More touch up on the 2-col format.

This commit is contained in:
Aaron Huber 2020-12-08 15:45:41 -05:00
parent 0b397d728d
commit d21244a4e7
4 changed files with 29 additions and 21 deletions

View file

@ -340,8 +340,8 @@ Consider when $\etree$ encodes the expression $(x_1 + x_2)(x_1 - x_2) + x_2^2$.
\begin{figure}[h!]
\begin{tikzpicture}[thick, every tree node/.style={default_node, thick, draw=black, black, circle, text width=0.3cm, font=\bfseries, minimum size=0.65cm}, every child/.style={black}, edge from parent/.style={draw, thick},
level 1/.style={sibling distance=1.25cm},
level 2/.style={sibling distance=1.0cm},
level 1/.style={sibling distance=0.95cm},
level 2/.style={sibling distance=0.7cm},
%level 2+/.style={sibling distance=0.625cm}
%level distance = 1.25cm,
%sibling distance = 1cm,

View file

@ -29,8 +29,8 @@ Equation ~\ref{eq:ls-2-1} follows by \cref{lem:tri}. Similarly ~\cref{eq:ls-2-2
Now, by simple algebraic manipulations of ~\cref{lem:qE3-exp}, we deduce,
\begin{align}
&\frac{\rpoly_{\graph{2}}(\prob,\ldots, \prob)}{6\prob^3} - \frac{\numocc{\graph{2}}{\ed}}{6\prob} - \numocc{\graph{2}}{\twopath} - \numocc{\graph{2}}{\twodis}\prob - \numocc{\graph{2}}{\oneint}\prob\nonumber\\
& - \big(\numocc{\graph{2}}{\twopathdis} + 3\numocc{\graph{2}}{\threedis}\big)\prob^2 \nonumber\\
&\frac{\rpoly_{\graph{2}}(\prob,\ldots, \prob)}{6\prob^3} - \frac{\numocc{\graph{2}}{\ed}}{6\prob} - \numocc{\graph{2}}{\twopath} - \numocc{\graph{2}}{\twodis}\prob \nonumber\\
&- \numocc{\graph{2}}{\oneint}\prob - \big(\numocc{\graph{2}}{\twopathdis} + 3\numocc{\graph{2}}{\threedis}\big)\prob^2 \nonumber\\
&=\left(-2\cdot\numocc{\graph{1}}{\tri} - 4\cdot\numocc{\graph{1}}{\threepath}\right.\nonumber\\
&\left. - 8\cdot\numocc{\graph{1}}{\threedis} - 6\cdot\numocc{\graph{1}}{\twopathdis}\right)\cdot\left(3\prob^2 - p^3\right) + 2\cdot\numocc{\graph{1}}{\twopath}\prob\nonumber\\
&- 4\cdot\numocc{\graph{1}}{\oneint}\cdot\left(3\prob^2 - \prob^3\right)\label{eq:lem3-G2-1}\\
@ -103,17 +103,18 @@ Following the same reasoning for $\graph{3}$, using \cref{lem:3m-G3}, \cref{lem:
Looking at ~\cref{eq:LS-subtract},
\begin{align}
&\frac{\rpoly_{\graph{3}}(\prob,\ldots, \prob)}{6\prob^3} - \frac{\numocc{\graph{3}}{\ed}}{6\prob} - \numocc{\graph{3}}{\twopath} - \numocc{\graph{3}}{\twodis}\prob - \numocc{\graph{3}}{\oneint}\prob \nonumber\\
&- \big(\numocc{\graph{3}}{\twopathdis} + 3\numocc{\graph{3}}{\threedis}\big)\prob^2\nonumber\\
&\frac{\rpoly_{\graph{3}}(\prob,\ldots, \prob)}{6\prob^3} - \frac{\numocc{\graph{3}}{\ed}}{6\prob} - \numocc{\graph{3}}{\twopath} - \numocc{\graph{3}}{\twodis}\prob \nonumber\\
& - \numocc{\graph{3}}{\oneint}\prob - \big(\numocc{\graph{3}}{\twopathdis} + 3\numocc{\graph{3}}{\threedis}\big)\prob^2\nonumber\\
&= \left\{ -18\numocc{\graph{1}}{\tri} - 21 \cdot \numocc{\graph{1}}{\threepath} - 24 \cdot \numocc{\graph{1}}{\twopathdis}\right. \nonumber\\
&\left.- 27 \cdot \numocc{\graph{1}}{\threedis}\right\}\left(3\prob^2 - \prob^3\right) \nonumber\\
&+ \pbrace{-20 \cdot \numocc{\graph{1}}{\oneint} - 4\cdot \numocc{\graph{1}}{\twopath} - 6 \cdot \numocc{\graph{1}}{\twodis}}\left(3\prob^2 - \prob^3\right)\nonumber\\
&+ \numocc{\graph{1}}{\ed}\prob + 2 \cdot \numocc{\graph{1}}{\twopath}\prob. \label{eq:lem3-G3-2}\\
&\frac{\rpoly_{\graph{3}}(\prob,\ldots, \prob)}{6\prob^3} - \frac{\numocc{\graph{3}}{\ed}}{6\prob} - \numocc{\graph{3}}{\twopath} - \numocc{\graph{3}}{\twodis}\prob - \numocc{\graph{3}}{\oneint}\prob\nonumber\\
&- \big(\numocc{\graph{3}}{\twopathdis} + 3\numocc{\graph{3}}{\threedis}\big)\prob^2 - \left(\numocc{\graph{1}}{\ed} + \numocc{\graph{1}}{\twopath}\right)\prob\nonumber\\
&+ \left(24\left(\numocc{\graph{1}}{\twopathdis} + 3\cdot\numocc{\graph{1}}{\threedis}\right) + 20\cdot\numocc{\graph{1}}{\oneint} + 4\cdot\numocc{\graph{1}}{\twopath}\right.\nonumber\\
&\left.+ 6\cdot\numocc{\graph{1}}{\twodis}\right)\left(3\prob^2 - \prob^3\right)\nonumber\\
&= \pbrace{- 18 \cdot \numocc{\graph{1}}{\tri} - 21 \cdot \numocc{\graph{1}}{\threepath} + 45 \cdot \numocc{\graph{1}}{\threedis}}\left(3p^2 - p^3\right)\label{eq:lem3-G3-3}
&\frac{\rpoly_{\graph{3}}(\prob,\ldots, \prob)}{6\prob^3} - \frac{\numocc{\graph{3}}{\ed}}{6\prob} - \numocc{\graph{3}}{\twopath} - \numocc{\graph{3}}{\twodis}\prob \nonumber\\
&- \numocc{\graph{3}}{\oneint}\prob - \big(\numocc{\graph{3}}{\twopathdis} + 3\numocc{\graph{3}}{\threedis}\big)\prob^2 - \left(\numocc{\graph{1}}{\ed}\right.\nonumber\\
&\left.+ \numocc{\graph{1}}{\twopath}\right)\prob+ \left(24\left(\numocc{\graph{1}}{\twopathdis} + 3\cdot\numocc{\graph{1}}{\threedis}\right) \right.\nonumber\\
&\left.+ 20\cdot\numocc{\graph{1}}{\oneint} + 4\cdot\numocc{\graph{1}}{\twopath}+ 6\cdot\numocc{\graph{1}}{\twodis}\right)\left(3\prob^2 - \prob^3\right)\nonumber\\
&= \pbrace{- 18 \cdot \numocc{\graph{1}}{\tri} - 21 \cdot \numocc{\graph{1}}{\threepath} + 45 \cdot \numocc{\graph{1}}{\threedis}}\nonumber\\
&\cdot\left(3p^2 - p^3\right)\label{eq:lem3-G3-3}
\end{align}
Equation ~\ref{eq:lem3-G3-2} follows from substituting ~\cref{eq:lem3-G3-2} in for the RHS of ~\cref{eq:LS-subtract}. We derive ~\cref{eq:lem3-G3-3} by adding the inverse of all $O(\numedge)$ computable terms, and for the case of $\twopathdis$ and $\threedis$, we add the $O(\numedge)$ computable term $24\cdot\left(\numocc{\graph{1}}{\twopathdis} + \numocc{\graph{1}}{\threedis}\right)$ to both sides.
@ -122,9 +123,10 @@ Equation \ref{eq:LS-G3-sub} follows from simple substitution of all lemma identi
It then follows that
%Removing $O(\numedge)$ computable terms to the other side of \cref{eq:LS-subtract}, we get
\begin{equation}
\mtrix{\rpoly_{G}}[3] = \pbrace{- 18 \cdot \numocc{\graph{1}}{\tri} - 21 \cdot \numocc{\graph{1}}{\threepath} + 45 \cdot \numocc{\graph{1}}{\threedis}}\left(3p^2 - p^3\right)\label{eq:LS-G3'}
\end{equation}
\begin{align}
&\mtrix{\rpoly_{G}}[3] = \pbrace{- 18 \cdot \numocc{\graph{1}}{\tri} - 21 \cdot \numocc{\graph{1}}{\threepath} + 45 \cdot \numocc{\graph{1}}{\threedis}}\nonumber\\
&\cdot\left(3p^2 - p^3\right)\label{eq:LS-G3'}
\end{align}
and
%The same justification for the derivation of $\linsys{2}$ applies to the derivation above of $\linsys{3}$. To arrive at ~\cref{eq:LS-G3'}, we move $O(\numedge)$ computable terms to the left hand side. For the term $-24\cdot\numocc{\graph{1}}{\twopathdis}$ we need to add the inverse to both sides AND $72\cdot\numocc{\graph{1}}{\threedis}$ to both sides, in order to satisfy the constraint of $\cref{eq:2pd-3d}$.
@ -132,10 +134,11 @@ and
%For the LHS we get
\begin{align*}
&\vct{b}[3] = \frac{\rpoly(\prob,\ldots, \prob)}{6\prob^3} - \frac{\numocc{\graph{3}}{\ed}}{6\prob} - \numocc{\graph{3}}{\twopath} - \numocc{\graph{3}}{\twodis}\prob - \numocc{\graph{3}}{\oneint}\prob \nonumber\\
&- \big(\numocc{\graph{3}}{\twopathdis} + 3\numocc{\graph{3}}{\threedis}\big)\prob^2 - \pbrace{\numocc{\graph{1}}{\ed} + 2 \cdot \numocc{\graph{1}}{\twopath}}\prob\\
&+ \left\{24 \cdot \left(\numocc{\graph{1}}{\twopathdis} + 3\numocc{\graph{1}}{\threedis}\right) + 20 \cdot \numocc{\graph{1}}{\oneint} + 4\cdot \numocc{\graph{1}}{\twopath} \right.\nonumber\\
&\left.+ 6 \cdot \numocc{\graph{1}}{\twodis}\right\}\left(3\prob^2 - \prob^3\right)
&\vct{b}[3] = \frac{\rpoly(\prob,\ldots, \prob)}{6\prob^3} - \frac{\numocc{\graph{3}}{\ed}}{6\prob} - \numocc{\graph{3}}{\twopath} - \numocc{\graph{3}}{\twodis}\prob \nonumber\\
& - \numocc{\graph{3}}{\oneint}\prob - \big(\numocc{\graph{3}}{\twopathdis} + 3\numocc{\graph{3}}{\threedis}\big)\prob^2\\
& - \pbrace{\numocc{\graph{1}}{\ed} + 2 \cdot \numocc{\graph{1}}{\twopath}}\prob + \left\{24 \cdot \left(\numocc{\graph{1}}{\twopathdis} \right. \right.\nonumber\\
&\left.\left.+ 3\numocc{\graph{1}}{\threedis}\right) + 20 \cdot \numocc{\graph{1}}{\oneint} + 4\cdot \numocc{\graph{1}}{\twopath}\right.\\
&\left.+ 6 \cdot \numocc{\graph{1}}{\twodis}\right\}\cdot\left(3\prob^2 - \prob^3\right)
\end{align*}
We now have a linear system consisting of three linear combinations, for $\graph{1}, \graph{2}, \graph{3}$ in terms of $\graph{1}$. Note that the constants for $\graph{1}$ follow the RHS of ~\cref{eq:LS-subtract}. To make it easier, use the following variable representations: $x = \numocc{\graph{1}}{\tri}, y = \numocc{\graph{1}}{\threepath}, z = \numocc{\graph{1}}{\threedis}$. Using $\linsys{2}$ and $\linsys{3}$, the following matrix is obtained,

View file

@ -155,9 +155,10 @@ Note that $f_k$ is properly defined. For any $S \in \binom{E_k}{3}$, $|f(S)| \l
\end{proof}
\qed
\AR{TODO for {\em later}: I think the proof will be much easier to follow with figures: just drawing out $S\times \{0,1\}$ along with the $(e_i,b_i)$ explicity notated on the edges will make the proof much easier to follow.}
\subsubsection{Three Matchings in $\graph{2}$}
\AR{TODO for {\em later}: I think the proof will be much easier to follow with figures: just drawing out $S\times \{0,1\}$ along with the $(e_i,b_i)$ explicity notated on the edges will make the proof much easier to follow.}
\begin{proof}[Proof of Lemma \ref{lem:3m-G2}]
For each edge pattern $S$, we count the number of $3$-matchings in the $3$-edge subgraphs of $\graph{2}$ in $f_2^{-1}(S)$. We start with $S \in \binom{E_1}{3}$, where $S$ is composed of the edges $e_1, e_2, e_3$ and $f_2^{-1}(S)$ is the set of all $3$-edge subsets of the set
\begin{equation*}
@ -172,7 +173,11 @@ Consider the $\eset{1} = \threedis$ pattern. Note that edges in $\eset{2}$ are
\begin{itemize}
\item Disjoint Two-Path ($\twopathdis$)
\end{itemize}
For $\eset{1} = \twopathdis$ edges $e_2, e_3$ form a $2$-path with $e_1$ being disjoint. This means that $(e_2, 0), (e_2, 1), (e_3, 0), (e_3, 1)$ form a $4$-path while $(e_1, 0), (e_1, 1)$ is its own disjoint $2$-path. We can only pick either $(e_1, 0)$ or $(e_1, 1)$ from $f_2^{-1}(S)$, and then we need to pick a $2$-matching from $e_2$ and $e_3$. Note that a four path allows there to be 3 possible 2 matchings, specifically, $\pbrace{(e_2, 0), (e_3, 0)}, \pbrace{(e_2, 0), (e_3, 1)}, \pbrace{(e_2, 1), (e_3, 1)}$. Since these two selections can be made independently, there are $2 \cdot 3 = 6$ choices for $3$-matchings in $f_2^{-1}(S)$.
For $\eset{1} = \twopathdis$ edges $e_2, e_3$ form a $2$-path with $e_1$ being disjoint. This means that $(e_2, 0), (e_2, 1), (e_3, 0), (e_3, 1)$ form a $4$-path while $(e_1, 0), (e_1, 1)$ is its own disjoint $2$-path. We can only pick either $(e_1, 0)$ or $(e_1, 1)$ from $f_2^{-1}(S)$, and then we need to pick a $2$-matching from $e_2$ and $e_3$. Note that a four path allows there to be 3 possible 2 matchings, specifically,
\begin{equation*}
\pbrace{(e_2, 0), (e_3, 0)}, \pbrace{(e_2, 0), (e_3, 1)}, \pbrace{(e_2, 1), (e_3, 1)}.
\end{equation*}
Since these two selections can be made independently, there are $2 \cdot 3 = 6$ choices for $3$-matchings in $f_2^{-1}(S)$.
\begin{itemize}
\item $3$-star ($\oneint$)