Lemma 1 and Lemma 2 of poly write up

This commit is contained in:
Aaron Huber 2020-06-23 09:46:38 -04:00
parent 1fa25f9e4b
commit 023fdf6750

View file

@ -100,10 +100,9 @@ To this end, consider the following graph $G(V, E)$, where $|E| = m$, $|V| = \nu
If we can compute $\poly(\wElem_1,\ldots, \wElem_\numTup) = q_E(\wElem_1,\ldots, \wElem_\numTup)^3$ in T(m) time for fixed $\prob$, then we can count the number of triangles in $G$ in T(m) + O(m) time.
\end{Lemma}
\begin{Lemma}\label{lem:const-p}
If we can compute $\poly(\wElem_1,\ldots, \wElem_\numTup) = q_E(\wElem_1,\ldots, \wElem_\numTup)^3$ in T(m) time for O(1) distinct values of $\prob$ then we can count the number of triangles (and the number of 3-paths, the number of 3-mathcings) in $G$ in O(T(m) + m) time.
If we can compute $\poly(\wElem_1,\ldots, \wElem_\numTup) = q_E(\wElem_1,\ldots, \wElem_\numTup)^3$ in T(m) time for O(1) distinct values of $\prob$ then we can count the number of triangles (and the number of 3-paths, the number of 3-matchings) in $G$ in O(T(m) + m) time.
\end{Lemma}
\begin{proof}
First, let us do a warm-up by computing $\rpoly(\wElem_1,\dots, \wElem_\numTup)$ when $\poly = q_E(\wElem_1,\ldots, \wElem_\numTup)$. Before doing so, we introduce a notation. Let $\numocc{H}$ denote the number of occurrences that $H$ occurs in $G$. So, e.g., $\numocc{\ed}$ is the number of edges ($m$) in $G$.
\begin{Claim}
@ -163,7 +162,29 @@ $\numocc{\twopathdis} + \numocc{\threedis} = $ the number of occurrences of thre
\[\numocc{\twopathdis} + \numocc{\threedis} = \sum_{(u, v) \in E} \binom{m - d_u - d_v - 1}{2}\] The implication in \cref{claim:four-two} follows by the above and \cref{claim:four-one}.\qed
\end{proof}
\end{Claim}
\begin{proof}
\underline{Lemma 2}
\cref{claim:four-two} of Claim 4 implies that if we know $\rpoly_3(\prob,\ldots, \prob)$, then we can know in O(m) additional time
\[\numocc{\tri} + \numocc{\threepath} \cdot \prob - \numocc{\threedis}\cdot(\prob^2 - \prob^3).\] We can think of each term in the above equation as a variable, where one can solve a linear system given 3 distinct $\prob$ values, assuming independence of the three linear equation. In the worst case, without independence, 4 distince values of $\prob$ would suffice...because Atri said so.
\[\numocc{\tri} + \numocc{\threepath} \cdot \prob - \numocc{\threedis}\cdot(\prob^2 - \prob^3).\] We can think of each term in the above equation as a variable, where one can solve a linear system given 3 distinct $\prob$ values, assuming independence of the three linear equation. In the worst case, without independence, 4 distince values of $\prob$ would suffice...because Atri said so, and I need to ask him for understanding why this is the case, of which I suspect that it has to do with basic result(s) in linear algebra.\qed
\end{proof}
\begin{proof}
\underline{Lemma 1}
The argument for lemma 2 cannot be applied to lemma 1 since we have that $\prob$ is fixed. We have hope in the following: we assume that we can solve this problem for all graphs, and the hope would be be to solve the problem for say $G_1, G_2, G_3$, where $G_1$ is arbitrary, and relate the values of $\numocc{H}$, where $H$ is a placeholder for the relevant edge combination. The hope is that these relations would result in three independent linear equations, and then we would be done.
The following is an option.
\begin{enumerate}
\item Let $G_1$ be an arbitrary graph
\item Build $G_2$ from $G_1$, where each edge in $G_1$ gets replaced by a 2 path.
\end{enumerate}
Then $\numocc{\tri}_2 = 0$, and if we can prove that
\begin{itemize}
\item $\numocc{\threepath}_2 = 2 \cdot \numocc{\twopath}_1$
\item $\numocc{\threedis}_2 = 8 \cdot \numocc{\threedis}_1$
\end{itemize}
we solve our problem for $q_E^3$ based on $G_2$ and we can compute $\numocc{\threedis}$, a hard problem.
\end{proof}