
Bad!

What if you know something with 80, 99 % confidence?

Some information is better than no information

Databases: “Data is certain”

Background

Basic: 4 v 9

Bing/Google Translate

Information Extraction

CURE: “Ship ID”

ICE Databases

Credit Reports

Zillow

Getting it wrong

Examples

Image Classifier

Bing Translate

GitHub-CSV

Calendar

maybe-screen

Examples in Practice

Uncertain Data

Question: What does it mean for data to be “Uncertain”?

Layer 1: Possible Worlds

Layers of Abstraction



Question: What does it mean to run a query on “Uncertain 
Data”?

Each database is a “Possible World” (like Schroedinger’s Cat: 
In one world the cat is alive, and in the other it isn’t)

Q(D) := { Query(D) | D in D }

The query is evaluated in all possible worlds simultaneously.

All results that *could* occur, do occur

Extend deterministic query semantics to possible worlds:

General approach: Not just 1 database, N databases

Agnostic to the database/data representation (works on Graph, 
JSON, Relational, etc...)

Agnostic to the query semantics

Even agnostic to the number of possible worlds (may even be 
infinite)

… we just may not be able to run it efficiently

If we can define what it means for a query to be correct in one 
world, we can define what it means for a query to be correct in 
all possible worlds.

Possible Worlds semantics has a number of benefits:

P : D -> [0,1]; A probability measure over each world

Probabilistic Database: < D, P >

P[R = Q(D)] = Sum(D in D where Q(D) = R) of P(D = D)

Sum up the probability of all worlds where Q has that result.

We can talk about the probability of a particular query result: R 
= Q( D )

Possible Worlds also works with probabilities

compute P[R]

Figure out the probability of a specific outcome

Aside: What Can You Do by Querying PDBs



compute Argmax[P[R]](Q(D))

Figure out the (k) most likely outcome(s)

compute the set Q(D)

Figure out which outcomes are possible

Typically sampled according to P(D)

Obtain a randomly selected sample from Q(D)

compute the intersection of all relations in the set Q(D)

refine this somewhat… more shortly

Figure out which outcomes are certain

e.g., Compute a histogram for the set of all possible outcomes

e.g., Compute a CDF

e.g., Visualize areas on a map

e.g., Graphs with error-bars

Visualize any of the above

R(A, B, p) -> p defines the probability that any given <A,B> 
is in R

Often called the Tuple-Independent Model

Idea 1: Give each tuple a probability

R( A, B, v ) -> v is a tuple identifier.  Only one tuple with a 
given identifier can be in R.  Can also assign a probability for 
each tuple set

Often called X-Tuples

Idea 2: Give each tuple a distribution of possible values

R(A, B, phi) -> phi is a boolean expression that determines 
whether a given <A, B> is in R (condition column)

Idea 3: 

Factorizing on Tuples

Layer 2: Factorizing Worlds



Often called C-Tables (though just a simplified form of them)

Extended Null-Value Semantics: Labeled Nulls

Factorizing on Attributes

Tuple Independent + Self-Join?

X-Tuple + Aggregate?

C-Table + Multiple instances of the same variable?

Conflicts: What happens when...

Observations

D is a database with Labeled Nulls + Condition Columns (= Full 
C-Tables)

v is a valuation or assignment of values to labeled nulls / 
condition column variables

A (full) valuation defines one possible world of the database

D = D[v]

General Approach:

pA * (pC + pB - pBpC)

pApC + pApB - pApBpC

pA * (1 - (1-pB)(1-pC) )

pApC + pApB + pApApBpC

1 - (1 - pApB)(1 - pApC)

Not the same unless pApA = pA -> pA = 0 or 1

A, B are mutually exclusive: pA + pB

A, B are independent: 1 - (1-pA)(1-pB) 

Problem: Computing (A or B) is only possible if:

p[(A and B) or (A and C)] != 1 - ( 1 - (p[A] * p[B]) ) * ( 1 - (p[A] * 
p[C]) )

Lineage Formulas

Computing Probabilities



Pick A, B, C according to their probabilities

Repeat enough times, you get a distribution of T/F similar to 
the overall probability

Naive Approach 1: MC methods:

Pick a variable (e.g., A) from the formula F

(A and F[A \ true]) or ((not A) and F[A \ false])

p(F) = pA * p(F[A \true]) + pNotA * p(F[A \ false])

Now you have 2 mutually exclusive formulas:

Rewrite the formula:

Naive Approach 2: Shanon Expansion

Other techniques as well

Demo: Mimir

Trick: Annotations

Cheating: What if most of the results are certain?


