This commit is contained in:
Boris Glavic 2020-12-13 10:11:29 -06:00
parent 81405337ff
commit b299433144

View file

@ -15,7 +15,7 @@ For a probabilistic database $\pdb = (\idb, \pd)$, the result of a query is th
\[\forall \db \in \query(\idb): \pd'(\db) = \sum_{\db' \in \idb: \query(\db') = \db} \pd(\db') \]
Note that in this work we consider multisets, i.e., each possible world is a set of multiset relations and queries are evaluated using bag semantics. We will use K-relations to model multisets. A \emph{K-relation}~\cite{DBLP:conf/pods/GreenKT07} is a relation whose tuples are each annotated with elements from a commutative semiring $\semK = (\domK, \addK, \multK, \zeroK, \oneK)$. A commutative semiring is a structure with a domain $\domK$ and associative and commutative binary operations $\addK$ and $\multK$ such that $\multK$ distributes over $\addK$, $\zeroK$ is the identity of $\addK$, $\ondK$ is the identity of $\multK$, and $\zeroK$ annihilates all elements of $\domK$ when being combined with $\multK$.
Note that in this work we consider multisets, i.e., each possible world is a set of multiset relations and queries are evaluated using bag semantics. We will use K-relations to model multisets. A \emph{K-relation}~\cite{DBLP:conf/pods/GreenKT07} is a relation whose tuples are each annotated with elements from a commutative semiring $\semK = (\domK, \addK, \multK, \zeroK, \oneK)$. A commutative semiring is a structure with a domain $\domK$ and associative and commutative binary operations $\addK$ and $\multK$ such that $\multK$ distributes over $\addK$, $\zeroK$ is the identity of $\addK$, $\oneK$ is the identity of $\multK$, and $\zeroK$ annihilates all elements of $\domK$ when being combined with $\multK$.
Let $\udom$ be a countable domain of values.
Formally, an n-ary $\semK$-relation over $\udom$ is a function $\rel: \udom^n \to \domK$ with finite support $\support{\rel} = \{ \tup \mid \rel(\tup) \neq \zeroK \}$.
A $\semK$-database is a set of $\semK$-relations. It will be convenient to also interpret a $\semK$-database as a function from tuples to annotations. Thus, $\rel(t)$ ($\db(t)$) denotes the annotation associated by $\semK$-relation $\rel$ ($\semK$-database $\db$) to tuple $t$.