- Uncertain Data
 - Background
 - Databases: "Data is certain"
 - Bad!
 - What if you know something with 80, 99 % confidence?
 - Some information is better than no information
 - Examples
 - Basic: 4 v 9
 - Bing/Google Translate
 - Information Extraction
 - CURE: "Ship ID"
 - Getting it wrong
 - ICE Databases
 - Credit Reports
 - Zillow
 - Examples in Practice
 - Image Classifier
 - Bing Translate
 - GitHub-CSV
 - Calendar
 - maybe-screen

Layers of Abstraction

- Layer 1: Possible Worlds
 - Question: What does it mean for data to be "Uncertain"?

- Question: What does it mean to run a query on "Uncertain Data"?
- General approach: Not just 1 database, N databases
 - Each database is a "Possible World" (like Schroedinger's Cat: In one world the cat is alive, and in the other it isn't)
 - Extend deterministic query semantics to possible worlds:
 - Q(**D**) := { Query(D) | D in **D** }
 - The query is evaluated in all possible worlds simultaneously.
 - All results that *could* occur, do occur
- Possible Worlds semantics has a number of benefits:
 - Agnostic to the database/data representation (works on Graph, JSON, Relational, etc...)
 - Agnostic to the query semantics
 - Even agnostic to the number of possible worlds (may even be infinite)
 - If we can define what it means for a query to be correct in one world, we can define what it means for a query to be correct in all possible worlds.
 - ... we just may not be able to run it efficiently
- Possible Worlds also works with probabilities
 - ▼ Probabilistic Database: < D, P >
 - P : D -> [0,1]; A probability measure over each world
 - We can talk about the probability of a particular query result: R
 = Q(D)
 - P[R = Q(D)] = Sum(D in D where Q(D) = R) of P(D = D)
 - Sum up the probability of all worlds where Q has that result.
- Aside: What Can You Do by Querying PDBs
 - Figure out the probability of a specific outcome
 - compute P[R]

- ▼ Figure out the (k) most likely outcome(s)
 - compute Argmax[P[R]](Q(D))
- ▼ Figure out which outcomes are possible
 - compute the set Q(**D**)
- Obtain a randomly selected sample from Q(D)
 - Typically sampled according to P(D)
- ▼ Figure out which outcomes are certain
 - compute the intersection of all relations in the set Q(D)
 - refine this somewhat... more shortly
- Visualize any of the above
 - e.g., Compute a histogram for the set of all possible outcomes
 - e.g., Compute a CDF
 - e.g., Visualize areas on a map
 - e.g., Graphs with error-bars
- Layer 2: Factorizing Worlds
 - Factorizing on Tuples
 - Idea 1: Give each tuple a probability
 - R(A, B, p) -> p defines the probability that any given <A,B> is in R
 - Often called the Tuple-Independent Model
 - ▼ Idea 2: Give each tuple a distribution of possible values
 - R(A, B, v) -> v is a tuple identifier. Only one tuple with a given identifier can be in R. Can also assign a probability for each tuple set
 - Often called X-Tuples
 - ▼ Idea 3:
 - R(A, B, phi) -> phi is a boolean expression that determines whether a given <A, B> is in R (condition column)

- Often called C-Tables (though just a simplified form of them)
- Factorizing on Attributes
 - Extended Null-Value Semantics: Labeled Nulls
- Observations
 - Conflicts: What happens when...
 - Tuple Independent + Self-Join?
 - X-Tuple + Aggregate?
 - C-Table + Multiple instances of the same variable?
- General Approach:
 - D is a database with Labeled Nulls + Condition Columns (= Full C-Tables)
 - v is a valuation or assignment of values to labeled nulls / condition column variables
 - ▼ D = **D**[v]
 - A (full) valuation defines one possible world of the database
- Computing Probabilities
 - Lineage Formulas
 - p[(A and B) or (A and C)] != 1 (1 (p[A] * p[B])) * (1 (p[A] * p[C]))
 - ▼ pA * (1 (1-pB)(1-pC))
 - pA * (pC + pB pBpC)
 - pApC + pApB pApBpC
 - 1 (1 pApB)(1 pApC)
 - pApC + pApB + pApApBpC
 - Not the same unless pApA = pA -> pA = 0 or 1
 - Problem: Computing (A or B) is only possible if:
 - A, B are mutually exclusive: pA + pB
 - A, B are independent: 1 (1-pA)(1-pB)

- Naive Approach 1: MC methods:
 - Pick A, B, C according to their probabilities
 - Repeat enough times, you get a distribution of T/F similar to the overall probability
- ▼ Naive Approach 2: Shanon Expansion
 - Pick a variable (e.g., A) from the formula F
 - Rewrite the formula:
 - (A and F[A \ true]) or ((not A) and F[A \ false])
 - ▼ Now you have 2 mutually exclusive formulas:
 - p(F) = pA * p(F[A \true]) + pNotA * p(F[A \ false])
- Other techniques as well
- Cheating: What if most of the results are certain?
 - Demo: Mimir
 - Trick: Annotations