Finished determinant calculation for linear system in proving lemma 3.

This commit is contained in:
Aaron Huber 2020-07-22 15:39:53 -04:00
parent cc0163b9a0
commit b3c492c97b
2 changed files with 77 additions and 12 deletions

View file

@ -26,6 +26,8 @@
\newcommand{\linsys}[1]{LS^{\graph{#1}}}
\newcommand{\lintime}[1]{LT^{\graph{#1}}}
\newcommand{\aug}[1]{AUG^{\graph{#1}}}
\newcommand{\mtrix}[1]{M_{#1}}
\newcommand{\dtrm}[1]{Det\left(#1\right)}
%PDBs
\newcommand{\ti}{TIDB}

View file

@ -402,6 +402,7 @@ The number of triangles in $\graph{k}$ for $k \geq 2$ will always be $0$ for the
\end{proof}
\qed
\AH{\LARGE \bf New material starts here.}
\subsection{Developing a Linear System}
In \cref{lem:qE3-exp} is the identity for $\rpoly(\prob,\ldots, \prob)$ when $\poly(\wElem_1,\ldots, \wElem_N) = q_E(\wElem_1,\ldots, \wElem_\numTup)^3$. (This lemma still needs a proof, but for now we will pretend the proof is there.)
@ -435,13 +436,13 @@ Rearrange terms into groups of those patterns that can be computed in $O(m)$ and
\end{equation*}
Let $\lintime{2}$ represent all the terms we wish to remove from $\linsys{2}$. Then, the following are true.
\begin{align*}
\lintime{2} &= -6\cdot\left(\numocc{\graph{1}}{\threedis} + \numocc{\graph{1}}{\twopathdis}\right)\left(\prob^2 - \prob^3\right) - 4 \cdot \numocc{\graph{1}}{\oneint}\left(\prob^2 - \prob^3\right) + 2\cdot \numocc{\graph{1}}{\twopath}\prob^2\\
\linsys{2'} = \linsys{2} -\lintime{2} &= -\pbrace{2 \cdot \numocc{\graph{1}}{\tri} + 4 \cdot \numocc{\graph{1}}{\threepath} + 2 \cdot \numocc{\graph{1}}{\threepath}}\left(\prob^2 - \prob^3\right)\\
\aug{2'} = \aug{2} - \lintime{2} &= \frac{\rpoly(\prob,\ldots, \prob)}{6\prob^3} - \frac{\numocc{\graph{2}}{\ed}}{6\prob} - \numocc{\graph{2}}{\twopath} - \numocc{\graph{2}}{\twodis}\prob - \numocc{\graph{2}}{\oneint}\prob - \big(\numocc{\graph{2}}{\twopathdis} + \numocc{\graph{2}}{\threedis}\big)\prob^2 + \\
&6\cdot\left(\numocc{\graph{1}}{\threedis} + \numocc{\graph{1}}{\twopathdis}\right)\left(\prob^2 - \prob^3\right) + 4 \cdot \numocc{\graph{1}}{\oneint}\left(\prob^2 - \prob^3\right) - 2\cdot \numocc{\graph{1}}{\twopath}\prob^2\\
\implies \aug{2'} &= \linsys{2'}
\end{align*}
\begin{align}
\lintime{2} &= -6\cdot\left(\numocc{\graph{1}}{\threedis} + \numocc{\graph{1}}{\twopathdis}\right)\left(\prob^2 - \prob^3\right) - 4 \cdot \numocc{\graph{1}}{\oneint}\left(\prob^2 - \prob^3\right) + 2\cdot \numocc{\graph{1}}{\twopath}\prob^2\nonumber\\
\linsys{2'} = \linsys{2} -\lintime{2} &= -\pbrace{2 \cdot \numocc{\graph{1}}{\tri} + 4 \cdot \numocc{\graph{1}}{\threepath} + 2 \cdot \numocc{\graph{1}}{\threepath}}\left(\prob^2 - \prob^3\right)\label{eq:LS-G2'}\\
\aug{2'} = \aug{2} - \lintime{2} &= \frac{\rpoly(\prob,\ldots, \prob)}{6\prob^3} - \frac{\numocc{\graph{2}}{\ed}}{6\prob} - \numocc{\graph{2}}{\twopath} - \numocc{\graph{2}}{\twodis}\prob - \numocc{\graph{2}}{\oneint}\prob - \big(\numocc{\graph{2}}{\twopathdis} + \numocc{\graph{2}}{\threedis}\big)\prob^2 +\nonumber \\
&6\cdot\left(\numocc{\graph{1}}{\threedis} + \numocc{\graph{1}}{\twopathdis}\right)\left(\prob^2 - \prob^3\right) + 4 \cdot \numocc{\graph{1}}{\oneint}\left(\prob^2 - \prob^3\right) - 2\cdot \numocc{\graph{1}}{\twopath}\prob^2\nonumber\\
\implies \aug{2'} &= \linsys{2'}\nonumber
\end{align}
We now have a linear equation in terms of $\graph{1}$ for $\graph{2}$ where $\linsys{2'}$ is the linear combination and $\aug{2}$ is the augmented side of the matrix, or the constant value, since all of the terms in $\aug{2}$ can be solved in $O(m)$ time.
@ -460,12 +461,74 @@ Equation \ref{eq:LS-G3-sub} follows from simple substitution of all lemma identi
Collecting terms we would like to send to the other side, the following equations are true,
\begin{align}
\lintime{3} =& \pbrace{- 24 \cdot \left(\numocc{\graph{1}}{\twopathdis} + \numocc{\graph{1}}{\threedis}\right) - 20 \cdot \numocc{\graph{1}}{\oneint} - 4\cdot \numocc{\graph{1}}{\twopath} - 6 \cdot \numocc{\graph{1}}{\twodis}}\left(\prob^2 - \prob^3\right) + \pbrace{\numocc{\graph{1}}{\ed}\prob + 2 \cdot \numocc{\graph{1}}{\twopath}}\prob\nonumber\\
\linsys{3'} =& \linsys{3} - \lintime{3} = \pbrace{- 18 \cdot \numocc{\graph{1}}{\tri} - 21 \cdot \numocc{\graph{1}}{\threepath} - 3 \cdot \numocc{\graph{1}}{\threedis}}\left(p^2 - p^3\right)\nonumber \\
\aug{3'} =& \aug{3} - \lintime{3} = \frac{\rpoly(\prob,\ldots, \prob)}{6\prob^3} - \frac{\numocc{\graph{3}}{\ed}}{6\prob} - \numocc{\graph{3}}{\twopath} - \numocc{\graph{3}}{\twodis}\prob - \numocc{\graph{3}}{\oneint}\prob - \big(\numocc{\graph{3}}{\twopathdis} + \numocc{\graph{3}}{\threedis}\big)\prob^2 + \\
\linsys{3'} =& \linsys{3} - \lintime{3} = \pbrace{- 18 \cdot \numocc{\graph{1}}{\tri} - 21 \cdot \numocc{\graph{1}}{\threepath} - 3 \cdot \numocc{\graph{1}}{\threedis}}\left(p^2 - p^3\right)\label{eq:LS-G3'} \\
\aug{3'} =& \aug{3} - \lintime{3} = \frac{\rpoly(\prob,\ldots, \prob)}{6\prob^3} - \frac{\numocc{\graph{3}}{\ed}}{6\prob} - \numocc{\graph{3}}{\twopath} - \numocc{\graph{3}}{\twodis}\prob - \numocc{\graph{3}}{\oneint}\prob - \big(\numocc{\graph{3}}{\twopathdis} + \numocc{\graph{3}}{\threedis}\big)\prob^2 + \nonumber\\
& \pbrace{24 \cdot \left(\numocc{\graph{1}}{\twopathdis} + \numocc{\graph{1}}{\threedis}\right) + 20 \cdot \numocc{\graph{1}}{\oneint} + 4\cdot \numocc{\graph{1}}{\twopath} + 6 \cdot \numocc{\graph{1}}{\twodis}}\left(\prob^2 - \prob^3\right) - \pbrace{\numocc{\graph{1}}{\ed}\prob + 2 \cdot \numocc{\graph{1}}{\twopath}}\prob\nonumber\\
&\implies \aug{3'} = \linsys{3'}
&\implies \aug{3'} = \linsys{3'}\nonumber
\end{align}
We now have a linear system consisting of three linear combinations, for $\graph{1}, \graph{2}, \graph{3}$ in terms of $\graph{1}$.
We now have a linear system consisting of three linear combinations, for $\graph{1}, \graph{2}, \graph{3}$ in terms of $\graph{1}$. To make it easier, use the following variable representations: $x = \numocc{\graph{1}}{\tri}, y = \numocc{\graph{1}}{\threepath}, z = \numocc{\graph{1}}{\threedis}$. Using $\linsys{2'}$ and $\linsys{3'}$, \cref{eq:LS-G2'}, \cref{eq:LS-G3'} respectively, the following matrix is obtained,
\[ \mtrix{\rpoly} = \begin{pmatrix}
x & (\prob)y & z(\prob^2 - \prob^3)\\
-2(\prob^2 - \prob^3)x & -4(\prob^2 - \prob^3)y & -2(\prob^2 - \prob^3)z\\
-18(\prob^2 - \prob^3)x & -21(\prob^2 - \prob^3)y & -3(\prob^2 - \prob^3)z
\end{pmatrix}.\]
Now we seek to show that all rows of the system are indeed independent.
The method of minors can be used to compute the determinant, $\dtrm{\mtrix{\rpoly}}$, giving
\begin{equation*}
\begin{vmatrix}
x & (\prob)y & z(\prob^2 - \prob^3)\\
-2(\prob^2 - \prob^3)x & -4(\prob^2 - \prob^3)y & -2(\prob^2 - \prob^3)z\\
-18(\prob^2 - \prob^3)x & -21(\prob^2 - \prob^3)y & -3(\prob^2 - \prob^3)z
\end{vmatrix}
=
\begin{vmatrix}
-4(\prob^2 - \prob^3) & -2(\prob^2 - \prob^3)\\
-21(\prob^2 - \prob^3) & -3(\prob^2 - \prob^3)
\end{vmatrix}
~ - ~ \prob~ \cdot
\begin{vmatrix}
-2(\prob^2 - \prob^3) & -2(\prob^2 - \prob^3)\\
-18(\prob^2 - \prob^3) & -3(\prob^2 - \prob^3)
\end{vmatrix}
+ ~(\prob^2 - \prob^3)~ \cdot
\begin{vmatrix}
-2(\prob^2 - \prob^3) & -4(\prob^2 - \prob^3)\\
-18(\prob^2 - \prob^3) & -21(\prob^2 - \prob^3)
\end{vmatrix}.
\end{equation*}
Compute each RHS term starting with the left and working to the right,
\begin{equation}
-4(\prob^2 - \prob^3)\cdot -3(\prob^2 - \prob^3) - \left(-21(\prob^2 - \prob^3) \cdot -2(\prob^2 - \prob^3)\right) =
12(\prob^2 - \prob^3)^2 - 42(\prob^2 - \prob^3)^2 = -30(\prob^2 - \prob^3)^2.\label{eq:det-1}
\end{equation}
The middle term then is
\begin{equation}
-\prob\left(-2(\prob^2 - \prob^3)\cdot -3(\prob^2 - \prob^3)\right) - \left(-18(\prob^2 - \prob^3) \cdot -2(\prob^2 - \prob^3)\right) =
-\prob\left(6\cdot (\prob^2 - \prob^3)^2 - 36(\prob^2 - \prob^3)^2\right) = -\prob\left(-30(\prob^2 - \prob^3)^2\right).\label{eq:det-2}
\end{equation}
Finally, the rightmost term,
\begin{equation}
\left(\prob^2 - \prob^3\right) \left(-2(\prob^2 - \prob^3)\cdot -21(\prob^2 - \prob^3)\right) - \left(-18(\prob^2 - \prob^3) \cdot -4(\prob^2 - \prob^3)\right) = \left(\prob^2 - \prob^3\right)\left(42\cdot (\prob^2 - \prob^3)^2 - 72(\prob^2 - \prob^3)^2\right) = \left(\prob^2 - \prob^3\right)\left(-30(\prob^2 - \prob^3)^2\right).\label{eq:det-3}
\end{equation}
Putting \cref{eq:det-1}, \cref{eq:det-2}, \cref{eq:det-3} together, we have,
\[\dtrm{\mtrix{\rpoly}} = -30(\prob^2 - \prob^3)^2-\prob\left(-30(\prob^2 - \prob^3)^2\right) + \left(\prob^2 - \prob^3\right)\left(-30(\prob^2 - \prob^3)^2\right)\]
Expanding out $\left(\prob^2 - \prob^3\right)^2$ gives
\begin{equation*}
\dtrm{\mtrix{\rpoly}} = -30\left(\prob^4 - 2\prob^5 + \prob^6\right)-\prob\left(-30\left(\prob^4 - 2\prob^5 + \prob^6\right)\right) + \left(\prob^2 - \prob^3\right)\left(-30\left(\prob^4 - 2\prob^5 + \prob^6\right)\right).
\end{equation*}
Further algebraic manipulations result in
\begin{align}
\dtrm{\mtrix{\rpoly}} &= \left(30\prob^4\right)\left(-1 + 2\prob - \prob^2\right) -\prob\left(-1\left(1 - 2\prob + \prob^2\right)\right) + \left(\prob^2 - \prob^3\right)\left(-1\left(1 - 2\prob + \prob^2\right)\right)\label{eq:det-factor}\\
&=\left(30\prob^4\right)\left(\left(-1 + 2\prob - \prob^2\right) + \left(\prob - 2\prob^2 + \prob^3\right) + \left( - \prob^2 + 2\prob^3 - \prob^4 + \prob^3 - 2\prob^4 + \prob^5\right)\right)\label{eq:det-mult}\\
&= \left(30\prob^4\right)\left(\prob^5 - 3\prob^4 + 4\prob^3 - 4\prob^2 + 3\prob - 1\right)\label{eq:det-combine}.
\end{align}
\cref{eq:det-factor} results from factoring out common terms. \cref{eq:det-mult} is the case when multiplying terms in the right hand factor. We arrive at \cref{eq:det-combine} through a simple rearranging and combining of like terms.
The roots for \cref{eq:det-combine} are $p = 0, p = 1$, and $p = i$. Thus, we have proved the lemma for fixed $p \in (0, 1)$.