diff --git a/introduction.tex b/introduction.tex index fc1bb27..e7096d4 100644 --- a/introduction.tex +++ b/introduction.tex @@ -203,7 +203,7 @@ As we have essentially argued earlier, for our specific example the expectation For any \abbrCTIDB $\pdb$, $\raPlus$ query $\query$, and lineage polynomial $\poly\inparen{\vct{X}}=\poly\pbox{\query,\tupset,\tup}\inparen{\vct{X}}$, it holds that $ \expct_{\vct{W} \sim \pdassign}\pbox{\poly\inparen{\vct{W}}} = \rpoly\inparen{\probAllTup} -$, where $\probAllTup = \inparen{\prob_{\tup,j}}_{\tup\in\tupset,j\in[\bound]}.$ +$, where $\probAllTup = \inparen{\prob_{\tup,j}}_{\tup\in\tupset,j\in\pbox{\bound}}.$ \end{Lemma} %\noindent diff --git a/mult_distinct_p.tex b/mult_distinct_p.tex index 7fb7eb4..6fbb2a1 100644 --- a/mult_distinct_p.tex +++ b/mult_distinct_p.tex @@ -26,7 +26,7 @@ Given positive integer $k$ and undirected graph $G=(\vset,\edgeSet)$ with no sel %For every $G=\inparen{\vset, \edgeSet}$, $\kmatchtime\ge n^{\Omega\inparen{k/\log{k}}}$. %\end{hypo} %======= -\begin{Theorem}[~\cite{DBLP:journals/corr/CurticapeanM14}]\label{conj:known-algo-kmatch} +\begin{Theorem}[~\cite{10.1109/FOCS.2014.22}]\label{conj:known-algo-kmatch} Given positive integer $k$ and undirected graph $G=(\vset,\edgeSet)$, $\kmatchtime\ge |\vset|^{\Omega\inparen{k/\log{k}}}$, assuming ETH. \end{Theorem}