From 4835ff234a16ef2873b5cb1daa148c6dfe906b32 Mon Sep 17 00:00:00 2001 From: Atri Rudra Date: Tue, 6 Apr 2021 14:29:47 -0400 Subject: [PATCH] Done till proof of Thm 4.18 --- app_approx-alg-analysis.tex | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/app_approx-alg-analysis.tex b/app_approx-alg-analysis.tex index a78cb43..e17e59b 100644 --- a/app_approx-alg-analysis.tex +++ b/app_approx-alg-analysis.tex @@ -6,9 +6,9 @@ Before proving~\Cref{lem:mon-samp}, we use it to argue our main result,~\Cref{le Set $\mathcal{E}=\approxq(\revision{\circuit}, (\prob_1,\dots,\prob_\numvar),$ $\conf, \error')$, where \[\error' = \error \cdot \frac{\rpoly(\prob_1,\ldots, \prob_\numvar)\cdot (1 - \gamma)}{\abs{\revision{\circuit}}(1,\ldots, 1)},\] - which achieves the claimed accuracy bound on $\mathcal{E}$. + which achieves the claimed accuracy bound on $\mathcal{E}$ due to~\Cref{lem:mon-samp}. -The claim on the runtime follows since +The claim on the runtime follows from~\Cref{lem:mon-samp} since \begin{align*} \frac 1{\inparen{\error'}^2}\cdot \log\inparen{\frac 1\conf}=&\frac{\log{\frac{1}{\conf}}}{\error^2 \left(\frac{\rpoly(\prob_1,\ldots, \prob_N)}{\abs{\revision{\circuit}}(1,\ldots, 1)}\right)^2}\\ = &\frac{\log{\frac{1}{\conf}}\cdot \abs{\revision{\circuit}}^2(1,\ldots, 1)}{\error^2 \cdot \rpoly^2(\prob_1,\ldots, \prob_\numvar)}, @@ -46,10 +46,10 @@ Using Hoeffding's inequality, we then get: \end{equation*} where the last inequality follows from our choice of $\samplesize$ in~\Cref{alg:mon-sam-global2}. -This concludes the proof for the first claim of theorem ~\ref{lem:mon-samp}. +This concludes the proof for the first claim of theorem ~\ref{lem:mon-samp}. We prove the claim on the runtime next. -\paragraph{Run-time Analysis} -The runtime of the algorithm is dominated by~\Cref{alg:mon-sam-onepass} (which by~\Cref{lem:one-pass} takes time $O(\revision{\size(\circuit)})$) and the $\samplesize$ iterations of the loop in~\Cref{alg:sampling-loop}. Each iteration's run time is dominated by the call to~\Cref{alg:mon-sam-sample} (which by~\Cref{lem:sample} takes $O(\log{k} \cdot k \cdot \revision{\depth(\circuit)})$ +\paragraph*{Run-time Analysis} +The runtime of the algorithm is dominated by~\Cref{alg:mon-sam-onepass} (which by~\Cref{lem:one-pass} takes time $O\left({\size(\circuit)}\cdot \multc{\log\left(\abs{\circuit}^2(1,\ldots, 1)\right)}{\log\left(\size(\circuit)\right)}\right)$) and the $\samplesize$ iterations of the loop in~\Cref{alg:sampling-loop}. Each iteration's run time is dominated by the call to~\Cref{alg:mon-sam-sample} (which by~\Cref{lem:sample} takes $O\left(\log{k} \cdot k \cdot {\depth(\circuit)}\cdot \multc{\log\left(\abs{\circuit}^2(1,\ldots, 1)\right)}{\log\left(\size(\circuit)\right)}\right)$ ) and~\Cref{alg:check-duplicate-block}, which by the subsequent argument takes $O(k\log{k})$ time. We sort the $O(k)$ variables by their block IDs and then check if there is a duplicate block ID or not. Adding up all the times discussed here gives us the desired overall runtime. \subsection{Proof of~\Cref{cor:approx-algo-const-p}} @@ -58,4 +58,4 @@ The result follows by first noting that by definition of $\gamma$, we have Further, since each $\prob_i\ge \prob_0$ and $\poly(\vct{X})$ (and hence $\rpoly(\vct{X})$) has degree at most $k$, we have that \[ \rpoly(1,\dots,1) \ge \prob_0^k\cdot \rpoly(1,\dots,1).\] The above two inequalities implies $\rpoly(1,\dots,1) \ge \prob_0^k\cdot (1-\gamma)\cdot \abs{\revision{\circuit}}(1,\dots,1)$. -Applying this bound in the runtime bound in~\Cref{lem:approx-alg} gives the first claimed runtime. The final runtime of $O_k\left(\frac 1{\eps^2}\cdot\size(\circuit)\cdot \log{\frac{1}{\conf}}\right)$ follows by noting that $depth(\revision{\circuit})\le \size(\revision{\circuit})$ and absorbing all factors that just depend on $k$. \ No newline at end of file +Applying this bound in the runtime bound in~\Cref{lem:approx-alg} gives the first claimed runtime. The final runtime of $O_k\left(\frac 1{\eps^2}\cdot\size(\circuit)\cdot \log{\frac{1}{\conf}}\right)$ follows by noting that $depth(\revision{\circuit})\le \size(\revision{\circuit})$ and absorbing all factors that just depend on $k$.