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SQL
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A Basic SQL Query

SELECT  [DISTINCT] target-list

FROM    relation-list

WHERE   condition

A list of relation names 
(possibly with a range-variable after each name)

A list of attributes of relations in relation-list

Comparisons (‘=’, ‘<>’, ‘<‘, ‘>’, ‘<=’, ‘>=’) and other boolean predicates, 
combined using AND, OR, and NOT 

(a boolean formula)

(optional) keyword indicating that the answer should not contain duplicates



Integrity Constraints

• Domain Constraints

• Limitations on valid values of a field.

• Key Constraints

• A field(s) that must be unique for each row.

• Foreign Key Constraints

• A field referencing a key of another relation.

• Can also encode participation/1-many/many-1/1-1.

• Table Constraints

• More general constraints based on queries.
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Algorithms
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Memory Conscious 
Algorithms

• Join

• NLJ has a small working set (but is slow)

• GB Aggregate

• Working Set ~ # of Groups

• Sort

• Working Set ~ Size of Relation
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Implementing: Joins
Solution 1 (Nested-Loop)

For Each (a in A) { For Each (b in B) { emit (a, b); }}

A B
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Implementing: Joins
Solution 2 (Block-Nested-Loop)

1) Partition into Blocks 2) NLJ on each pair of blocks
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Implementing: Joins
Solution 3 (Index-Nested-Loop)

Like nested-loop, but use an index to make
the inner loop much faster!

9



Implementing: Joins
Solution 3 (Index-Nested-Loop)

Like nested-loop, but use an index to make
the inner loop much faster!

9



Implementing: Joins
Solution 3 (Index-Nested-Loop)

Like nested-loop, but use an index to make
the inner loop much faster!

9



Implementing: Joins
Solution 3 (Index-Nested-Loop)

Like nested-loop, but use an index to make
the inner loop much faster!

9



Implementing: Joins
Solution 3 (Index-Nested-Loop)

Like nested-loop, but use an index to make
the inner loop much faster!

9



Implementing: Joins
Solution 3 (Index-Nested-Loop)

Like nested-loop, but use an index to make
the inner loop much faster!
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Implementing: Joins
Solution 4 (Sort-Merge Join)

A B

3

1

5

2
5
4
1

Keep iterating on the set with the lowest value.

1

6

When you hit two that match, emit, then iterate both
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Implementing: Joins
Solution 5 (2-pass Hash)

3

1

5

2
5
4
1

6

Hash Hash

1) Build a hash table on both relations
2) In-Memory Nested-Loop Join on each hash bucket

Nested-Loop

1 5A B
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Implementing: Joins
Solution 6 (1-pass Hash)

Keep the hash table in memory

3

1

5

2
Hash

5
4
1

6

A B

Hash

(Essentially a more efficient nested loop join)

1 2

5

3



Implementing: Joins
Tradeoffs

Nested Loop

Block-Nested Loop

Index-Nested Loop

Sort-Merge

2-pass Hash

1-pass Hash

Pipelined? Memory
Requirements?

Predicate
Limitation?

1/2

No

1/2

If Data Sorted

No

1/2

1 Table

2 ‘Blocks’

1 Tuple
(+Index)

Max of 1 Page per Bucket
and All Pages in Any Bucket

Hash Table

No

No

Single Comparison

Equality Only

Equality Only

Equality Only
13

Same as reqs. of
Sorting Inputs 



Relational Algebra
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RA Equivalencies
(Decomposable)

(Commutative)

(Idempotent)

(Associative)
(Commutative)

Selection

Projection

Cross Product (and Join)

(Decomposable)



Selection and Projection

Selection commutes with Projection 
(but only if attribute set a and condition c are compatible)

a must include all columns referenced by c



Join

Selection combines with Cross Product  
to form a Join as per the definition of Join 

(Note: This only helps if we have a join algorithm for conditions like c)



Selection and Cross Product

Selection commutes with Cross Product  
(but only if condition c references attributes of R exclusively)



Projection and Cross Product

Projection commutes (distributes) over Cross Product  
(where a1 and a2 are the attributes in a from R and S respectively)



RA Equivalencies

Union and Intersections are Commutative and 
Associative 

Selection and Projection both commute  
with both Union and Intersection



Relational Algebra

21

Operation Sym Meaning

Selection 𝝈 Select a subset of the input rows

Projection π Delete unwanted columns

Cross-product x Combine two relations

Set-difference - Tuples in Rel 1, but not Rel 2

Union U Tuples either in Rel 1 or in Rel 2

Also: Intersection, Join, Division, 
Renaming (Not essential, but very useful)



SQL to RA
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SELECT [DISTINCT]
       target
FROM source
WHERE cond1
GROUP BY …
HAVING cond2
ORDER BY order
LIMIT lim
UNION nextselect

source (⨉,⋈)
cond1 (σ)

agg
cond2 (σ)
target (π)
order by

lim nextselect

U

distinct



Transactions
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What does it mean for a database 
operation to be correct?

Transaction



What could go wrong?

T1: R(A),W(A),              R(B),W(B),ABRT
T2:           R(A),W(A),CMT,

T1: R(A),              R(A),W(A),CMT
T2:      R(A),W(A),CMT,

Unrepeatable Reads 
(read-write/RW conflicts)

Reading uncommitted data  
(write-read/WR conflicts; aka “Dirty Reads”)



What could go wrong?

T1: W(A),              W(B),CMT
T2:      W(A),W(B),CMT,

Overwriting Uncommitted Data 
(write-write/WW conflicts)



Serial Schedule
No interleaving between transactions at all

Serializable Schedule
Guaranteed to produce equivalent output  

to a serial schedule

Schedule
An ordering of read and write operations.



Conflict Equivalence

Possible Solution: Look at read/write, etc… conflicts! 

Allow operations to be reordered as long as conflicts 
are ordered the same way

Conflict Equivalence: Can reorder one schedule  
into another without reordering conflicts.

Conflict Serializability: Conflict Equivalent to a serial 
schedule.



Conflict Serializability
• Step 1: Serial Schedules are Always Correct 

• Step 2: Schedules with the same operations 
and the same conflict ordering are conflict-
equivalent. 

• Step 3: Schedules conflict-equivalent to an 
always correct schedule are also correct. 

• … or conflict serializable



View Serializability
Possible Solution: Look at data flow!

View Equivalence: All reads read from the same writer 
Final write in a batch comes from the same writer

View Serializability: Conflict Equivalent to a serial schedule.



Information Flow

T1 T2 T3

R(…)



Information Flow

T1 T2 T3

R(…) R(…) R(…)



Information Flow

T1 T2 T3

R(…) R(…) R(…)

Important



Information Flow

T1 T2 T3

R(…) R(…) R(…)

ImportantNot Important



Information Flow

Multiple Transactions

R(…) R(…) R(…)



View Serializability
• Step 1: Serial Schedules are Always Correct 

• Step 2: Schedules with the same information 
flow are view-equivalent. 

• Step 3: Schedules view-equivalent to an 
always correct schedule are also correct. 

• … or view serializable



Enforcing Serializability



Enforcing Serializability
• Conflict Serializability:

• Does locking enforce conflict serializability?



Enforcing Serializability
• Conflict Serializability:

• Does locking enforce conflict serializability?

• View Serializability

• Is view serializability stronger, weaker, or 
incomparable to conflict serializability?



Enforcing Serializability
• Conflict Serializability:

• Does locking enforce conflict serializability?

• View Serializability

• Is view serializability stronger, weaker, or 
incomparable to conflict serializability?

• What do we need to enforce either fully?



How to detect conflict 
serializable schedule?

T1 T2 T3

W(a)

R(b)

W(d)

W(b)

R(d)

W(d)

!
Schedule!(2)!–!(33!Points)!
!

T1! T2! T3!
! ! !

W(a)! ! !
! ! !
! ! !
! ! !
! R(b)! !
! ! !
! ! !
! ! !
! ! W(d)!
! ! !
! ! !

W(b)! ! !
! ! !
! ! !
! R(d)! !
! ! !
! ! !
! ! W(d)!
! ! !
! ! !
!
Conflict!Serializable! View!Serializable! 2PL!

NO! NO! NO!
!
Justification!for!Schedule!(2):!
!
!
!

!
!
It!is!not!conflict!serializable!because!the!precedence!graph!has!cycle!
!

E. It can not be strict 2PL because T2 will have to unlock(B) at the very end and hence it will 
be impossible for T1 to w(B) 

x� It is not serializable because of a cycle in the precedence graph  

T1

T1

T2

T3

Precedence Graph
.        

 Every non-serializable schedule can not be 2PL or strict 2PL. 
x� It is serializable because it has an acyclic graph   

 

T1

T1

T2

T3

Precedence Graph
         

 and 2PL because locks can be assigned as follows (many similar solutions are possible) 
T1 T2 T3 
  ls(D) 
  r(D) 
ls(A)   
w(A)   
 ls(B); ls(D)  
 R(B)  
 u(B)  
ls(B)   
w(B)   
u(A); u(B)   
 R(D)  
 u(D)  
  lx(D) 
  w(D) 
  u(D) 
It can not be strict 2PL for the same reasons with the first schedule. 

Cycle! 
Not Conflict serializable



Not conflict serializable but 
view serializable

T1 T2 T3

W(y)

W(y)

W(x)

W(x)

W(x)

T1 T2

T3

Satisfies 3 conditions of  
view serializability 

Every view serializable schedule which is not conflict 
serializable has blind writes.



Two-Phase Locking

• Phase 1: Acquire (do not release) locks. 
• Typically happens as objects are needed. 

• Phase 2: Release (do not acquire) locks. 
• Typically happens as part of commit.



Reader/Writer (S/X)
• When accessing a DB Entity… 

• Table, Row, Column, Cell, etc… 

• Before reading: Acquire a Shared (S) lock. 

• Any number of transactions can hold S. 

• Before writing: Acquire an Exclusive (X) lock. 

• If a transaction holds an X, no other transaction 
can hold an S or X.



New Lock Modes

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Concurrency Control (2)Concurrency Control (2) 44 / 29/ 29

Locks With Multiple GranularityLocks With Multiple Granularity
Even within the same application, there may be a 
need for locks at multiple levels of granularity.

Database elements are organized in a hierarchy:

relations R1

blocks B1    B2 B3 B4

tuples t1  t2 t3      t4   t5 contained in



Hierarchical Locks
• Lock Objects Top-Down 

• Before acquiring a lock on an object, an xact must 
have at least an intention lock on its parent! 

• For example: 

• To acquire a S on an object, an xact must have an IS, 
IX on the object’s parent (why not S, SIX, or X?) 

• To acquire an X (or SIX) on an object, an xact must 
have a SIX, or IX on the object’s parent.



New Lock Modes

None IS IX S X

None valid valid valid valid valid

IS valid valid valid valid fail

IX valid valid valid fail fail

S valid valid fail valid fail

X valid fail fail fail fail

Lock Mode(s) Currently Held By Other Xacts

Lo
ck

 M
od

e 
D

es
ir

ed



Commit

Abort

Serializability

Time

Read Read Read

Write Write

42



Optimistic CC

• Read Phase: Transaction executes on a 
private copy of all accessed objects. 

• Validate Phase: Check for conflicts. 

• Write Phase: Make the transaction’s changes 
to updated objects public.
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Read, Validate, Write

R V W

44

(1) Transaction executes on 
a private copy of the DB

(writes are buffered)

COMMIT Called
(user ok with commit)

(2) Transaction checks
for conflicts

(3) Buffered writes written
to main Database

COMMIT Returns
(Commit complete)



Commit

Abort

Read Phase

Time

Read Read

Write Write

Read Set

Write Set

Read
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Read Phase

ReadSet(Ti): Set of objects read by Ti.

WriteSet(Ti): Set of objects written by Ti.
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Validation Phase

Pick a serial order for the transactions 
(e.g., assign id #s or timestamps)

47



Validation Phase

Pick a serial order for the transactions 
(e.g., assign id #s or timestamps)

When should we assign Transaction IDs?  (Why?)
47



Validation Phase

What tests are needed?

48



Simple Test
For all i and k for which i < k,  

check that Ti completes before Tk begins.

R V W

R V W

Ti

Tk
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Simple Test
For all i and k for which i < k,  

check that Ti completes before Tk begins.

R V W

R V W

Ti

Tk

Is this sufficient?
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Simple Test
For all i and k for which i < k,  

check that Ti completes before Tk begins.

R V W

R V W

Ti

Tk

Is this sufficient? Is this efficient?
49



Test 2
For all i and k for which i < k,  

check that Ti completes before Tk begins its write phase 
AND WriteSet(Ti) ⋂ ReadSet(Tk) is empty

R V W

R V W

Ti

Tk
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Test 2
For all i and k for which i < k,  

check that Ti completes before Tk begins its write phase 
AND WriteSet(Ti) ⋂ ReadSet(Tk) is empty

R V W

R V W

Ti

Tk

How do these two conditions help?
50



Test 3
For all i and k for which i < k,  

check that Ti completes its read phase first 
AND WriteSet(Ti) ⋂ ReadSet(Tk) is empty 
AND WriteSet(Ti) ⋂ WriteSet(Tk) is empty

R V W

R V W

Ti

Tk
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Test 3
For all i and k for which i < k,  

check that Ti completes its read phase first 
AND WriteSet(Ti) ⋂ ReadSet(Tk) is empty 
AND WriteSet(Ti) ⋂ WriteSet(Tk) is empty

R V W

R V W

Ti

Tk

How do these three conditions help?
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Timestamp CC
• Give each object a read timestamp (RTS) and a 

write timestamp (WTS) 

• Give each transaction a timestamp (TS) at the 
start. 

• Use RTS/WTS to track previous operations on the 
object.   

• Compare with TS to ensure ordering is 
preserved.

52



Timestamp CC
• When Ti reads from object O: 

• If WTS(O) > TS(Ti), Ti is reading from a ‘later’ 
version. 

• Abort Ti and restart with a new timestamp. 

• If WTS(O) < TS(Ti), Ti’s read is safe. 

• Set RTS(O) to MAX( RTS(O), TS(Ti) )
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Timestamp CC
• When Ti writes to object O: 

• If RTS(O) > TS(Ti), Ti would cause a dirty read. 

• Abort Ti and restart it. 

• If WTS(O) > TS(Ti), Ti would overwrite a ‘later’ value. 

• Don’t need to restart, just ignore the write. 

• Otherwise, allow the write and update WTS(O).
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Logging

55



Write-Ahead Logging

56

A 8

B 12

C 5

D 18

E 16

Before writing to the database, 
first write what you plan to write 

to a log file…

Image copyright: OpenClipart (rg1024)

W(A:10)
Log



Write-Ahead Logging

57

A 8

B 12

C 5

D 18

E 16

/ 10
Once the log is safely on disk 
you can write the database

Image copyright: OpenClipart (rg1024)

W(A:10)
Log



Write-Ahead Logging

58

A 8

B 12

C 5

D 18

E 16

/ 10
Log is append-only,  
so writes are always  

efficient

Image copyright: OpenClipart (rg1024)

W(A:10)
W(C:8)
W(E:9)

Log



Write-Ahead Logging

59

A 8

B 12

C 5

D 18

E 16

/ 10

/ 8

/ 9

…allowing random writes 
to be safely batched

Image copyright: OpenClipart (rg1024)

W(A:10)
W(C:8)
W(E:9)

Log



UNDO Logging

60

A 8

B 12

C 5

D 18

E 16

W(A:8!10)
W(C:5!8)
W(E:16!9)

/ 10

/ 8

/ 9

Log

Image copyright: OpenClipart (rg1024)

Store both the “old” and the “new” 
values of the record being replaced



UNDO Logging
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A 8

B 12

C 5

D 18

E 16

W(A:8!10)
W(C:5!8)
W(E:16!9)

/ 10

/ 8

/ 9

Log

Image copyright: OpenClipart (rg1024)

Active Xacts

Xact:1, Log: 45 43:
44:
45:Xact:2, Log: 32



UNDO Logging
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A 8

B 12

C 5

D 18

E 16

W(A:8!10)
W(C:5!8)
W(E:16!9)

/ 10

/ 8

/ 9

Log

Image copyright: OpenClipart (rg1024)

Active Xacts

Xact:1, Log: 45 43:
44:
45:Xact:2, Log: 32

ABORT



UNDO Logging
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A 8

B 12

C 5

D 18

E 16

W(A:8!10)
W(C:5!8)
W(E:16!9)

/ 10

/ 8Log

Image copyright: OpenClipart (rg1024)

Active Xacts

Xact:1, Log: 45 43:
44:
45:Xact:2, Log: 32

ABORT



UNDO Logging
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A 8

B 12

C 5

D 18

E 16

W(A:8!10)
W(C:5!8)
W(E:16!9)

/ 10

Log

Image copyright: OpenClipart (rg1024)

Active Xacts

Xact:1, Log: 45 43:
44:
45:Xact:2, Log: 32

ABORT



UNDO Logging
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A 8

B 12

C 5

D 18

E 16

W(A:8!10)
W(C:5!8)
W(E:16!9)

Log

Image copyright: OpenClipart (rg1024)

Active Xacts

Xact:1, Log: 45 43:
44:
45:Xact:2, Log: 32

ABORT



ACID
• Isolation: Already addressed. 
• Atomicity: Need writes to get flushed in a single step. 

• IOs are only atomic at the page level. 

• Durability: Need to buffer some writes until commit. 
• May need to free up memory for another xact. 

• Consistency: Need to roll back incomplete xacts. 
• May have already paged back to disk.
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Atomicity
• Problem: IOs are only atomic for 1 page. 

• What if we crash in between writes? 

• Solution: Logging (e.g., Journaling Filesystem) 

• Log everything first before you do it.

67

append changes to log

time

overwrite file blocks



Durability / Consistency
• Problem: Buffer memory is limited 

• What if we need to ‘page out’ some data? 

• Solution: Use log (or similar) to recover buffer 
• Problem: Commits more expensive 

• Solution: Modify DB in place, use log to ‘undo’ on abort 
• Problem: Aborts more expensive

68

append to log

time

‘page out’ data to disk

ABORT

replay log in reverse



Anatomy of a log entry

69

Xact 
ID

Prev 
Entry

Entry 
Type Entry Metadata

Which Xact 
Triggered This 

Entry

Last entry for 
this Xact 

(forms a Linked List)

Write,  
Commit,  

etc…

What was written, 
where, prior value,  

etc…



Transaction Table
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Transaction 24

Transaction 38

Transaction 42

Transaction 56

VALIDATING

COMMITTING

ABORTING

ACTIVE

99

85

87

100

Transaction Status Last Log Entry



Buffer Manager

71

24

30

52

57

66

47

n/a

107

87

n/a

Page Status Last Log Entry

DIRTY

CLEAN

DIRTY

DIRTY

CLEAN

Data

01011010…

11001101…

10100010…

01001101…

01001011…



Transaction Table
• Problem: We might need to scan to the very 

beginning of the log to recover the full state of the 
Xact table (& Buffer Manager) 

• Solution: Periodically save (checkpoint) the Xact 
table to the log. 

• Only need to scan the log up to the last 
(successful) checkpoint.

72

Step 1: Recover Xact State



Checkpointing
• begin_checkpoint record indicates when the 

checkpoint began. 

• Checkpoint covers all log entries before this 
entry. 

• end_checkpoint record contains the current 
transaction table and the dirty page table. 

• Signifies that the checkpoint is now stable.
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Buffer Manager
• Where do we get the buffered data from? 

• Replay Updates in the Log 

• … from when? 

• The checkpoint? 

• Earlier?

74

Step 2: Recover Buffered Data



Buffer Manager
• Where do we get the buffered data from? 

• Replay Updates in the Log 

• … from when? 

• The checkpoint? 

• Earlier?

74

Step 2: Recover Buffered Data



Buffer Manager
• Where do we get the buffered data from? 

• Replay Updates in the Log 

• … from when? 

• The checkpoint? 

• Earlier?

74

Step 2: Recover Buffered Data



Consistency
• Record previous values with log entries 

• Replay log in reverse (linked list of entries) 

• Which Xacts do we undo? 

• Which log entries do we undo? 

• How far in the log do we need to go?

75

Step 3: Undo incomplete xacts



Compensation Log Records
• Problem: Step 3 is expensive! 

• What if we crash during step 3? 

• Optimization: Log undos as writes as they are 
performed (CLRs). 

• Less repeat computation if we crash during recovery 

• Shifts effort to step 2 (replay) 

• CLRs don’t need to be undone!

76



ARIES Crash Recovery
• Start from checkpoint stored in 

master record. 

• Analysis: Rebuild the Xact 
Table 

• Redo: Replay operations from 
all live Xacts (even 
uncommitted ones). 

• Undo: Revert operations from 
all uncommitted/aborted 
Xacts.

77

Oldest log record 
of transaction 
active at crash

Smallest recLSN 
in dirty page table 

after Analysis

Last Checkpoint

CRASH

A R U



Materialized Views
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Materialized Views
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Q(      )

When the base data changes, the view needs to be updated



View Maintenance

80

VIEW ← Q(D)



View Maintenance

81

WHEN D ← D+ΔD DO:

Re-evaluating the query from scratch is expensive!

VIEW ← Q(D+ΔD)



View Maintenance
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VIEW ← VIEW+ΔQ(D,ΔD)
WHEN D ← D+ΔD DO:

(ideally) Smaller & Faster Query

(ideally) Fast “merge” operation.



Delta Queries
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R

σ



Delta Queries
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R

σ

R ΔR

Original R Inserted
Tuples of  R
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R

σ

R ΔR

σ

Original R Inserted
Tuples of  R



Delta Queries
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R

σ

R ΔR

σ

Original R Inserted
Tuples of  R



Delta Queries
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R

σ

R ΔR

σ

Original R Inserted
Tuples of  R

Does this work for deleted tuples?



Delta Queries
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R

π

R ΔR

π



Delta Queries
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R

π

R ΔR

π

Does this work (completely) under set semantics?



Delta Queries
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R1 R1 ΔR1R2

U

R2 ΔR2



Delta Queries
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R1 R1 ΔR1R2

U

R2 ΔR2



Delta Queries
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R1 R1 ΔR1R2

U

R2 ΔR2



Delta Queries
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R R ΔRS

x

S



Delta Queries
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R : { 1, 2, 3 }       S : { 5, 6}



Delta Queries
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R : { 1, 2, 3 }       S : { 5, 6}
R x S = { <1,5>, <1, 6>, <2,5>, <2,6>, <3,5>, <3,6> }



Delta Queries
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R : { 1, 2, 3 }       S : { 5, 6}
R x S = { <1,5>, <1, 6>, <2,5>, <2,6>, <3,5>, <3,6> }

ΔRinserted = { 4 }
ΔRdeleted = { 3,2 }



Delta Queries
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R : { 1, 2, 3 }       S : { 5, 6}
R x S = { <1,5>, <1, 6>, <2,5>, <2,6>, <3,5>, <3,6> }

ΔRinserted = { 4 }
ΔRdeleted = { 3,2 }

(R+ΔR) x S = { <1,5>, <1, 6>, <4,5>, <4,6> }



Delta Queries

87

R : { 1, 2, 3 }       S : { 5, 6}
R x S = { <1,5>, <1, 6>, <2,5>, <2,6>, <3,5>, <3,6> }

ΔRinserted = { 4 }
ΔRdeleted = { 3,2 }

(R+ΔR) x S = { <1,5>, <1, 6>, <4,5>, <4,6> }

Δinserted(R x S) = ΔRinserted x S
Δdeleted(R x S) = ΔRdeleted x S



Delta Queries
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R : { 1, 2, 3 }       S : { 5, 6}
R x S = { <1,5>, <1, 6>, <2,5>, <2,6>, <3,5>, <3,6> }

ΔRinserted = { 4 }
ΔRdeleted = { 3,2 }

(R+ΔR) x S = { <1,5>, <1, 6>, <4,5>, <4,6> }

Δinserted(R x S) = ΔRinserted x S
Δdeleted(R x S) = ΔRdeleted x S

What if R and S both change?



Delta Queries
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Delta Queries
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Delta Queries

88

The original
query



Delta Queries
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The original
query The delta query


