Website/slides/cse4562sp2018/2018-03-05-CostBasedOptimization2.html
2018-03-09 17:38:56 -05:00

1022 lines
39 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>CSE 4/562 - Spring 2018</title>
<meta name="description" content="CSE 4/562 - Spring 2018">
<meta name="author" content="Oliver Kennedy">
<meta name="apple-mobile-web-app-capable" content="yes" />
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no, minimal-ui">
<link rel="stylesheet" href="../reveal.js-3.6.0/css/reveal.css">
<link rel="stylesheet" href="ubodin.css" id="theme">
<!-- Code syntax highlighting -->
<link rel="stylesheet" href="../reveal.js-3.6.0/lib/css/zenburn.css">
<!-- Printing and PDF exports -->
<script>
var link = document.createElement( 'link' );
link.rel = 'stylesheet';
link.type = 'text/css';
link.href = window.location.search.match( /print-pdf/gi ) ? '../reveal.js-3.6.0/css/print/pdf.css' : '../reveal.js-3.6.0/css/print/paper.css';
document.getElementsByTagName( 'head' )[0].appendChild( link );
</script>
<script src="../reveal.js-3.6.0/lib/js/head.min.js"></script>
<!--[if lt IE 9]>
<script src="../reveal.js-3.6.0/lib/js/html5shiv.js"></script>
<![endif]-->
</head>
<body>
<div class="reveal">
<!-- Any section element inside of this container is displayed as a slide -->
<div class="header">
<!-- Any Talk-Specific Header Content Goes Here -->
CSE 4/562 - Database Systems
</div>
<div class="slides">
<section>
<h1>Cost Based Optimization</h1>
<h3>CSE 4/562 Database Systems</h3>
<h5>March 5-7, 2018</h5>
</section>
<!-- ============================================ -->
<section>
<section>
<h3>Remember the Real Goals</h3>
<ol>
<li>Accurately <b>rank</b> the plans.</li>
<li>Don't spend more time optimizing than you get back.</li>
<li>Don't pick a plan that uses more memory than you have.</li>
</ol>
</section>
<section>
<h3>Accounting</h3>
<p style="margin-top: 50px;">Figure out the cost of each <b>individual</b> operator.</p>
<p style="margin-top: 50px;">Only count the number of IOs <b>added</b> by each operator.</p>
</section>
<section>
<table style="font-size: 70%">
<tr><th>Operation</th><th>RA</th><th>IOs Added (#pages)</th><th>Memory (#tuples)</th></tr>
<tr>
<td>Table Scan</td>
<td>$R$</td>
<td>$\frac{|R|}{\mathcal P}$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Projection</td>
<td>$\pi(R)$</td>
<td>$0$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Selection</td>
<td>$\sigma(R)$</td>
<td>$0$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Union</td>
<td>$R \cup S$</td>
<td>$0$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td style="vertical-align: middle;">Sort <span>(In-Mem)</span></td>
<td style="vertical-align: middle;">$\tau(R)$</td>
<td>$0$</td>
<td>$O(|R|)$</td>
</tr>
<tr>
<td>Sort (On-Disk)</td>
<td>$\tau(R)$</td>
<td>$\frac{2 \cdot \lfloor log_{\mathcal B}(|R|) \rfloor}{\mathcal P}$</td>
<td>$O(\mathcal B)$</td>
</tr>
<tr>
<td><span>(B+Tree)</span> Index Scan</td>
<td>$Index(R, c)$</td>
<td>$\log_{\mathcal I}(|R|) + \frac{|\sigma_c(R)|}{\mathcal P}$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>(Hash) Index Scan</td>
<td>$Index(R, c)$</td>
<td>$1$</td>
<td>$O(1)$</td>
</tr>
</table>
<ol style="font-size: 50%; margin-top: 50px;">
<li>Tuples per Page ($\mathcal P$) <span> Normally defined per-schema</span></li>
<li>Size of $R$ ($|R|$)</li>
<li>Pages of Buffer ($\mathcal B$)</li>
<li>Keys per Index Page ($\mathcal I$)</li>
</ol>
</section>
<section>
<table style="font-size: 70%">
<tr><th width="300px">Operation</th><th>RA</th><th>IOs Added (#pages)</th><th>Memory (#tuples)</th></tr>
<tr>
<td style="font-size: 60%">Nested Loop Join <span>(Buffer $S$ in mem)</span></td>
<td>$R \times S$</td>
<td>$0$</td>
<td>$O(|S|)$</td>
</tr>
<tr>
<td style="font-size: 60%">Nested Loop Join (Buffer $S$ on disk)</td>
<td>$R \times_{disk} S$</td>
<td>$(1+ |R|) \cdot \frac{|S|}{\mathcal P}$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>1-Pass Hash Join</td>
<td>$R \bowtie_{1PH, c} S$</td>
<td>$0$</td>
<td>$O(|S|)$</td>
</tr>
<tr>
<td>2-Pass Hash Join</td>
<td>$R \bowtie_{2PH, c} S$</td>
<td>$\frac{2|R| + 2|S|}{\mathcal P}$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Sort-Merge Join </td>
<td>$R \bowtie_{SM, c} S$</td>
<td>[Sort]</td>
<td>[Sort]</td>
</tr>
<tr>
<td><span>(Tree)</span> Index NLJ</td>
<td>$R \bowtie_{INL, c}$</td>
<td>$|R| \cdot (\log_{\mathcal I}(|S|) + \frac{|\sigma_c(S)|}{\mathcal P})$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>(Hash) Index NLJ</td>
<td>$R \bowtie_{INL, c}$</td>
<td>$|R| \cdot 1$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td><span>(In-Mem)</span> Aggregate</td>
<td>$\gamma_A(R)$</td>
<td>$0$</td>
<td>$adom(A)$</td>
</tr>
<tr>
<td style="font-size: 90%">(Sort/Merge) Aggregate</td>
<td>$\gamma_A(R)$</td>
<td>[Sort]</td>
<td>[Sort]</td>
</tr>
</table>
<ol style="font-size: 50%;">
<li>Tuples per Page ($\mathcal P$) <span> Normally defined per-schema</span></li>
<li>Size of $R$ ($|R|$)</li>
<li>Pages of Buffer ($\mathcal B$)</li>
<li>Keys per Index Page ($\mathcal I$)</li>
<li>Number of distinct values of $A$ ($adom(A)$)</li>
</ol>
</section>
</section>
<!-- ============================================ -->
<section>
<section>
<p>Estimating IOs requires Estimating $|Q(R)|$</p>
</section>
<section>
<h3>Cardinality Estimation</h3>
<p class="fragment">Unlike estimating IOs, cardinality estimation doesn't care about the algorithm, so we'll just be working with raw RA.</p>
<p class="fragment">Also unlike estimating IOs, we care about the cardinality of $|Q(R)|$ as a whole, rather than the contribution of each individual operator.</p>
</section>
<section>
<table style="font-size: 70%">
<tr>
<th>Operator</th>
<th>RA</th>
<th>Estimated Size</th>
</tr>
<tr>
<td>Table</td>
<td>$R$</td>
<td class="fragment" data-fragment-index="1">$|R|$</td>
</tr>
<tr>
<td>Projection</td>
<td>$\pi(Q)$</td>
<td class="fragment" data-fragment-index="2">$|Q|$</td>
</tr>
<tr>
<td>Union</td>
<td>$Q_1 \uplus Q_2$</td>
<td class="fragment" data-fragment-index="3">$|Q_1| + |Q_2|$</td>
</tr>
<tr>
<td>Cross Product</td>
<td>$Q_1 \times Q_2$</td>
<td class="fragment" data-fragment-index="4">$|Q_1| \times |Q_2|$</td>
</tr>
<tr>
<td>Sort</td>
<td>$\tau(Q)$</td>
<td class="fragment" data-fragment-index="5">$|Q|$</td>
</tr>
<tr>
<td>Limit</td>
<td>$\texttt{LIMIT}_N(Q)$</td>
<td class="fragment" data-fragment-index="6">$N$</td>
</tr>
<tr>
<td>Selection</td>
<td>$\sigma_c(Q)$</td>
<td class="fragment" data-fragment-index="8">$|Q| \times \texttt{SEL}(c, Q)$</td>
</tr>
<tr>
<td>Join</td>
<td>$Q_1 \bowtie_c Q_2$</td>
<td class="fragment" data-fragment-index="9">$|Q_1| \times |Q_2| \times \texttt{SEL}(c, Q_1\times Q_2)$</td>
</tr>
<tr>
<td>Distinct</td>
<td>$\delta_A(Q)$</td>
<td class="fragment" data-fragment-index="11">$\texttt{UNIQ}(A, Q)$</td>
</tr>
<tr>
<td>Aggregate</td>
<td>$\gamma_{A, B \leftarrow \Sigma}(Q)$</td>
<td class="fragment" data-fragment-index="12">$\texttt{UNIQ}(A, Q)$</td>
</tr>
</table>
<ul style="font-size: 50%; margin-top: 20px">
<li class="fragment" data-fragment-index="7">$\texttt{SEL}(c, Q)$: Selectivity of $c$ on $Q$, or $\frac{|\sigma_c(Q)|}{|Q|}$</li>
<li class="fragment" data-fragment-index="10">$\texttt{UNIQ}(A, Q)$: # of distinct values of $A$ in $Q$.
</ul>
</section>
<!-- 2018 by OK:
Things to cover:
- Defaults: The 10% rule
- Basic Assumptions:
- Selectivity: MIN/MAX+COUNT, Uniform distribution, No correlations
- Unique Values: COUNT DISTINCT, No correlations
- Histograms: Nonuniform distributions
- Constraints: Keys, FDs, FKey (implications for Joins)
-->
<section>
<h3>Cardinality Estimation</h3>
<h4>(The Hard Parts)</h4>
<dl>
<dt style="margin-top: 50px;">$\sigma_c(Q)$ (Cardinality Estimation)</dt>
<dd>How many tuples will a condition $c$ allow to pass?</dd>
<dt style="margin-top: 50px;">$\delta_A(Q)$ (Distinct Values Estimation)</dt>
<dd>How many distinct values of attribute(s) $A$ exist?</dd>
</dl>
</section>
<section>
<h3>Remember the Real Goals</h3>
<ol>
<li>Accurately <b>rank</b> the plans.</li>
<li>Don't spend more time optimizing than you get back.</li>
</ol>
</section>
<section>
<h3>(Some) Estimation Techniques</h3>
<dl style="font-size: 80%">
<div class="fragment">
<dt>Guess Randomly</dt>
<dd>Rules of thumb if you have no other options...</dd>
</div>
<div class="fragment">
<dt>Uniform Prior</dt>
<dd>Use basic statistics to make a very rough guess.</dd>
</div>
<div class="fragment">
<dt>Sampling / History</dt>
<dd>Small, Quick Sampling Runs (or prior executions of the query).</dd>
</div>
<div class="fragment">
<dt>Histograms</dt>
<dd>Using more detailed statistics for improved guesses.</dd>
</div>
<div class="fragment">
<dt>Constraints</dt>
<dd>Using rules about the data for improved guesses.</dd>
</div>
</dl>
</section>
</section>
<!-- ============================================ -->
<section>
<section>
<h3>(Some) Estimation Techniques</h3>
<dl style="font-size: 80%">
<dt style="color: blue;">Guess Randomly</dt>
<dd style="color: blue;">Rules of thumb if you have no other options...</dd>
<dt style="color: grey;">Uniform Prior</dt>
<dd style="color: grey;">Use basic statistics to make a very rough guess.</dd>
<dt style="color: grey;">Sampling / History</dt>
<dd style="color: grey;">Small, Quick Sampling Runs (or prior executions of the query).</dd>
<dt style="color: grey;">Histograms</dt>
<dd style="color: grey;">Using more detailed statistics for improved guesses.</dd>
<dt style="color: grey;">Constraints</dt>
<dd style="color: grey;">Using rules about the data for improved guesses.</dd>
</dl>
</section>
<section>
<h3>The 10% Selectivity Rule</h3>
<p>Every select or distinct operator passes 10% of all rows.</p>
<div class="fragment">
$$\sigma_{A = 1 \wedge B = 2}(R)$$
</div>
<div class="fragment">
$$|\sigma_{A = 1 \wedge B = 2}(R)| = 0.1 \cdot |R|$$
</div>
<div class="fragment" style="margin-top: 50px;">
$$\sigma_{A = 1}(\sigma_{B = 2}(R))$$
</div>
<div class="fragment">
$$|\sigma_{A = 1}(\sigma_{B = 2}(R))| = 0.1 \cdot |\sigma_{B = 2}(R)| = 0.1 \cdot 0.1 \cdot |R|$$
</div>
<p class="fragment" style="font-size: 80%; font-weight: bold; margin-top: 50px;">(Queries are typically standardized first)</p>
<p class="fragment" style="font-size: 80%; font-weight: bold; margin-top: 20px;">(The specific % varies by DBMS. E.g., Teradata uses 10% for the first <code>AND</code> clause, and 75% for every subsequent clause)</p>
</section>
<section>
<p>The 10% rule is a fallback when everything else fails. <br/> Usually, databases collect statistics...</p>
</section>
</section>
<!-- ============================================ -->
<section>
<section>
<h3>(Some) Estimation Techniques</h3>
<dl style="font-size: 80%">
<dt style="color: grey;">Guess Randomly</dt>
<dd style="color: grey;">Rules of thumb if you have no other options...</dd>
<dt style="color: blue;">Uniform Prior</dt>
<dd style="color: blue;">Use basic statistics to make a very rough guess.</dd>
<dt style="color: grey;">Sampling / History</dt>
<dd style="color: grey;">Small, Quick Sampling Runs (or prior executions of the query).</dd>
<dt style="color: grey;">Histograms</dt>
<dd style="color: grey;">Using more detailed statistics for improved guesses.</dd>
<dt style="color: grey;">Constraints</dt>
<dd style="color: grey;">Using rules about the data for improved guesses.</dd>
</dl>
</section>
<section>
<h3>Uniform Prior</h3>
<p style="text-align: left; margin-bottom: 0px; font-weight: bold;">We assume that for $\sigma_c(Q)$ or $\delta_A(Q)$...</p>
<ol>
<li>Basic statistics are known about $Q$: <ul>
<li style="margin-top: 0px;"><code>COUNT(*)</code></li>
<li style="margin-top: 0px;"><code>COUNT(DISTINCT A)</code> (for each A)</li>
<li style="margin-top: 0px;"><code>MIN(A)</code>, <code>MAX(A)</code> (for each numeric A)</li>
</ul></li>
<li>Attribute values are uniformly distributed.</li>
<li>No inter-attribute correlations.</li>
</ol>
<p class="fragment" style="font-size: 80%; font-weight: bold; margin-top: 20px;">
If (1) fails, fall back to the 10% rule.
</p>
<p class="fragment" style="font-size: 80%; font-weight: bold; margin-top: 0px;">
If (2) or (3) fails, it'll often still be a <i>good enough</i> estimate.
</p>
</section>
<section>
<p>Estimating $\delta_A(Q)$ requires only <code>COUNT(DISTINCT A)</code></p>
</section>
<section>
<h3>Estimating Selectivity</h3>
<p>Selectivity is a probability ($\texttt{SEL}(c, Q) = P(c)$)</p>
<table style="font-size: 85%">
<tr class="fragment">
<td>$P(A = x_1)$</td>
<td>$=$</td>
<td class="fragment">$\frac{1}{\texttt{COUNT(DISTINCT A)}}$</td>
</tr>
<tr class="fragment">
<td>$P(A \in (x_1, x_2, \ldots, x_N))$</td>
<td>$=$</td>
<td class="fragment">$\frac{N}{\texttt{COUNT(DISTINCT A)}}$</td>
</tr>
<tr class="fragment">
<td>$P(A \leq x_1)$</td>
<td>$=$</td>
<td class="fragment">$\frac{x_1 - \texttt{MIN(A)}}{\texttt{MAX(A)} - \texttt{MIN(A)}}$</td>
</tr>
<tr class="fragment">
<td>$P(x_1 \leq A \leq x_2)$</td>
<td>$=$</td>
<td class="fragment">$\frac{x_2 - x_1}{\texttt{MAX(A)} - \texttt{MIN(A)}}$</td>
</tr>
<tr class="fragment">
<td>$P(A = B)$</td>
<td>$=$</td>
<td class="fragment" style="font-size: 60%">$\textbf{min}\left( \frac{1}{\texttt{COUNT(DISTINCT A)}}, \frac{1}{\texttt{COUNT(DISTINCT B)}} \right)$</td>
</tr>
<tr class="fragment">
<td>$P(c_1 \wedge c_2)$</td>
<td>$=$</td>
<td class="fragment" >$P(c_1) \cdot P(c_2)$</td>
</tr>
<tr class="fragment">
<td>$P(c_1 \vee c_2)$</td>
<td>$=$</td>
<td class="fragment" >$1 - (1 - P(c_1)) \cdot (1 - P(c_2))$</td>
</tr>
</table>
<p style="font-size: 60%">(With constants $x_1$, $x_2$, ...)</p>
</section>
<section>
<h3>Limitations</h3>
<dl>
<div class="fragment">
<dt>Don't always have statistics for $Q$</dt>
<dd>For example, $\pi_{A \leftarrow (B \times C)}(R)$</dd>
</div>
<div class="fragment">
<dt>Don't always have clear rules for $c$</dt>
<dd>For example, $\sigma_{\texttt{FitsModel}(A, B, C)}(R)$</dd>
</div>
<div class="fragment">
<dt>Attribute values are not always uniformly distributed.</dt>
<dd>For example, <span style="font-size: 60%"> $|\sigma_{SPC\_COMMON = 'pin\ oak'}(T)|$ vs $|\sigma_{SPC\_COMMON = 'honeylocust'}(T)|$</span></dd>
</div>
<div class="fragment">
<dt>Attribute values are sometimes correlated.</dt>
<dd>For example, $\sigma_{(stump < 5) \wedge (diam > 3)}(T)$</dd>
</div>
</dl>
</section>
</section>
<section>
<section>
<h3>(Some) Estimation Techniques</h3>
<dl style="font-size: 80%">
<dt style="color: grey;">Guess Randomly</dt>
<dd style="color: grey;">Rules of thumb if you have no other options...</dd>
<dt style="color: grey;">Uniform Prior</dt>
<dd style="color: grey;">Use basic statistics to make a very rough guess.</dd>
<dt style="color: blue;">Sampling / History</dt>
<dd style="color: blue;">Small, Quick Sampling Runs (or prior executions of the query).</dd>
<dt style="color: grey;">Histograms</dt>
<dd style="color: grey;">Using more detailed statistics for improved guesses.</dd>
<dt style="color: grey;">Constraints</dt>
<dd style="color: grey;">Using rules about the data for improved guesses.</dd>
</dl>
</section>
<section>
<p><b>Idea 1:</b> Pick 100 tuples at random from each input table.</p>
</section>
<section>
<svg data-src="graphics/2018-03-05-JoinIssue.svg" />
</section>
<section>
<h3>The Birthday Paradox</h3>
<p style="margin-top: 50px;">
Assume: $\texttt{UNIQ}(A, R) = \texttt{UNIQ}(A, S) = N$
</p>
<p style="margin-top: 50px;">
It takes $O(\sqrt{N})$ samples from both $R$ and $S$ <br/> to get even <b>one match.</b>
</p>
</section>
<section>
<p>To be resumed later in the term when we talk about AQP</p>
</section>
<section>
<p><b>How DBs Do It</b>: Instrument queries while running them.<ul>
<li class="fragment">The first time you run a query it <i>might</i> be slow.</li>
<li class="fragment">The second, third, fourth, etc... times it'll be fast.</li>
</ul></p>
</section>
</section>
<section>
<section>
<h3>(Some) Estimation Techniques</h3>
<dl style="font-size: 80%">
<dt style="color: grey;">Guess Randomly</dt>
<dd style="color: grey;">Rules of thumb if you have no other options...</dd>
<dt style="color: grey;">Uniform Prior</dt>
<dd style="color: grey;">Use basic statistics to make a very rough guess.</dd>
<dt style="color: grey;">Sampling / History</dt>
<dd style="color: grey;">Small, Quick Sampling Runs (or prior executions of the query).</dd>
<dt style="color: blue;">Histograms</dt>
<dd style="color: blue;">Using more detailed statistics for improved guesses.</dd>
<dt style="color: grey;">Constraints</dt>
<dd style="color: grey;">Using rules about the data for improved guesses.</dd>
</dl>
</section>
<section>
<h3>Limitations of Uniform Prior</h3>
<dl>
<div class="fragment highlight-grey" data-fragment-index="1">
<dt>Don't always have statistics for $Q$</dt>
<dd>For example, $\pi_{A \leftarrow (B \times C)}(R)$</dd>
</div>
<div class="fragment highlight-grey" data-fragment-index="1">
<dt>Don't always have clear rules for $c$</dt>
<dd>For example, $\sigma_{\texttt{FitsModel}(A, B, C)}(R)$</dd>
</div>
<div class="fragment highlight-blue" data-fragment-index="1">
<dt>Attribute values are not always uniformly distributed.</dt>
<dd>For example, <span style="font-size: 60%"> $|\sigma_{SPC\_COMMON = 'pin\ oak'}(T)|$ vs $|\sigma_{SPC\_COMMON = 'honeylocust'}(T)|$</span></dd>
</div>
<div class="fragment highlight-grey" data-fragment-index="1">
<dt>Attribute values are sometimes correlated.</dt>
<dd>For example, $\sigma_{(stump < 5) \wedge (diam > 3)}(T)$</dd>
</div>
</dl>
</section>
<section>
<p class="fragment highlight-grey" data-fragment-index="1">
<b>Ideal Case:</b> You have some
$$f(x) = \left(\texttt{SELECT COUNT(*) WHERE A = x}\right)$$
(and similarly for the other aggregates)
</p>
<p class="fragment" data-fragment-index="1">
<b>Slightly Less Ideal Case:</b> You have some
$$f(x) \approx \left(\texttt{SELECT COUNT(*) WHERE A = x}\right)$$
</p>
</section>
<section>
<p>If this sounds like CDF-based indexing... you're right!</p>
<p class="fragment">... but we're not going to talk about NNs today</p>
</section>
</section>
<section>
<section>
<p>
<b>Simpler/Faster Idea: </b> Break $f(x)$ into chunks
</p>
</section>
<section>
<h3>Example Data</h3>
<table style="font-size: 80%">
<tr><th>Name</th> <th>YearsEmployed</th> <th>Role</th></tr>
<tr><td>'Alice'</td> <td>3</td> <td>1</td></tr>
<tr><td>'Bob'</td> <td>2</td> <td>2</td></tr>
<tr><td>'Carol'</td> <td>3</td> <td>1</td></tr>
<tr><td>'Dave'</td> <td>1</td> <td>3</td></tr>
<tr><td>'Eve'</td> <td>2</td> <td>2</td></tr>
<tr><td>'Fred'</td> <td>2</td> <td>3</td></tr>
<tr><td>'Gwen'</td> <td>4</td> <td>1</td></tr>
<tr><td>'Harry'</td> <td>2</td> <td>3</td></tr>
</table>
</section>
<section>
<h3>Histograms</h3>
<table style="font-size: 70%">
<tr><th>YearsEmployed</th><th>COUNT</th></tr>
<tr><td>1</td> <td>1</td> </tr>
<tr><td>2</td> <td>4</td> </tr>
<tr><td>3</td> <td>2</td> </tr>
<tr><td>4</td> <td>1</td> </tr>
</table>
<table>
<tr class="fragment"><td style="font-size: 70%"><code>COUNT(DISTINCT YearsEmployed)</code> </td><td class="fragment">$= 4$</td></tr>
<tr class="fragment"><td style="font-size: 70%"><code>MIN(YearsEmployed)</code> </td><td class="fragment">$= 1$</td></tr>
<tr class="fragment"><td style="font-size: 70%"><code>MAX(YearsEmplyed)</code> </td><td class="fragment">$= 4$</td></tr>
<tr class="fragment"><td style="font-size: 70%"><code>COUNT(*) YearsEmployed = 2</code> </td><td class="fragment">$= 4$</td></tr>
</table>
</section>
<section>
<h3>Histograms</h3>
<table style="font-size: 70%">
<tr><th>YearsEmployed</th><th>COUNT</th></tr>
<tr><td>1-2</td> <td>5</td> </tr>
<tr><td>3-4</td> <td>3</td> </tr>
</table>
<table>
<tr class="fragment"><td style="font-size: 70%"><code>COUNT(DISTINCT YearsEmployed)</code> </td><td class="fragment">$= 4$</td></tr>
<tr class="fragment"><td style="font-size: 70%"><code>MIN(YearsEmployed)</code> </td><td class="fragment">$= 1$</td></tr>
<tr class="fragment"><td style="font-size: 70%"><code>MAX(YearsEmplyed)</code> </td><td class="fragment">$= 4$</td></tr>
<tr class="fragment"><td style="font-size: 70%"><code>COUNT(*) YearsEmployed = 2</code> </td><td class="fragment">$= \frac{5}{2}$</td></tr>
</table>
</section>
<section>
<h3>The Extreme Case</h3>
<table style="font-size: 70%">
<tr><th>YearsEmployed</th><th>COUNT</th></tr>
<tr><td>1-4</td> <td>8</td> </tr>
</table>
<table>
<tr class="fragment"><td style="font-size: 70%"><code>COUNT(DISTINCT YearsEmployed)</code> </td><td class="fragment">$= 4$</td></tr>
<tr class="fragment"><td style="font-size: 70%"><code>MIN(YearsEmployed)</code> </td><td class="fragment">$= 1$</td></tr>
<tr class="fragment"><td style="font-size: 70%"><code>MAX(YearsEmplyed)</code> </td><td class="fragment">$= 4$</td></tr>
<tr class="fragment"><td style="font-size: 70%"><code>COUNT(*) YearsEmployed = 2</code> </td><td class="fragment">$= \frac{8}{4}$</td></tr>
</table>
</section>
<section>
<h3>More Example Data</h3>
<table style="font-size: 80%; float: left;">
<tr><th>Value</th> <th>COUNT</th> </tr>
<tr><td> 1-10</td> <td>20</td> </tr>
<tr><td>11-20</td> <td> 0</td> </tr>
<tr><td>21-30</td> <td>15</td> </tr>
<tr><td>31-40</td> <td>30</td> </tr>
<tr><td>41-50</td> <td>22</td> </tr>
<tr><td>51-60</td> <td>63</td> </tr>
<tr><td>61-70</td> <td>10</td> </tr>
<tr><td>71-80</td> <td>10</td> </tr>
</table>
<table style="margin-top: 100px;">
<tr class="fragment">
<td style="font-size: 70%; width: 350px;"><code>SELECT … WHERE A = 33</code> </td>
<td class="fragment" style="font-size: 80%; text-align: left; width: 200px;">$= \frac{1}{40-30}\cdot 30 = 3$</td>
</tr>
<tr><td style="height: 70px;"></td><td></td></tr>
<tr class="fragment">
<td style="font-size: 70%; width: 350px;"><code>SELECT … WHERE A > 33</code> </td>
<td class="fragment" style="font-size: 80%; text-align: left; width: 200px;">$= \frac{40-33}{40-30}\cdot 30+22$ $\;\;\;+63+10+10$ $= 126$ </td>
</tr>
</table>
</section>
</section>
<section>
<section>
<h3>(Some) Estimation Techniques</h3>
<dl style="font-size: 80%">
<dt style="color: grey;">Guess Randomly</dt>
<dd style="color: grey;">Rules of thumb if you have no other options...</dd>
<dt style="color: grey;">Uniform Prior</dt>
<dd style="color: grey;">Use basic statistics to make a very rough guess.</dd>
<dt style="color: grey;">Sampling / History</dt>
<dd style="color: grey;">Small, Quick Sampling Runs (or prior executions of the query).</dd>
<dt style="color: grey;">Histograms</dt>
<dd style="color: grey;">Using more detailed statistics for improved guesses.</dd>
<dt style="color: blue;">Constraints</dt>
<dd style="color: blue;">Using rules about the data for improved guesses.</dd>
</dl>
</section>
</section>
<section>
<section>
<h3>(Some) Estimation Techniques</h3>
<dl style="font-size: 80%">
<dt style="color: grey;">Guess Randomly</dt>
<dd style="color: grey;">Rules of thumb if you have no other options...</dd>
<dt style="color: grey;">Uniform Prior</dt>
<dd style="color: grey;">Use basic statistics to make a very rough guess.</dd>
<dt style="color: grey;">Sampling / History</dt>
<dd style="color: grey;">Small, Quick Sampling Runs (or prior executions of the query).</dd>
<dt style="color: grey;">Histograms</dt>
<dd style="color: grey;">Using more detailed statistics for improved guesses.</dd>
<dt style="color: blue;">Constraints</dt>
<dd style="color: blue;">Using rules about the data for improved guesses.</dd>
</dl>
</section>
<section>
<h3>Key / Unique Constraints</h3>
<pre style="margin-top: 50px;"><code class="sql">
CREATE TABLE R (
A int,
B int UNIQUE
...
PRIMARY KEY A
);
</code></pre>
<p style="margin-top: 50px;">
No duplicate values in the column.
$$\texttt{COUNT(DISTINCT A)} = \texttt{COUNT(*)}$$
</p>
</section>
<section>
<h3>Foreign Key Constraints</h3>
<pre style="margin-top: 50px;"><code class="sql">
CREATE TABLE S (
B int,
...
FOREIGN KEY B REFERENCES R.B
);
</code></pre>
<p style="margin-top: 50px;">
All values in the column appear in another table.
$$\pi_{attrs(S)}\left(S \bowtie_B R\right) \subseteq S$$
</p>
</section>
<section>
<h3>Functional Dependencies</h3>
<pre style="margin-top: 50px;"><code class="sql">
Not expressible in SQL
</code></pre>
<p style="margin-top: 50px;">
One set of columns uniquely determines another.<br/>
$\pi_{A}(\delta(\pi_{A, B}(R)))$ has no duplicates and...
$$\pi_{attrs(R)-A}(R) \bowtie_A \delta(\pi_{A, B}(R)) = R$$
</p>
</section>
<section>
<h3>Constraints</h3>
<h4>The Good</h4>
<ul>
<li style="font-size: 70%" class="fragment">Sanity check on your data: Inconsistent data triggers failures.</li>
<li style="font-size: 70%" class="fragment">More opportunities for query optimization.</li>
</ul>
<h4 style="margin-top: 50px;" class="fragment">The Not-So Good</h4>
<ul>
<li style="font-size: 70%" class="fragment">Validating constraints whenever data changes is (usually) expensive.</li>
<li style="font-size: 70%" class="fragment">Inconsistent data triggers failures.</li>
</ul>
</section>
<section>
<h3>Foreign Key Constraints</h3>
<p style="margin-top: 50px;">Foreign keys are like pointers. What happens with broken pointers?</p>
</section>
<section>
<h3>Foreign Key Enforcement</h3>
<p>Foreign keys are defined with update triggers <code>ON INSERT [X]</code>, <code>ON UPDATE [X]</code>, <code>ON DELETE [X]</code>. Depending on what [X] is, the constraint is enforced differently:</p>
<dl style="font-size: 80%">
<dt><code>CASCADE</code></dt>
<dd>Create/delete rows as needed to avoid invalid foreign keys.</dd>
<dt><code>NO ACTION</code></dt>
<dd>Abort any transaction that ends with an invalid foreign key reference.</dd>
<dt><code>SET NULL</code></dt>
<dd>Automatically replace any invalid foreign key references with NULL</dd>.
</dl>
</section>
<section>
<p style="font-weight: bold;">
<code>CASCADE</code> and <code>NO ACTION</code> ensure that the data never has broken pointers, so
</p>
$$\pi_{attrs(S)}\left(S \bowtie_B R\right) = S$$
</section>
<section>
<h3>Functional Dependencies</h3>
<p style="margin-top: 50px;"><b>A generalization of keys:</b> One set of attributes that uniquely identify another.</p>
<ul>
<li>SS# uniquely identifies Name.</li>
<li>Employee uniquely identifies Manager.</li>
<li>Order number uniquely identifies Customer Address.</li>
</ul>
<p class="fragment">Two rows with the same As must have the same Bs</p>
<p class="fragment" style="font-size: 80%">(but can still have identical Bs for two different As)</p>
</section>
<section>
<h3>Normal Forms</h3>
<p style="margin-top: 50px;">"All functional dependencies should be keys."</p>
<p class="fragment">(Otherwise you want two separate relations)</p>
<p class="fragment">(for more details, see CSE 560)</p>
</section>
<section>
$$P(A = B) = min\left(\frac{1}{\texttt{COUNT}(\texttt{DISTINCT } A)}, \frac{1}{\texttt{COUNT}(\texttt{DISTINCT } B)}\right)$$
</section>
<section>
<p>
$$R \bowtie_{R.A = S.B} S = \sigma_{R.A = S.B}(R \times S)$$
(and $S.B$ is a foreign key referencing $R.A$)
</p>
<p class="fragment" style="margin-top: 30px; font-size: 80%">
The (foreign) key constraint gives us two things...
$$\texttt{COUNT}(\texttt{DISTINCT } A) \approx \texttt{COUNT}(\texttt{DISTINCT } B)$$
<span style="font-size: 60%; font-weight: bold; margin: 0px;">and</span>
$$\texttt{COUNT}(\texttt{DISTINCT } A) = |R|$$
</p>
<p class="fragment" style="margin-top: 30px; font-size: 80%">
Based on the first property the total number of rows is roughly...
$$|R| \times |S| \times \frac{1}{\texttt{COUNT}(\texttt{DISTINCT } A)}$$
</p>
<p class="fragment" style="margin-top: 30px; font-size: 80%">
Then based on the second property...
$$ = |R| \times |S| \times \frac{1}{|R|} = |S|$$
</p>
<p class="fragment" style="margin-top: 30px; font-size: 50%">(Statistics/Histograms will give you the same outcome... but constraints can be easier to propagate)</p>
</section>
</section>
<section>
<p><b>Next class:</b> Exam Review</p>
</section>
</div></div>
<script src="../reveal.js-3.6.0/js/reveal.js"></script>
<script>
// Full list of configuration options available at:
// https://github.com/hakimel/../reveal.js#configuration
Reveal.initialize({
controls: true,
progress: true,
history: true,
center: true,
slideNumber: true,
transition: 'fade', // none/fade/slide/convex/concave/zoom
chart: {
defaults: {
global: {
title: { fontColor: "#333", fontSize: 24 },
legend: {
labels: { fontColor: "#333", fontSize: 20 },
},
responsiveness: true
},
scale: {
scaleLabel: { fontColor: "#333", fontSize: 20 },
gridLines: { color: "#333", zeroLineColor: "#333" },
ticks: { fontColor: "#333", fontSize: 16 },
}
},
line: { borderColor: [ "rgba(20,220,220,.8)" , "rgba(220,120,120,.8)", "rgba(20,120,220,.8)" ], "borderDash": [ [5,10], [0,0] ]},
bar: { backgroundColor: [
"rgba(220,220,220,0.8)",
"rgba(151,187,205,0.8)",
"rgba(205,151,187,0.8)",
"rgba(187,205,151,0.8)"
]
},
pie: { backgroundColor: [ ["rgba(0,0,0,.8)" , "rgba(220,20,20,.8)", "rgba(20,220,20,.8)", "rgba(220,220,20,.8)", "rgba(20,20,220,.8)"] ]},
radar: { borderColor: [ "rgba(20,220,220,.8)" , "rgba(220,120,120,.8)", "rgba(20,120,220,.8)" ]},
},
// Optional ../reveal.js plugins
dependencies: [
{ src: '../reveal.js-3.6.0/lib/js/classList.js', condition: function() { return !document.body.classList; } },
{ src: '../reveal.js-3.6.0/plugin/math/math.js',
condition: function() { return true; },
mathjax: '../reveal.js-3.6.0/js/MathJax.js'
},
{ src: '../reveal.js-3.6.0/plugin/markdown/marked.js', condition: function() { return !!document.querySelector( '[data-markdown]' ); } },
{ src: '../reveal.js-3.6.0/plugin/markdown/markdown.js', condition: function() { return !!document.querySelector( '[data-markdown]' ); } },
{ src: '../reveal.js-3.6.0/plugin/highlight/highlight.js', async: true, condition: function() { return !!document.querySelector( 'pre code' ); }, callback: function() { hljs.initHighlightingOnLoad(); } },
{ src: '../reveal.js-3.6.0/plugin/zoom-js/zoom.js', async: true },
{ src: '../reveal.js-3.6.0/plugin/notes/notes.js', async: true },
// Chart.min.js
{ src: '../reveal.js-3.6.0/plugin/chart/Chart.min.js'},
// the plugin
{ src: '../reveal.js-3.6.0/plugin/chart/csv2chart.js'},
{ src: '../reveal.js-3.6.0/plugin/svginline/es6-promise.auto.js', async: false },
{ src: '../reveal.js-3.6.0/plugin/svginline/data-src-svg.js', async: false }
]
});
</script>
</body>
</html>