint: A Directory/Leaf page must be at least 50% full at all
times. The only exceptions to this rule are: - The root directory page may contain fewer than
50% entries, but must contain at least one key. - The root directory page of a depth=1 tree may
be completely empty. - If a tree contains only a single leaf page, this leaf page may contain
fewer than 50% entries.

The .is_underfull() and .can_allow_stolen_key() methods on DirectoryPage and
LeafPage can help to enforce these constraints.

Objectives

In this assignment, you will implement four functions:

bplus_tree::BPlusTree::alloc_page(&self, &page)

This method should allocate a new page for use by the caller and write the provided page to it.
If a previously freed page is available, this should be used first. Otherwise, alloc_page

should write the page to the end of the file.

alloc_page should ensure that the metadata page is appropriately updated: - free_page

should

Complexity: - Memory: O(1) - IO: O(1)

bplus_tree::BPlusTree::free_page(&self, &page)

This method should release a page after use. The page contents should be overwritten with a
FreePage and the page should be made available for use by a subsequent call to
alloc_page (e.g., by marking it in the MetadataPage 's next_free_page field).

Complexity: - Memory: O(1) - IO: O(1)

bplus_tree::BPlusTree::put(&self, key, value)

This method should insert a key/value pair into the tree. Subsequent calls to get(key)

should return value . If key is already present, the prior value should be overwritten.

The write should persist restarts; if the same file is later re-opened get(key) should still
return value .

Note: Recall that if a leaf page splits, it may also trigger splits in the ancestors.

Complexity: - Memory: O(log_K(N)) - IO: O(log_K(N)) reads, amortized O(1) writes (worst case
O(log_K(N)))

bplus_tree::BPlusTree::delete(&self, key)

This method should remove a key from the tree. Subsequent calls to get(key) should return
None .

The delete should persist restarts.

Recall from the notes above that no page (leaf or directory) should be less than 50% full (see
is_underfull()). An underfull page can be addressed in one of the following ways: -

'Stealing' a record from the preceding or following sibling page (i.e., page with the same
parent). - 'Merging' with the preceding or following sibling page.

Since stealing is possible for any page at over 50% capacity, and merging is possible for any
two pages at 50% capacity or below, one of the two options will always be possible.

Complexity: - Memory: O(log_K(N)) - IO: O(log_K(N)) reads, amortized O(1) writes (worst case
O(log_K(N)))

Strategy

Note the DIR_KEY_COUNT and LEAF_RECORD_COUNT constants defined in
src/page/dir_page.rs and src/page/leaf_page.rs respectively. In the template file, these

are set as high as possible. However, for the purpose of debugging, you may find it convenient
to set them to lower values (e.g., 4).

A compile-time assertion defined will not allow you to set these values to be greater than the
size of a single page.

You are encouraged to subdivide the problem into 3 phases. The provided test cases are
designed accordingly:

1. Implement a page allocator (alloc_page , free_page) and pass the first provided test
case.

2. Implement the put method and pass the second provided test case.

3. Implement the delete method and pass the third provided test case.

The put and delete methods also benefit from being broken down into smaller cases. You
may find it convenient to solve these cases one at a time. The todo!() macro can be very
helpful here, allowing you to test implementations of one case at a time, as you develop them.

Put

1. There is enough space on the leaf page.

2. The leaf page needs to split, but its parent directory page has enough space.

3. The leaf page and its immediate parent need to split, and the immediate parent is the root
page.

4. The leaf page and its immediate parent need to split, and the immediate parent is not the
root page.

5. The leaf page and one or more of its ancestors need to split.

Get

1. The leaf page is not underfull after deletion.

2. The leaf page is underfull, but one of its siblings can be stolen from.

3. The leaf page is underfull, neither of its siblings can be stolen from, but the immediate
parent doesn't become underfull after merging the leaf pages.

4. The leaf page is underfull, neither of its siblings can be stolen from, and the immediate
parent can steal from one of its siblings.

5. The leaf page is underfull, neither of its siblings can be stolen from, the immediate parent
is underfull, and neither of its siblings can be stolen from.

6. The leaf page and one or more of its ancestors need to merge.

Additional Notes

In addition to src/bplus_tree.rs , you may modify any of the existing files in src/mod .

You may modify the structure of the files and page layouts, as long as you pass the
provided test cases.

You may not add new crates without permission.

