Small grammar change to S5.

This commit is contained in:
Aaron Huber 2020-12-20 14:33:47 -05:00
parent 4e0e39a762
commit 35d894243f

View file

@ -9,7 +9,7 @@ Finally, in~\Cref{sec:momemts}, we observe how our results can be used to estima
\subsection{Lineage circuits}
\label{sec:circuits}
In~\Cref{sec:semnx-as-repr}, we switched to thinking of our query results as polynomials and until now, have has focused on thinking of our input as a polynomial. In particular, starting with~\Cref{sec:expression-trees} we considered these polynomials to be represented as an expression tree. However, these do not capture many of the compressed polynomial representations that we can get from query processing algorithms on bags, including the recent work on worst-case optimal join algorithms~\cite{ngo-survey,skew}, factorized databases~\cite{factorized-db}, and FAQ~\cite{DBLP:conf/pods/KhamisNR16}. Intuitively, the main reason is that an expression tree does not allow for `storing' any intermediate results, which is crucial for these algorithms (and other query processing results as well).
In~\Cref{sec:semnx-as-repr}, we switched to thinking of our query results as polynomials and until now, have focused on thinking of our input as a polynomial. In particular, starting with~\Cref{sec:expression-trees} we considered these polynomials to be represented as an expression tree. However, these do not capture many of the compressed polynomial representations that we can get from query processing algorithms on bags, including the recent work on worst-case optimal join algorithms~\cite{ngo-survey,skew}, factorized databases~\cite{factorized-db}, and FAQ~\cite{DBLP:conf/pods/KhamisNR16}. Intuitively, the main reason is that an expression tree does not allow for `storing' any intermediate results, which is crucial for these algorithms (and other query processing results as well).
In this section, we represent query polynomials via {\em arithmetic circuits}~\cite{arith-complexity}, a standard way to represent polynomials over fields (particularly in the field of algebraic complexity) that we use for polynomials over $\mathbb N$ in the obvious way.
We present a formal treatment of {\em lineage circuit}s in~\Cref{sec:circuits-formal}, with only a quick overview to start.