Removed unnecessary file.

master
Aaron Huber 2021-04-06 13:06:32 -04:00
parent 2678d1210e
commit 5641c60344
1 changed files with 0 additions and 19 deletions

View File

@ -1,19 +0,0 @@
%root: main.tex
\begin{proof}%[Proof of \Cref{lem:qE3-exp}]
By definition we have that
\[\poly_{G}^3(\vct{X}) = \sum_{\substack{(i_1, j_1), (i_2, j_2), (i_3, j_3) \in E}}~\; \prod_{\ell = 1}^{3}X_{i_\ell}X_{j_\ell}.\]
Hence $\rpoly_{G}^3(\vct{X})$ has degree six. Note that the monomial $\prod_{\ell = 1}^{3}X_{i_\ell}X_{j_\ell}$ will contribute to the coefficient of $\prob^\nu$ in $\rpoly_{G}^3(\vct{X})$, where $\nu$ is the number of distinct variables in the monomial.
%Rather than list all the expressions in full detail, let us make some observations regarding the sum.
Let $e_1 = (i_1, j_1), e_2 = (i_2, j_2), e_3 = (i_3, j_3)$.
We compute $\rpoly_{G}^3(\vct{X})$ by considering each of the three forms that the triple $(e_1, e_2, e_3)$ can take.
\textsc{case 1:} $e_1 = e_2 = e_3$ (all edges are the same). There are exactly $\numedge=\numocc{G}{\ed}$ such triples, each with a $\prob^2$ factor in $\rpoly_{G}^3\left(\prob,\ldots, \prob\right)$.
\textsc{case 2:} This case occurs when there are two distinct edges of the three, call them $e$ and $e'$. When there are two distinct edges, there is then the occurence when $2$ variables in the triple $(e_1, e_2, e_3)$ are bound to $e$. There are three combinations for this occurrence in $\poly_{G}^3(\vct{X})$. Analogusly, there are three such occurrences in $\poly_{G}^3(\vct{X})$ when there is only one occurrence of $e$, i.e. $2$ of the variables in $(e_1, e_2, e_3)$ are $e'$. %Again, there are three combinations for this.
This implies that all $3 + 3 = 6$ combinations of two distinct edges $e$ and $e'$ contribute to the same monomial in $\rpoly_{G}^3$. % consist of the same monomial in $\rpoly$, i.e. $(e_1, e_1, e_2)$ is the same as $(e_2, e_1, e_2)$.
Since $e\ne e'$, this case produces the following edge patterns: $\twopath, \twodis$, which contribute $6\prob^3$ and $6\prob^4$ respectively to $\rpoly_{G}^3\left(\prob,\ldots, \prob\right)$.
\textsc{case 3:} All $e_1,e_2$ and $e_3$ are distinct. For this case, we have $3! = 6$ permutations of $(e_1, e_2, e_3)$, each of which contribute to the same monomial in the \textsc{SMB} representation of $\poly_{G}^3(\vct{X})$. This case consists of the following edge patterns: $\tri, \oneint, \threepath, \twopathdis, \threedis$, which contribute $6\prob^3, 6\prob^4, 6\prob^4, 6\prob^5$ and $6\prob^6$ respectively to $\rpoly_{G}^3\left(\prob,\ldots, \prob\right)$.
\qed
\end{proof}