Small changes, fixing bugs and typos.

master
Aaron Huber 2022-05-17 10:55:17 -04:00
parent 86fb2bce86
commit 483bdb9a19
2 changed files with 3 additions and 3 deletions

View File

@ -45,7 +45,7 @@ For these algorithms, $\jointime{R_1, \ldots, R_n}$ is linear in the {\em AGM bo
&\begin{aligned}
&\qruntimenoopt{R,\gentupset,\bound} = |\gentupset.R|
&
&\qquad\qquad\qruntimenoopt{\sigma \query, \gentupset,\bound} = \qruntimenoopt{\query,\gentupset}\\
&\qquad\qquad\qruntimenoopt{\sigma \query, \gentupset,\bound} = \qruntimenoopt{\query,\gentupset,\bound}\\
\end{aligned}&\\
%\vspace{-.6cm}
&\qruntimenoopt{\pi \query, \gentupset,\bound} = \qruntimenoopt{\query,\gentupset,\bound} +\abs{\query(\gentupset)}&\\

View File

@ -51,7 +51,7 @@ For any graph $G=(V,\edgeSet)$ and $\kElem\ge 1$, define
\end{Definition}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\noindent Returning to \Cref{fig:two-step}, it can be seen that $\poly_{G}^\kElem(\vct{X})$ is the lineage polynomial from query $\qhard^k$, which we define next ($\query_2$ from~\Cref{sec:intro} is the same query with $k=2$). Let us alias
\noindent Returning to \Cref{fig:two-step}, it can be seen that $\poly_{G}^\kElem(\vct{X})$ is the lineage polynomial from query $\qhard^k$, which we define next ($\query_1$ from~\Cref{sec:intro} is the same query with $k=1$). Let us alias
\begin{lstlisting}
SELECT DISTINCT 1 FROM T $t_1$, R r, T $t_2$
WHERE $t_1$.Point = r.Point$_1$ AND $t_2$.Point = r.Point$_2$
@ -70,7 +70,7 @@ Note that this implies that $\poly_{G}^\kElem$ is indeed a $1$-\abbrTIDB lineage
Next, we note that the runtime for answering $\qhard^k$ on deterministic database $\tupset$, as defined above, is $O_k\inparen{\numedge}$ (i.e. deterministic query processing is `easy' for this query):
\begin{Lemma}\label{lem:tdet-om}
Let $\qhard^k$ and $\tupset$ be as defined above. Then
$\qruntimenoopt{\qhard^k, \tupset}$ is $O_k\inparen{\numedge}$.
$\qruntimenoopt{\qhard^k, \tupset, \bound}$ is $O_k\inparen{\numedge}$.
\end{Lemma}
\subsection{Multiple Distinct $\prob$ Values}