- Uncertain Data

\checkmark Background
∇ Databases: "Data is certain"

- Bad!
- What if you know something with $80,99 \%$ confidence?
- Some information is better than no information
- Examples
- Basic: 4 v 9
- Bing/Google Translate
- Information Extraction
- CURE: "Ship ID"
- Getting it wrong
- ICE Databases
- Credit Reports
- Zillow
- Examples in Practice
- Image Classifier
- Bing Translate
- GitHub-CSV
- Calendar
- maybe-screen
- Layers of Abstraction
- Layer 1: Possible Worlds
- Question: What does it mean for data to be "Uncertain"?
- Question: What does it mean to run a query on "Uncertain Data"?
- General approach: Not just 1 database, \mathbf{N} databases
- Each database is a "Possible World" (like Schroedinger's Cat: In one world the cat is alive, and in the other it isn't)
- Extend deterministic query semantics to possible worlds:
- $Q(\mathbf{D}):=\{$ Query (D) | D in $\mathbf{D}\}$
- The query is evaluated in all possible worlds simultaneously.
- All results that *could* occur, do occur
- Possible Worlds semantics has a number of benefits:
- Agnostic to the database/data representation (works on Graph, JSON, Relational, etc...)
- Agnostic to the query semantics
- Even agnostic to the number of possible worlds (may even be infinite)
- If we can define what it means for a query to be correct in one world, we can define what it means for a query to be correct in all possible worlds.
- ... we just may not be able to run it efficiently

- Possible Worlds also works with probabilities

- Probabilistic Database: < D, P >
- P : D -> [0,1]; A probability measure over each world
- We can talk about the probability of a particular query result: R $=Q(\mathbf{D})$
- $P[R=Q(D)]=\operatorname{Sum}(D$ in \mathbf{D} where $Q(D)=R)$ of $P(D=D)$
- Sum up the probability of all worlds where Q has that result.

- Aside: What Can You Do by Querying PDBs

\checkmark Figure out the probability of a specific outcome

- compute $\mathrm{P}[\mathrm{R}]$
\checkmark Figure out the (k) most likely outcome(s)
- compute $\operatorname{Argmax}[P[R]](Q(D))$
\checkmark Figure out which outcomes are possible
- compute the set Q(D)
- Obtain a randomly selected sample from $Q(D)$
- Typically sampled according to P(D)
\checkmark Figure out which outcomes are certain
- compute the intersection of all relations in the set $Q(\mathbf{D})$
- refine this somewhat... more shortly
- Visualize any of the above
- e.g., Compute a histogram for the set of all possible outcomes
- e.g., Compute a CDF
- e.g., Visualize areas on a map
- e.g., Graphs with error-bars

- Layer 2: Factorizing Worlds

Factorizing on Tuples

- Idea 1: Give each tuple a probability
- $R(A, B, p)->p$ defines the probability that any given $<A, B>$ is in R
- Often called the Tuple-Independent Model

Idea 2: Give each tuple a distribution of possible values

- $R(A, B, v)->v$ is a tuple identifier. Only one tuple with a given identifier can be in R. Can also assign a probability for each tuple set
- Often called X-Tuples

Idea 3:

- $R(A, B, p h i)->$ phi is a boolean expression that determines whether a given $<A, B>$ is in R (condition column)
- Often called C-Tables (though just a simplified form of them)

- Factorizing on Attributes

- Extended Null-Value Semantics: Labeled Nulls

- Observations

- Conflicts: What happens when...
- Tuple Independent + Self-Join?
- X-Tuple + Aggregate?
- C -Table + Multiple instances of the same variable?

, General Approach:

- D is a database with Labeled Nulls + Condition Columns (= Full C-Tables)
- v is a valuation or assignment of values to labeled nulls / condition column variables
- $D=D[v]$
- A (full) valuation defines one possible world of the database

\checkmark Computing Probabilities

\checkmark Lineage Formulas

$\checkmark \mathrm{p}[(\mathrm{A}$ and B$)$ or $(\mathrm{A}$ and C$)]$!= $1-(1-(\mathrm{p}[\mathrm{A}] * \mathrm{p}[\mathrm{B}]))^{*}(1-(\mathrm{p}[\mathrm{A}]$ * $\mathrm{p}[\mathrm{C}]$))
$\checkmark \mathrm{pA}$ * $(1-(1-\mathrm{pB})(1-\mathrm{pC}))$

- $\mathrm{pA}^{*}(\mathrm{pC}+\mathrm{pB}-\mathrm{pBpC})$
- pApC + pApB - pApBpC

マ 1 - ($1-\mathrm{pApB})(1-\mathrm{pApC})$

- $\mathrm{pApC}+\mathrm{pApB}+\mathrm{pApApBpC}$
- Not the same unless pApA $=\mathrm{pA}->\mathrm{pA}=0$ or 1
- Problem: Computing (A or B) is only possible if:
- A, B are mutually exclusive: $p A+p B$
- A, B are independent: $1-(1-p A)(1-p B)$
- Naive Approach 1: MC methods:
- Pick A, B, C according to their probabilities
- Repeat enough times, you get a distribution of T/F similar to the overall probability
- Naive Approach 2: Shanon Expansion
- Pick a variable (e.g., A) from the formula F
- Rewrite the formula:
- (A and F[A \true]) or ((not A) and F[A \false])
\checkmark Now you have 2 mutually exclusive formulas:
- $p(F)=p A * p(F[A$ \true $])+p N o t A * p(F[A \backslash$ false $])$
- Other techniques as well
- Cheating: What if most of the results are certain?
- Demo: Mimir
- Trick: Annotations

