master
Boris Glavic 2020-12-19 15:44:18 -06:00
parent 9b9b575f6a
commit 0dbf75ebba
6 changed files with 60 additions and 48 deletions

View File

@ -3,15 +3,15 @@
\section{$1 \pm \epsilon$ Approximation Algorithm}\label{sec:algo}
In~\Cref{sec:hard}, we showed that computing the expected multiplicity of a compressed representation of a bag polynomial for \ti (even just based on project-join queries) is unlikely to be possible in linear time (\Cref{thm:mult-p-hard-result}), even if all tuples have the same probability (\Cref{th:single-p-hard}).
Given this, we now design an approximation algorithm for our problem that runs in {\em linear time}.
In~\Cref{sec:hard}, we showed that computing the expected multiplicity of a compressed representation of a bag polynomial for \ti (even just based on project-join queries) is unlikely to be possible in linear time (\Cref{thm:mult-p-hard-result}), even if all tuples have the same probability (\Cref{th:single-p-hard}).
Given this, we now design an approximation algorithm for our problem that runs in {\em linear time}.
Unlike the results in~\Cref{sec:hard} our approximation algorithm works for \bi, though our bounds are more meaningful for a non-trivial subclass of \bis that contains both \tis, as well as the PDBench benchmark.
%it is then desirable to have an algorithm to approximate the multiplicity in linear time, which is what we describe next.
\subsection{Preliminaries and some more notation}
First, let us introduce some useful definitions and notation related to polynomials and their representations. For illustrative purposes in the definitions below, we use the following %{\em bivariate}
polynomial:
First, let us introduce some useful definitions and notation related to polynomials and their representations. For illustrative purposes in the definitions below, we use the following %{\em bivariate}
polynomial:
\begin{equation}
\label{eq:poly-eg}
\poly(X, Y) = 2X^2 + 3XY - 2Y^2.
@ -145,10 +145,10 @@ In the subsequent subsections we will prove the following theorem.
\begin{Theorem}\label{lem:approx-alg}
Let $\etree$ be an expression tree for a UCQ over \bi and define $\poly(\vct{X})=\polyf(\etree)$ and let $k=\degree(\poly)$
%Let $\poly(\vct{X})$ be a query polynomial corresponding to the output of a UCQ in a \bi.
An estimate $\mathcal{E}$ %=\approxq(\etree, (p_1,\dots,p_\numvar), \conf, \error')$
of $\rpoly(\prob_1,\ldots, \prob_\numvar)$ can be computed in time
\[O\left(\treesize(\etree) + \frac{\log{\frac{1}{\conf}}\cdot \abs{\etree}^2(1,\ldots, 1)\cdot k\cdot \log{k} \cdot depth(\etree))}{\inparen{\error'}^2\cdot\rpoly^2(\prob_1,\ldots, \prob_\numvar)}\right)\]
%Let $\poly(\vct{X})$ be a query polynomial corresponding to the output of a UCQ in a \bi.
An estimate $\mathcal{E}$ %=\approxq(\etree, (p_1,\dots,p_\numvar), \conf, \error')$
of $\rpoly(\prob_1,\ldots, \prob_\numvar)$ can be computed in time
\[O\left(\treesize(\etree) + \frac{\log{\frac{1}{\conf}}\cdot \abs{\etree}^2(1,\ldots, 1)\cdot k\cdot \log{k} \cdot depth(\etree))}{\inparen{\error'}^2\cdot\rpoly^2(\prob_1,\ldots, \prob_\numvar)}\right)\]
such that
\begin{equation}
\label{eq:approx-algo-bound}
@ -172,7 +172,7 @@ We next present couple of corollaries of~\Cref{lem:approx-alg}.
\label{cor:approx-algo-const-p}
Let $\poly(\vct{X})$ be as in~\Cref{lem:approx-alg} and let $\gamma=\gamma(\etree)$. Further let it be the case that $p_i\ge p_0$ for all $i\in[\numvar]$. Then an estimate $\mathcal{E}$ of $\rpoly(\prob_1,\ldots, \prob_\numvar)$ satisfying~\Cref{eq:approx-algo-bound} can be computed in time
\[O\left(\treesize(\etree) + \frac{\log{\frac{1}{\conf}}\cdot k\cdot \log{k} \cdot depth(\etree))}{\inparen{\error'}^2\cdot(1-\gamma)^2\cdot p_0^{2k}}\right)\]
In particular, if $p_0>0$ and $\gamma<1$ are absolute constants then the above runtime simplifies to $O_k\left(\frac 1{\eps^2}\cdot\treesize(\etree)\cdot \log{\frac{1}{\conf}}\right)$.
In particular, if $p_0>0$ and $\gamma<1$ are absolute constants then the above runtime simplifies to $O_k\left(\frac 1{\eps^2}\cdot\treesize(\etree)\cdot \log{\frac{1}{\conf}}\right)$.
\end{Corollary}
The proof for~\Cref{cor:approx-algo-const-p} can be seen in~\Cref{sec:proofs-approx-alg}.
@ -190,7 +190,7 @@ The algorithm to prove~\Cref{lem:approx-alg} follows from the following observat
\rpoly\inparen{X_1,\dots,X_\numvar}=\hspace*{-1mm}\sum_{(v,c)\in \expandtree{\etree}} \hspace*{-2mm} \indicator{\monom\mod{\mathcal{B}}\not\equiv 0}\cdot c\cdot\hspace*{-1mm}\prod_{X_i\in \var\inparen{v}}\hspace*{-2mm} X_i.
\end{equation}
Given the above, the algorithm is a sampling based algorithm for the above sum: we sample $(v,c)\in \expandtree{\etree}$ with probability proportional\footnote{We could have also uniformly sampled from $\expandtree{\etree}$ but this gives better parameters.}
%\AH{Regarding the footnote, is there really a difference? I \emph{suppose} technically, but in this case they are \emph{effectively} the same. Just wondering.}
%\AH{Regarding the footnote, is there really a difference? I \emph{suppose} technically, but in this case they are \emph{effectively} the same. Just wondering.}
%\AR{Yes, there is! If we used uniform distribution then in our bounds we will have a parameter that depends on the largest $\abs{coef}$, which e.g. could be dependent on $n$. But with the weighted probability distribution, we avoid paying this price. Though I guess perhaps we can say for the kinds of queries we consider thhese coefficients are all constants?}
to $\abs{c}$ and compute $Y=\indicator{\monom\mod{\mathcal{B}}\not\equiv 0}\cdot \prod_{X_i\in \var\inparen{v}} p_i$. Taking enough samples and computing the average of $Y$ gives us our final estimate. Algorithm~\ref{alg:mon-sam} has the details.
\OK{Even if the proof is offloaded to the appendix, it would be useful to state the formula for $N$ (line 4 of \Cref{alg:mon-sam}), along with a pointer to the appendix.}
@ -343,9 +343,9 @@ The function $\sampmon$ completes in $O(\log{k} \cdot k \cdot depth(\etree))$ ti
Armed with the above two lemmas, we are ready to argue the following result (proof in~\Cref{sec:proofs-approx-alg}):
\begin{Theorem}\label{lem:mon-samp}
%If the contracts for $\onepass$ and $\sampmon$ hold, then
%If the contracts for $\onepass$ and $\sampmon$ hold, then
For any $\etree$ with $\degree(poly(|\etree|)) = k$, algorithm \ref{alg:mon-sam} outputs an estimate $\vari{acc}$ of $\rpoly(\prob_1,\ldots, \prob_\numvar)$ such that %$\expct\pbox{\empmean} = \frac{\rpoly(\prob_1,\ldots, \prob_\numvar)\cdot(1 - \gamma)}{\abs{\etree}(1,\ldots, 1)}$. %within an additive $\error \cdot \abs{\etree}(1,\ldots, 1)$ error with
$\empmean$ has bounds
$\empmean$ has bounds
\[P\left(\left|\vari{acc} - \rpoly(\prob_1,\ldots, \prob_\numvar)\right|> \error \cdot \abs{\etree}(1,\ldots, 1)\right) \leq \conf,\]
in $O\left(\treesize(\etree)\right.$ $+$ $\left.\left(\frac{\log{\frac{1}{\conf}}}{\error^2} \cdot k \cdot\log{k} \cdot depth(\etree)\right)\right)$ time.
\end{Theorem}
@ -406,9 +406,9 @@ It turns out that for proof of~\Cref{lem:sample}, we need to argue that when $\e
A naive (slow) implementation of \sampmon\ would first compute $E(T)$ and then sample from it.
% However, this would be too time consuming.
%
Instead, \Cref{alg:sample} selects a monomial from $\expandtree{\etree}$ by top-down traversal.
For a parent $+$ node, the child to be visited is sampled from the weighted distribution precomputed by \onepass.
When a parent $\times$ node is visited, both children are visited.
Instead, \Cref{alg:sample} selects a monomial from $\expandtree{\etree}$ by top-down traversal.
For a parent $+$ node, the child to be visited is sampled from the weighted distribution precomputed by \onepass.
When a parent $\times$ node is visited, both children are visited.
The algorithm computes two properties: the set of all variable leaf nodes visited, and the product of signs of visited coefficient leaf nodes.
%\begin{Definition}[TreeSet]
@ -458,3 +458,8 @@ $\sampmon$ is given in \Cref{alg:sample}, and a proof of its correctness (via \C
%\AR{Experimental stuff about \bi should go in here}
%%%%%%%%%%%%%%%%%%%%%%%
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "main"
%%% End:

View File

@ -1,14 +1,14 @@
%!TEX root=./main.tex
\section{Conclusions and Future Work}\label{sec:concl-future-work}
We have studied the problem of calculating the expectation of polynomials over random integer variables.
We have studied the problem of calculating the expectation of polynomials over random integer variables.
This problem has a practical application in probabilistic databases over multisets, where it corresponds to calculating the expected multiplicity of a query result tuple.
This problem has been studied extensively for sets (lineage formulas), but the bag settings has not received much attention so far.
While the expectation of a polynomial can be calculated in linear time in the size of polynomials that are in SOP form, the problem is \sharpwonehard for factorized polynomials.
We have proven this claim through a reduction from the problem of counting k-matchings.
When only considering polynomials for result tuples of UCQs over TIDBs and BIDBs (under the assumption that there are $O(1)$ cancellations), we prove that it is still possible to approximate the expectation of a polynomial in linear time.
An interesting direction for future work would be development of a dichotomy for queries over bag PDBs.
Furthermore, it would be interesting to see whether our approximation algorithm can be extended to support queries with negations, perhaps using circuits with monus as a representation system.
This problem has been studied extensively for sets (lineage formulas), but the bag settings has not received much attention so far.
While the expectation of a polynomial can be calculated in linear time in the size of polynomials that are in SOP form, the problem is \sharpwonehard for factorized polynomials.
We have proven this claim through a reduction from the problem of counting k-matchings.
When only considering polynomials for result tuples of UCQs over TIDBs and BIDBs (under the assumption that there are $O(1)$ cancellations), we prove that it is still possible to approximate the expectation of a polynomial in linear time.
An interesting direction for future work would be development of a dichotomy for queries over bag PDBs.
% Furthermore, it would be interesting to see whether our approximation algorithm can be extended to support queries with negations, perhaps using circuits with monus as a representation system.
\BG{I am not sure what interesting future work is here. Some wild guesses, if anybody agrees I'll try to flesh them out:
\textbullet{More queries: what happens with negation can circuits with monus be used?}

View File

@ -32,7 +32,8 @@ However, even with alternative encodings~\cite{FH13}, the limiting factor in com
The corresponding lineage encoding for Bag-PDBs is a polynomial in sum of products (SOP) form --- a sum of `clauses', each of which is the product of a set of integer or variable atoms.
Thanks to linearity of expectation, computing the expectation of a count query is linear in the number of clauses in the SOP polynomial.
Unlike Set-PDBs, however, when we consider compressed representations of this polynomial, the complexity landscape becomes much more nuanced and is \textit{not} linear in general.
Compressed representations like Factorized Databases~\cite{factorized-db,DBLP:conf/tapp/Zavodny11} or Arithmetic/Polynomial Circuits~\cite{arith-complexity} are analogous to deterministic query optimizations (e.g. pushing down projections)~\cite{DBLP:conf/pods/KhamisNR16,factorized-db}.
Compressed representations like Factorized Databases~\cite{factorized-db} %DBLP:conf/tapp/Zavodny11
or Arithmetic/Polynomial Circuits~\cite{arith-complexity} are analogous to deterministic query optimizations (e.g. pushing down projections)~\cite{DBLP:conf/pods/KhamisNR16,factorized-db}.
Thus, measuring the performance of a PDB algorithm in terms of the size of the \emph{compressed} lineage formula more closely relates the algorithm's performance to the complexity of query evaluation in a deterministic database.
The initial picture is not good.
@ -115,7 +116,7 @@ For example, let $P[W_a] = P[W_b] = P[W_c] = p$ and consider the possible world
The corresponding variable assignment is $\{\;W_a \mapsto \top, W_b \mapsto \top, W_c \mapsto \bot\;\}$, and the probability of this world is $P[W_a]\cdot P[W_b] \cdot P[\neg W_c] = p\cdot p\cdot (1-p)=p^2-p^3$.
\end{Example}
Following prior efforts~\cite{feng:2019:sigmod:uncertainty,DBLP:conf/pods/GreenKT07,DBLP:journals/sigmod/GuagliardoL17}, we generalize this model of Set-PDBs to bags using $\semN$-valued random variables (i.e., $Dom(W_i) \subseteq \mathbb N$) and constants (annotation $\Phi_{bag}$ in the example).
Following prior efforts~\cite{feng:2019:sigmod:uncertainty,DBLP:conf/pods/GreenKT07,GL16}, we generalize this model of Set-PDBs to bags using $\semN$-valued random variables (i.e., $Dom(W_i) \subseteq \mathbb N$) and constants (annotation $\Phi_{bag}$ in the example).
Without loss of generality, we assume that input relations are sets (i.e. $Dom(W_i) = \{0, 1\}$), while query evaluation follows bag semantics.
\begin{Example}\label{ex:bag-vs-set}
@ -145,7 +146,7 @@ P[\poly_{set}] &= \hspace*{-1mm}
}
\end{Example}
Note that the query of \Cref{ex:bag-vs-set} in set semantics is indeed non-hierarchical~\cite{10.1145/1265530.1265571}, and thus \sharpphard.
Note that the query of \Cref{ex:bag-vs-set} in set semantics is indeed non-hierarchical~\cite{DS12}, and thus \sharpphard.
To see why computing this probability is hard, observe that the clauses of the disjunctive normal form Boolean lineage are neither independent nor disjoint, leading to e.g.~\cite{FH13} the use of Shannon decomposition, which is at worst exponential in the size of the input.
% \begin{equation*}
% \expct\pbox{\poly(W_a, W_b, W_c)} = W_aW_b + W_a\overline{W_b}W_c + \overline{W_a}W_bW_c = 3\prob^2 - 2\prob^3
@ -172,7 +173,7 @@ Computing such expectations is indeed linear in the size of the SOP as the numbe
As a further interesting feature of this example, note that $\expct\pbox{W_i} = P[W_i = 1]$, and so taking the same polynomial over the reals:
\begin{multline}
\label{eqn:can-inline-probabilities-into-polynomial}
\expct\pbox{\poly_{bag}}
\expct\pbox{\poly_{bag}}
% = P[W_a = 1]P[W_b = 1] + P[W_b = 1]P[W_c = 1]\\
% + P[W_c = 1]P[W_a = 1]\\
= \poly_{bag}(P[W_a=1], P[W_b=1], P[W_c=1])

View File

@ -194,10 +194,6 @@ sensitive=true
\bibliographystyle{plain}
\bibliography{main}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% APPENDIX
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

View File

@ -2,7 +2,7 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Compressed Representations of Polynomials and Boolean Formulas}\label{sec:compr-repr-polyn}
There is a large body of work on compact using representations of Boolean formulas (e.g, various types of circuits including OBDDs~\cite{jha-12-pdwm}) and polynomials (e.g.,factorizations~\cite{DBLP:conf/tapp/Zavodny11,factorized-db}) some of which have been utilized for probabilistic query processing, e.g.,~\cite{jha-12-pdwm}. Compact representations of Boolean formulas for which probabilities can be computed in linear time include OBDDs, SDDs, d-DNNF, and FBDD. In terms of circuits over semiring expression,~\cite{DM14c} studies circuits for absorptive semirings while~\cite{S18a} studies circuits that include negation (expressed as the monus operation of a semiring). Algebraic Decision Diagrams~\cite{bahar-93-al} (ADDs) generalize BDDs to variables with more than two values. Chen et al.~\cite{chen-10-cswssr} introduced the generalized disjunctive normal form.
There is a large body of work on compact using representations of Boolean formulas (e.g, various types of circuits including OBDDs~\cite{jha-12-pdwm}) and polynomials (e.g.,factorizations~\cite{factorized-db}) some of which have been utilized for probabilistic query processing, e.g.,~\cite{jha-12-pdwm}. Compact representations of Boolean formulas for which probabilities can be computed in linear time include OBDDs, SDDs, d-DNNF, and FBDD. In terms of circuits over semiring expression,~\cite{DM14c} studies circuits for absorptive semirings while~\cite{S18a} studies circuits that include negation (expressed as the monus operation of a semiring). Algebraic Decision Diagrams~\cite{bahar-93-al} (ADDs) generalize BDDs to variables with more than two values. Chen et al.~\cite{chen-10-cswssr} introduced the generalized disjunctive normal form.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Parameterized Complexity}\label{sec:param-compl}

View File

@ -1,32 +1,42 @@
%!TEX root=./main.tex
\section{Related Work}\label{sec:related-work}
In addition to work on probabilistic databases, our work has connections to work on compact representations of polynomials and relies on past work in fine-grained complexity which we review in \Cref{sec:compr-repr-polyn} and \Cref{sec:param-compl}.
In addition to probabilistic databases, our work has connections to work on compact representations of polynomials and on fine-grained complexity which we review in \Cref{sec:compr-repr-polyn,sec:param-compl}.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\subsection{Probabilistic Databases}\label{sec:prob-datab}
Probabilistic Databases (PDBs) have been studied predominantly under set semantics.
A multitude of data models have been proposed for encoding a PDB more compactly than as its set of possible worlds.
Tuple-independent databases (\tis) consist of a classical database where each tuple associated with a probability and tuples are treated as independent probabilistic events.
While unable to encode correlations directly, \tis are popular because any finite probabilistic database can be encoded as a \ti and a set of constraints that ``condition'' the \ti~\cite{VS17}.
Block-independent databases (\bis) generalize \tis by partitioning the input into blocks of disjoint tuples, where blocks are independent~\cite{RS07,BS06}. \emph{PC-tables}~\cite{GT06} pair a C-table~\cite{IL84a} with probability distribution over its variables. This is similar to our $\semNX$-PDBs, except that we do not allow for variables as attribute values and instead of local conditions (propositional formulas that may contain comparisons), we associate tuples with polynomials $\semNX$.
Probabilistic Databases (PDBs) have been studied predominantly for set semantics.
A multitude of data models have been proposed for encoding a PDB more compactly than as its set of possible worlds. These include tuple-independent databases~\cite{VS17} (\tis), block-independent databases (\bis)~\cite{RS07}, and \emph{PC-tables}~\cite{GT06} pair a C-table % ~\cite{IL84a}
with probability distribution over its variables.
This is similar to our $\semNX$-PDBs, but we use polynomials instead of Boolean expressions and only allow constants as attribute values.
% Tuple-independent databases (\tis) consist of a classical database where each tuple associated with a probability and tuples are treated as independent probabilistic events.
% While unable to encode correlations directly, \tis are popular because any finite probabilistic database can be encoded as a \ti and a set of constraints that ``condition'' the \ti~\cite{VS17}.
% Block-independent databases (\bis) generalize \tis by partitioning the input into blocks of disjoint tuples, where blocks are independent~\cite{RS07}. %,BS06
% \emph{PC-tables}~\cite{GT06} pair a C-table % ~\cite{IL84a}
% with probability distribution over its variables. This is similar to our $\semNX$-PDBs, except that we do not allow for variables as attribute values and instead of local conditions (propositional formulas that may contain comparisons), we associate tuples with polynomials $\semNX$.
Approaches for probabilistic query processing (i.e., computing the marginal probability for query result tuples), fall into two broad categories.
\emph{Intensional} (or \emph{grounded}) query evaluation computes the \emph{lineage} of a tuple (a Boolean formula encoding the provenance of the tuple) and then the probability of the lineage formula.
In this paper we focus on intensional query evaluation using polynomials instead of boolean formulas.
It is a well-known fact that computing the marginal probability of a tuple is \sharpphard (proven through a reduction from weighted model counting~\cite{provan-83-ccccptg,valiant-79-cenrp} using the fact the tuple's marginal probability is the probability of a its lineage formula).
The second category, \emph{extensional} query evaluation, avoids calculating the lineage.
This approach is in \ptime, but is limited to certain classes of queries.
Dalvi et al.~\cite{DS12} proved a dichotomy for unions of conjunctive queries (UCQs): for any UCQ the probabilistic query evaluation problem is either \sharpphard (requires extensional evaluation) or \ptime (allows intensional).
Olteanu et al.~\cite{FO16} presented dichotomies for two classes of queries with negation, R\'e et al~\cite{RS09b} present a trichotomy for HAVING queries.
Amarilli et al. investigated tractable classes of databases for more complex queries~\cite{AB15,AB15c}.
Approaches for probabilistic query processing (i.e., computing the marginal probability for query result tuples), fall into two broad categories.
\emph{Intensional} (or \emph{grounded}) query evaluation computes the \emph{lineage} of a tuple % (a Boolean formula encoding the provenance of the tuple)
and then the probability of the lineage formula.
In this paper we focus on intensional query evaluation using polynomials instead of boolean formulas.
It is a well-known fact that computing the marginal probability of a tuple is \sharpphard (proven through a reduction from weighted model counting~\cite{valiant-79-cenrp} %provan-83-ccccptg
using the fact the tuple's marginal probability is the probability of a its lineage formula).
The second category, \emph{extensional} query evaluation, % avoids calculating the lineage.
% This approach
is in \ptime, but is limited to certain classes of queries.
Dalvi et al.~\cite{DS12} proved that a dichotomy for unions of conjunctive queries (UCQs):
for any UCQ the probabilistic query evaluation problem is either \sharpphard (requires extensional evaluation) or \ptime (permits intensional).
Olteanu et al.~\cite{FO16} presented dichotomies for two classes of queries with negation. % R\'e et al~\cite{RS09b} present a trichotomy for HAVING queries.
Amarilli et al. investigated tractable classes of databases for more complex queries~\cite{AB15}. %,AB15c
Another line of work, studies which structural properties of lineage formulas lead to tractable cases~\cite{kenig-13-nclexpdc,roy-11-f,sen-10-ronfqevpd}.
Several techniques for approximating tuple probabilities have been proposed in related work~\cite{FH13,heuvel-19-anappdsd,DBLP:conf/icde/OlteanuHK10,DS07,re-07-eftqevpd}, relying on Monte Carlo sampling, e.g., \cite{DS07,re-07-eftqevpd}, or a branch-and-bound paradigm~\cite{DBLP:conf/icde/OlteanuHK10,fink-11}.
Several techniques for approximating tuple probabilities have been proposed in related work~\cite{FH13,heuvel-19-anappdsd,DBLP:conf/icde/OlteanuHK10,DS07}, relying on Monte Carlo sampling, e.g.,~\cite{DS07}, or a branch-and-bound paradigm~\cite{DBLP:conf/icde/OlteanuHK10}.
The approximation algorithm for bag expectation we present in this work is based on sampling.
Fink et al.~\cite{FH12} study aggregate queries over a probabilistic version of the extension of K-relations for aggregate queries proposed in~\cite{AD11d} (this data model is referred to as \emph{pvc-tables}). As an extension of K-relations, this approach supports bags. Probabilities are computed using a decomposition approach~\cite{DBLP:conf/icde/OlteanuHK10} over the symbolic expressions that are used as tuple annotations and values in pvc-tables. \cite{FH12} identifies a tractable class of queries involving aggregation. In contrast, we study a less general data model and query class, but provide a linear time approximation algorithm and provide new insights into the complexity of computing expectation (while \cite{FH12} computes probabilities for individual output annotations).
Fink et al.~\cite{FH12} study aggregate queries over a probabilistic version of the extension of K-relations for aggregate queries proposed in~\cite{AD11d} (this data model is referred to as \emph{pvc-tables}). As an extension of K-relations, this approach supports bags. Probabilities are computed using a decomposition approach~\cite{DBLP:conf/icde/OlteanuHK10}. % over the symbolic expressions that are used as tuple annotations and values in pvc-tables.
% \cite{FH12} identifies a tractable class of queries involving aggregation.
In contrast, we study a less general data model and query class, but provide a linear time approximation algorithm and provide new insights into the complexity of computing expectation (while~\cite{FH12} computes probabilities for individual output annotations).
%%% Local Variables:
%%% mode: latex