
Update Parallelism
April 30, 2018

1

HW 3 Posted

2

Parallelism Models

3

CPU

Memory

Disk

…

We’ll be talking about “shared nothing” today.
Other models are easier to work with.

Option 4: “Shared Nothing” in which all communication is explicit.

Data Parallelism

4

A A A CBA

Replication Partitioning

(needed for safety)

Updates
• Non-Serializable Schedules

• One Compute Node Fails

• A Communication Channel Fails

• Messages are

5

What can go wrong?

Node 1

T1: W(X)
T2: W(X)
T2: W(Y)
T1: W(Y)

Updates
• Non-Serializable Schedules

• One Compute Node Fails

• A Communication Channel Fails

• Messages are

5

What can go wrong?

Node 1

T1: W(X)
T2: W(X)
T2: W(Y)
T1: W(Y)X

Updates (in Parallel)
• Non-Serializable Schedules

• One Compute Node Fails

• A Communication Channel Fails

• Messages delivered out-of-order

6

What can go wrong?

Node 1 Node 2

Updates (in Parallel)
• Non-Serializable Schedules

• One Compute Node Fails

• A Communication Channel Fails

• Messages delivered out-of-order

6

What can go wrong?

Node 1 Node 2

Updates (in Parallel)
• Non-Serializable Schedules

• One Compute Node Fails

• A Communication Channel Fails

• Messages delivered out-of-order

7

What can go wrong?

Node 1 Node 2

Updates (in Parallel)
• Non-Serializable Schedules

• One Compute Node Fails

• A Communication Channel Fails

• Messages delivered out-of-order

7

What can go wrong?

Node 1 Node 2

Updates (in Parallel)
• Non-Serializable Schedules

• One Compute Node Fails

• A Communication Channel Fails

• Messages delivered out-of-order

8

What can go wrong?

Node 1 Node 2

Updates (in Parallel)
• Non-Serializable Schedules

• One Compute Node Fails

• A Communication Channel Fails

• Messages delivered out-of-order

8

What can go wrong?

Node 1 Node 2

XY YX

Updates (in Parallel)
• Non-Serializable Schedules

• One Compute Node Fails

• A Communication Channel Fails

• Messages delivered out-of-order

9

What can go wrong?

Updates (in Parallel)
• Non-Serializable Schedules

• One Compute Node Fails

• A Communication Channel Fails

• Messages delivered out-of-order

9

What can go wrong?
Classical Xacts

Updates (in Parallel)
• Non-Serializable Schedules

• One Compute Node Fails

• A Communication Channel Fails

• Messages delivered out-of-order

9

What can go wrong?
Classical Xacts

“Partitions”

Updates (in Parallel)
• Non-Serializable Schedules

• One Compute Node Fails

• A Communication Channel Fails

• Messages delivered out-of-order

9

What can go wrong?
Classical Xacts

“Partitions”

Consensus

Data Parallelism

10

A A A CBA

Replication Partitioning

(needed for safety)

Simple Consensus

11

A A BB

Node 1 Node 2

Master Slave

YX YX

“Safe” … but Node 1 is a bottleneck.

Simpl-ish Consensus

12

A A
Node 1 Node 2

Master for A Master for B

Node 2 agrees to Node 1’s order for A.
Node 1 agrees to Node 2’s order for B.

BB

Y

X

Y

X

Partitions

13

Node 1 Node 2

Node 1
From Node 1’s perspective, these are the same!

Channel Failure

Node Failure

Node 2

Failure Recovery

• Node Failure

• The node restarts and resumes serving requests.

• Channel Failure

• Node 1 and Node 2 regain connectivity.

14

Partitions

15

Node 1 Node 2

A=1
B=5

A=1
B=5

Partitions

16

Node 1

Option 1: Node 1 takes over

Node 2

A=1
B=5

Partitions

17

Node 1

Option 1: Node 1 takes over

Node 2

Node 2 is down.
I control A & B now!

A=1
B=5

Partitions

18

Node 1

Option 1: Node 1 takes over

Node 2

Node 2 is down.
I control A & B now!

A = 2
B = 6

A=2
B=6

Partitions

19

Node 1

Option 1: Node 1 takes over

Node 2

A=2
B=6
A=2
B=6

Partitions

20

Node 1

Option 1: Node 1 takes over

Node 2

A=1
B=5

A=1
B=5

Partitions

21

Node 1

Option 1: Node 1 takes over

Node 2

A=1
B=5

A=1
B=5

Node 2 is down.
I control A & B now!

Partitions

22

Node 1

Option 1: Node 1 takes over

Node 2

A=2
B=6

A=1
B=5

Node 2 is down.
I control A & B now!

A = 2
B = 6

Partitions

23

Node 1

Option 1: Node 1 takes over

Node 2

A=2
B=6

A=1
B=5

INCONSISTENCY!

Partitions

24

Node 1 Node 2

Option 2: Wait

Partitions

25

Node 1 Node 2

A = 2
B = 6

Option 2: Wait

Partitions

26

Node 1 Node 2

I can’t talk to Node 2
Let me wait!

A = 2
B = 6

Option 2: Wait

Partitions

27

Node 1 Node 2

I can’t talk to Node 2
Let me wait!

A = 2
B = 6

Option 2: Wait

Partitions

28

Node 1 Node 2

I can’t talk to Node 2
Let me wait!

A = 2
B = 6

All set

Option 2: Wait

Partitions

29

Node 1 Node 2

Option 2: Wait

Partitions

29

Node 1

Option 2: Wait

Partitions

30

Node 1

I can’t talk to Node 2
Let me wait!

A = 2
B = 6

Option 2: Wait

Partitions

31

Node 1

I can’t talk to Node 2
Let me wait!

A = 2
B = 6

Still waiting…

Option 2: Wait

Partitions

32

Option 1: Assume Node Failure

All data is available… but at risk of inconsistency.

Option 2: Assume Connection Failure

All data is consistent… but unavailable

33

C A P
o
n
s
i
s
t
e
n
c
y

v
a
i
l
a
b
i
l
i
t
y

or or

a
r
t
i
t
i
o
n

Traditionally: Pick any 2

T
o
l
e
r
a
n
c
e

34

C A P

or during

o
n
s
i
s
t
e
n
c
y

v
a
i
l
a
b
i
l
i
t
y

a
r
t
i
t
i
o
n
s

I prefer this phrasing

Simpl-ish Consensus

35

A A
Node 1 Node 2

Master for A Master for B

Node 2 agrees to Node 1’s order for A.
Node 1 agrees to Node 2’s order for B.

BB

Y

X

Y

X

Simpl-ish Consensus

36

A A
Node 1 Node 2

Master for A Master for B

What if we need to coordinate between A & B?

BB

Y

X

Y

X Withdraw $1000
from A

Deposit $1000
into B

Naive Commit

37

Node 1 Node 2Coordinator

W(A,B)

Naive Commit

37

Node 1 Node 2Coordinator

Safe to Commit?

W(A,B)

Naive Commit

37

Node 1 Node 2Coordinator

ACK

Safe to Commit ?

W(A,B)

Naive Commit

37

Node 1 Node 2Coordinator

ACK

Safe to Commit

W(A,B)

38

That packet sure does look tasty…

Naive Commit

39

Node 1 Node 2Coordinator

W(A,B)

ACK

Is it safe to abort?

Naive Commit

40

Node 1 Node 2Coordinator

ACK ACK

What now?

W(A,B)

Naive Commit

41

Node 1 Node 2Coordinator

W(A)

ACK

How do we know Node 2 even still exists?

2-Phase Commit
• One site selected as a coordinator.

• Initiates the 2-phase commit process.

• Remaining sites are subordinates.

• Only one coordinator per xact.

• Different xacts may have different coordinators.

42

Assumptions
• Undo/Redo Logging at Participants

• Participants can Abort an Xact at any time

• Participants can recover from a crash

• Redo Logging at Coordinator

• Coordinator can recover from a crash

• All logs replicated (to recover from hard failures)

43

Phase 1 - Prepare

44

Coordinator Node 1 Node 2

Phase 1 - Prepare

45

Coordinator Node 1 Node 2
“Prepare”

Phase 1 - Prepare

46

Coordinator Node 1 Node 2
“Prepare”

“Commit”
“Commit”

Phase 1 - Prepare

47

Coordinator Node 1 Node 2
“Prepare”

We are go
for Commit

“Commit”
“Commit”

Phase 2 - Commit

48

Coordinator Node 1 Node 2
“Prepare”

“Commit”

We are go
for Commit

“Commit”
“Commit”

Phase 2 - Commit

49

Coordinator Node 1 Node 2
“Prepare”

“Commit”
“ACK”

“ACK”
ACKs received

Commit successful

We are go
for Commit

“Commit”
“Commit”

Aborting

50

Coordinator Node 1 Node 2
“Prepare”

Commit
Canceled

“Abort”
“ACK”

“ACK”
ACKs received

Abort successful

“Commit”
“Abort”

If any participant aborts in Phase 1, everyone aborts.

Guarantees

51

Coordinator Node 1 Node 2
“Prepare”

“Commit”
“ACK”

“ACK”
ACKs received

Commit successful

We are go
for Commit

“Commit”
“Commit”

A Node “Commit” means the node is able to commit.
A Coordinator “Commit” means the transaction must commit.

Guarantees

52

Coordinator Node 1 Node 2
“Prepare”

“Commit”
“ACK”

“ACK”
ACKs received

Commit successful

We are go
for Commit

“Commit”
“Commit”

Once a node commits, the xact is still not committed yet.
However the node must avoid breaking the commit.

Failure Modes

53

Coordinator Node 1 Node 2
“Prepare”

“Commit”

Failure Modes

53

Coordinator Node 1 Node 2
“Prepare”

“Commit”

Prepare unreceived and unacknowledged: Coordinator (1) Retries, or (2) Aborts

Failure Modes

54

Coordinator Node 1 Node 2
“Prepare”

“Commit” CRASH!

Failure Modes

54

Coordinator Node 1 Node 2
“Prepare”

“Commit”

Node 2 crashes before responding: Restart and continue as a dropped packet

CRASH!

Failure Modes

55

Coordinator Node 1 Node 2
“Prepare”

“Commit”
“Commit”

Failure Modes

55

Coordinator Node 1 Node 2
“Prepare”

“Commit”
“Commit”

Node “Commit” unreceived: (1) Re-sent “Prepare” can be ignored.
(2) Node still able to abort.

Failure Modes

56

Coordinator Node 1 Node 2
“Prepare”

“Commit”
“Commit”

CRASH!

Failure Modes

56

Coordinator Node 1 Node 2
“Prepare”

“Commit”
“Commit”

Node 2 crashes after responding: Restart from log

CRASH!

Failure Cases

57

Coordinator Node 1 Node 2
“Prepare”

“Commit”
“ACK”

We are go
for Commit

“Commit”
“Commit”

Failure Cases

57

Coordinator Node 1 Node 2
“Prepare”

“Commit”
“ACK”

We are go
for Commit

“Commit”
“Commit”

Coordinator “Commit” unreceived: Commit must happen, coordinator resends

Failure Cases

58

Coordinator Node 1 Node 2
“Prepare”

“Commit”
“ACK”

We are go
for Commit

“Commit”
“Commit”

CRASH!

Failure Cases

58

Coordinator Node 1 Node 2
“Prepare”

“Commit”
“ACK”

We are go
for Commit

“Commit”
“Commit”

Node 2 crash: Restart. Already logged “Commit” message, so all is well.

CRASH!

Failure Cases

59

Coordinator Node 1 Node 2
“Prepare”

“Commit”
“ACK”

“ACK”

We are go
for Commit

“Commit”
“Commit”

Failure Cases

59

Coordinator Node 1 Node 2
“Prepare”

“Commit”
“ACK”

“ACK”

We are go
for Commit

“Commit”
“Commit”

Node “Ack” unreceived: Ok. Resent “Commit” ignored by node

Failure Cases

60

Coordinator Node 1 Node 2
“Prepare”

“Commit”
“ACK”

We are go
for Commit

“Commit”
“Commit”

CRASH!

“ACK”

Failure Cases

60

Coordinator Node 1 Node 2
“Prepare”

“Commit”
“ACK”

We are go
for Commit

“Commit”
“Commit”

Node crash after “Ack”: Ok. Log already recorded commit

CRASH!

“ACK”

Replication

• Mode 1: Periodic Backups

• Copy the replicated data nightly/hourly.

• Mode 2: Log Shipping

• Only send changes (replica serves as the log).

61

Replication

• Mode 1: Periodic Backups

• Copy the replicated data nightly/hourly.

• Mode 2: Log Shipping

• Only send changes (replica serves as the log).

61

Replication

• Ensuring durability

• Ensuring write-consistency under 2PC

• Ensuring read-consistency without 2PC

62

Ensuring Durability

63

When is a replica write durable?

Ensuring Durability

64

Never.

Ensuring Durability

64

Never.

What you should be asking is how
much durability do you need?

Ensuring Durability

65

For N Failures
N+1 Replicas

(Assuming Failure = Crash)

Ensuring Write Consistency

66

Coordinator Node 1
“Prepare”

“Commit”

Node 1 asserts that the commit is durable!
What if Node 1 fails?

Ensuring Write Consistency

67

Coordinator Node 1 Replica
“Prepare”

“Commit”

“Prepare”
“Commit”

Ensuring Write Consistency

67

Coordinator Node 1 Replica
“Prepare”

“Commit”

“Prepare”
“Commit”

Waiting for Node 1 to replicate is slooooow!
Let the coordinator take over!

Ensuring Write Consistency

68

Coordinator Node 1 Replica
“Prepare”

“Commit”
“Commit”

Ensuring Write Consistency

68

Coordinator Node 1 Replica
“Prepare”

Like 2PC…
 … but better. We may not need to wait for the replica

“Commit”
“Commit”

Ensuring Write-Consistency

69

Replica 2Replica 1 Replica 3

A: Prepare

Coordinator
Alice

Coordinator
Bob

B: PrepareA: Prepare B: PrepareA: Prepare B: Prepare

Ensuring Write-Consistency

70

Replica 2Replica 1 Replica 3

Coordinator
Alice

Coordinator
Bob

A: Prepare

B: Prepare

A: Prepare

B: Prepare A: Prepare

B: Prepare

Ensuring Write-Consistency

71

Replica 2Replica 1 Replica 3

Coordinator
Alice

Coordinator
Bob

B: Prepare B: Prepare A: PrepareCommit! Commit!

Ensuring Write-Consistency

72

Majority Vote

N Replicas
(N/2)+1 Votes Needed

Ensuring Read Consistency

73

Forget transactions, let’s go back to reads & writes

Can we do better than 2PC if we don’t need xacts?

74

Replica 2

Replica 1

Replica 3

W(A = 3)

(1) Alice writes ‘A’

75

Replica 2

Replica 1

Replica 3

W(A = 3)

(1) Alice writes ‘A’

(2) Alice tells Bob

76

Replica 2

Replica 1

Replica 3

W(A = 3)

(1) Alice writes ‘A’

(2) Alice tells Bob

(3) Bob reads ‘A’

R(A)

77

Replica 2

Replica 1

Replica 3

W(A = 42)

(1) Alice writes ‘A’

(2) Alice tells Bob

(3) Bob reads ‘A’

R(A)

What can we
do to guarantee

that Bob will
see the 42?

Ensuring Read Consistency

78

Approach: Alice and Bob each wait for multiple responses.

Alice waits for ‘ack’s
Bob waits for read responses.

How many responses are required for each?

79

Replica 2

Replica 1

Replica 3

W(A = 42) R(A)

ACK

80

Replica 2

Replica 1

Replica 3

W(A = 42) R(A)

ACK

“666”

81

Replica 2

Replica 1

Replica 3

W(A = 42) R(A)

ACK

“666”

82

Replica 2

Replica 1

Replica 3

W(A = 42) R(A)

ACK

“666”

Ensuring Read-Consistency

83

Like Majority Vote

N Replicas
R Replica Reads Needed

W Writer Acks Needed
R + W > N

