
23:2 Bag PDB Queries

considering bag query semantics. We denote by Q (W) (t) the multiplicity of t in query Q44

over possible world W œ {0, . . . , c}
D.45

We can formally state our problem of computing the expected multiplicity of a result46

tuple as:47

I Problem 1.1. Given a c-TIDB D =
1

{0, . . . , c}
D , P

2
, RA

+ query Q 1 , and result tuple48

t, compute the expected multiplicity of t: EW≥P [Q (W) (t)].49

It is natural to explore computing the expected multiplicity of a result tuple as this is the50

analog for computing the marginal probability of a tuple in a set PDB. In this work we will51

assume that c = O (1) since this is what typically seen in practice. Allowing for unbounded52

c is an interesting open problem.53

Hardness of Set Query Semantics and Bag Query Semantics. Set query evaluation54

semantics over 1-TIDBs have been studied extensively, and the data complexity of the problem55

in general has been shown by Dalvi and Suicu to be #P-hard [13]. For our setting, there56

exists a trivial polytime algorithm to compute Problem 1.1 for any RA
+ query over a c-TIDB57

due to linearity of expection by simply computing the expectation over a ‘sum-of-products’58

representation of the query operations of Q (D) (t). Since we can compute Problem 1.1 in59

polynomial time, the interesting question that we explore deals with analyzing the hardness60

of computing expectation using fine-grained analysis and parameterized complexity, where61

we are interested in the exponent of polynomial runtime.62

Specifically, in this work we ask if Problem 1.1 can be solved in time linear in the runtime63

of an equivalent deterministic query. If this is true, then this would open up the way for64

deployment of c-TIDBs in practice. To analyze this question we denote by T ú(Q, D) the65

optimal runtime complexity of computing Problem 1.1 over c-TIDB D.66

Let Tdet

!
OPT (Q) , D, c

"
(see Sec. 2.4 for further details) denote the runtime for query67

OPT (Q), deterministic database D, and multiplicity bound c. Being we consider RA
+

68

queries in which order of operators can impact runtime, we denote the optimal query as69

OPT (Q) = minQÕœRA+,QÕ©Q Tdet

!
QÕ, D, c

"
.70

Lower bound on T ú(Q, D) Num. Ps Hardness Assumption
�

1
(Tdet (OPT (Q) , D, c))1+‘0

2
for

some ‘0 > 0
Single Triangle Detection hypothesis

Ê
1

(Tdet (OPT (Q) , D, c))C0
2

for all
C0 > 0

Multiple #W[0] ”= #W[1]

�
1

(Tdet (OPT (Q) , D, c))c0·k
2

for
some c0 > 0

Multiple Conjecture 3.2

Table 1 Our lower bounds for a specific hard query Q parameterized by k.For D =)
{0, . . . , c}D

, P
*

those with ‘Multiple’ in the second column need the algorithm to be able to
handle multiple P, i.e. probability distributions (for a given D). The last column states the hardness
assumptions that imply the lower bounds in the first column (‘o, C0, c0 are constants that are
independent of k).

Our lower bound results. Our question is whether or not it is always true that T ú (Q, D) Æ71

Tdet (OPT (Q) , D, c). Unfortunately this is not the case. Table 1 shows our results.72

1 A query Q is an RA+ query if it is composed entirely of one or more of the positive relational operators
{‡, fi,on, fi}.

Aaron
Pencil

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:7

I Problem 1.6. Given one circuit C that encodes �[Q, D, t] for all result tuples t (one sink210

per t) for bag-PDB D and RA
+ query Q, does there exist an algorithm that computes a211

(1 ± ‘)-approximation of EW≥P [Q (W) (t)] (for all result tuples t) in O (|C|) time?212

For an upper bound on approximating the expected count, it is easy to check that if all the213

probabilties are constant then � (p1, . . . , pn) (i.e. evaluating the original lineage polynomial214

over the probability values) is a constant factor approximation. For example, using Q2 from215

above, using pA to denote Pr [A = 1] (and similarly for the other variables), we can see that216

�2
1 (p) = p

2
Ap

2
Xp

2
B + p

2
Bp

2
Y p

2
E + p

2
Bp

2
Zp

2
C + 2pApXp

2
BpY pE + 2pApXp

2
BpZpC + 2p

2
BpY pEpZpC217

Æ pApXpB + pBpY pE + pBpZpC + 2pApXpBpY pE + 2pApXpBpZpC + 2pBpY pEpZpC = Â�2
1 (p)218219

If we assume that all seven probability values are at least p0 > 0, we get that �2
1 (p) is in220

the range [(p0)3
· Â�2

1 (p) , Â�2
1 (p)]. In sec. 4 we demonstrate that a (1 ± ‘) (multiplicative)221

approximation with competitive performance is achievable. To get an (1 ± ‘)-multiplicative222

approximation and solve Problem 1.6, using C we uniformly sample monomials from the223

equivalent SMB representation of � (without materializing the SMB representation) and224

‘adjust’ their contribution to Â� (·).225

226

Applications. Recent work in heuristic data cleaning [49, 43, 40, 8, 43] emits a PDB when227

insu�cient data exists to select the ‘correct’ data repair. Probabilistic data cleaning is a228

crucial innovation, as the alternative is to arbitrarily select one repair and ‘hope’ that queries229

receive meaningful results. Although PDB queries instead convey the trustworthiness of230

results [35], they are impractically slow [18, 17], even in approximation (see Appendix G).231

Bags, as we consider, are su�cient for production use, where bag-relational algebra is already232

the default for performance reasons. Our results show that bag-PDBs can be competitive,233

laying the groundwork for probabilistic functionality in production database engines.234

Paper Organization. We present relevant background and notation in Sec. 2. We then235

prove our main hardness results in Sec. 3 and present our approximation algorithm in Sec. 4.236

Finally, we discuss related work in Sec. 5 and conclude in Sec. 6. All proofs are in the237

appendix.238

2 Background and Notation239

2.1 Polynomial Definition and Terminology240

A polynomial over a set of variables S with |S| = m and individual degree B < Œ is formally241

defined as (where cd œ N):242

� (S1, . . . , Sm) =
ÿ

dœ{0,...,B}D

cd ·

Ÿ

iœ[m]

Sdi
i

. (1)243

244

I Definition 2.1 (Standard Monomial Basis). The term
r

iœ[m] Sdi
i

in Eq. (1) is a monomial.245

A polynomial � (X) is in standard monomial basis (SMB) when we keep only the terms with246

cd ”= 0 from Eq. (1).247

Unless othewise noted, we consider all polynomials to be in SMB representation. When it is248

unclear, we use SMB (�) to denote the SMB form of a polynomial �.249

I Definition 2.2 (Degree). The degree of polynomial �(X) is the largest d =
q

iœ[m] disuch250

that c(d1,...,dn) ”= 0. We denote the degree of � as deg (�).251

CVIT 2016

23:8 Bag PDB Queries

As an example, the degree of the polynomial X2 + 2XY 2 + Y 2 is 3. Product terms in lineage252

arise only from join operations (Fig. 1), so intuitively, the degree of a lineage polynomial253

is analogous to the largest number of joins needed to produce a result tuple. We call a254

polynomial � (X) a c-TIDB-lineage polynomial (or simply lineage polynomial), if there exists255

a RA
+ query Q, c-TIDB D, and result tuple t such that � (X) = �[Q, D, t] (X) .256

2.2 1-BIDB257

A block independent database BIDB D
Õ can viewed as a 1-TIDB D with the added flexibility258

that each t œ D has multiple disjoint alternatives, i.e., all t œ DÕ are partitioned into m259

independent blocks with the condition that tuples t œ bi for i œ [m] are disjoint events. We260

define next a specific construction of BIDB that is useful for our work.261

I Definition 2.3 (1-BIDB). Define a 1-BIDB to be the pair D
Õ =

!r
tœDÕ {0, ct} , P

Õ" , where262

DÕ is the set of possible tuples such that each t œ DÕ has a multiplicity domain of {0, ct},263

with ct œ N. The operation
r

tœDÕ is the direct product of all such multiplicity domain pairs.264

The tuples t œ DÕ are partitioned into m independent blocks bi, i œ [m], of disjoint tuples. P
Õ265

is the probability distribution across all worlds such that, given W œ
r

tœDÕ {0, ct} , t, tÕ
œ266

bi : Pr [Wt, WÕ
t

> 0] = 0.267

We now present a reduction that is useful in deriving our results:268

I Definition 2.4 (c-TIDB reduction). Given c-TIDB D =
1

{0, . . . , c}
D , P

2
, let D

Õ =269
1r

tœDÕ {0, ct}
D

Õ
, P

Õ
2

be the 1-BIDB obtained in the following manner: for each t œ D,270

create block bt =
Ó

Èt, jÍ
jœ[c]

Ô
of disjoint tuples, for all j œ [c].The probability distribution271

P
Õ is the one induced by p =

1
(pt,j)

tœD,jœ[c]

2
and the BIDB disjoint requirement, where272

given any W œ
r

tœDÕ {0, ct}
D

Õ
, Pr [Wt,j , Wt,jÕ > 0] = 0 for any j ”= jÕ

œ [c], such that273

for any W œ
r

tœDÕ {0, ct}
D

Õ
, Pr [W = W] =

r
tœDÕ,jœ[c] Wt,j · j · pt if ’t œ DÕ

” ÷j ”= jÕ
œ274

[c] , Wt,j , Wt,jÕ Ø 1; otherwise Pr [W = W] = 0.4275

For the c-TIDB D, each Xt œ [c], while in the reduced 1-BIDB D
Õ, each Xt,j œ276

{0, 1}. Hence, in the setting of 1-BIDB, we have the following semantics for generating277

lineage polynomials in RA
+ queries: �Õ [fiA (Q) , DÕ, tj] =

q
tjÕ œfiA(Q(DÕ)):tjÕ =tj

�Õ [Q, DÕ, tjÕ],278

�Õ [‡◊ (Q) , DÕ, tj] =
I

◊ = 1 �Õ [Q, DÕ, tj]
◊ = 0 0

, �Õ [Q1onQ2, DÕ, tj] = �Õ #
Q1, DÕ, fiattr(Q1) (tj)

$
·279

�Õ #
Q2, DÕ, fiattr(Q2) (tj)

$
, �Õ [Q1 fi Q2, DÕ, tj] = �Õ [Q1, DÕ, tj] + �Õ [Q2, DÕ, tj], and the base280

case now becomes �Õ [R, DÕ, tj] = j ·Xt,j (c.f. Fig. 1). Then given the disjoint requirement and281

the semantics for constructing the lineage polynomial over a 1-BIDB, �Õ [R, DÕ, t] is of the same282

structure as the reformulated polynomial �R of step i) from Definition 1.3, which then implies283

that Â�Õ is the reduced polynomial that results from step ii) of Definition 1.3, and further284

that Lemma 1.4 immediately follows for 1-BIDB polynomials: EW≥PÕ [�Õ (W)] = Â�Õ (p).285

Let |�| be the number of operators in �.286

I Corollary 2.5. If � is a 1-BIDB lineage polynomial already in SMB, then the expectation287

of �, i.e., E [�] = Â� (p1, . . . , pn) can be computed in O (|�|) time.288

4 We slightly abuse notation here, denoting a world vector as W rather than W to distinguish between
the random variable and the world instance. When there is no ambiguity, we will denote a world vector
as W.

Aaron
Pencil

Aaron
Pencil

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:9

2.2.1 Possible World Semantics289

Queries over probabilistic databases are traditionally viewed as being evaluated using the290

so-called possible world semantics. A general bag-PDB can be defined as the pair D = (�, P)291

where � is the set of possible worlds represented by D. Under the possible world semantics,292

the result of a query Q over an incomplete database � is the set of query answers produced293

by evaluating Q over each possible world Ê œ �: {Q (Ê) : Ê œ �}. The result of a query is294

the pair (Q (Ê) , P
Õ) where P

Õ is a probability distribution that assigns to each possible query295

result the sum of the probabilites of the worlds that produce this answer: Pr [Ê œ �] =296 q
ÊÕœ�,Q(ÊÕ)=Q(Ê) Pr [ÊÕ].297

Aaron says: I am not sure the following paragraph is needed, since the reduction
definition says pretty much the same thing. Unless that definition changes, we can get
rid of this paragraph.

298

Suppose that D is a 1-BIDB. Instead of looking only at the possible worlds of D, one299

can consider all worlds, including those that cannot exist due to, e.g., disjointness. The300

all worlds set can be modeled by W œ {0, 1}
cn, such that Wt,j œ W represents whether301

or not the multiplicity of t is j (here and later, especially in Sec. 4, we will rename the302

variables as X1, . . . , Xn, where n =
q

tœD
|bt|).We can denote a probability distribution303

over all W œ {0, 1}
cn as P

Õ. When P
Õ is the one induced from each pt,j while assigning304

Pr [W] = 0 for any W with Wt,j , Wt,jÕ Ø 1 for j ”= jÕ, we end up with a bijective mapping305

from P to P
Õ, such that each mapping is equivalent, implying the distributions are equivalent.306

Appendix B.2 has more details.307

Recall Fig. 1 again, which defines the lineage polynomial �[Q, D, t] for any RA
+ query. We308

now make a meaningful connection between possible world semantics and world assignments309

on the lineage polynomial.310

I Proposition 2.6 (Expectation of polynomials). Given a bag-PDB D = (�, P), RA
+ query311

Q, and lineage polynomial �[Q, D, t] for arbitrary result tuple t, we have (denoting D as the312

random variable over �): ED≥P [Q(D)(t)] = EW≥P [�[Q, D, t] (W)] .313

A formal proof of Proposition 2.6 is given in Appendix B.3.5 We focus on the problem of314

computing EW≥P [�[Q, D, t] (W)] from now on, assume implicit Q, D, t, and drop them from315

�[Q, D, t] (i.e., � (X) will denote a polynomial).316

2.3 Formalizing Problem 1.6317

Problem 1.6 asks if there exists a linear time approximation algorithm in the size of a given318

circuit C which encodes � (X). In this work we represent lineage polynomials via arithmetic319

circuits [9], a standard way to represent polynomials over fields (particularly in the field of320

algebraic complexity) that we use for polynomials over N in the obvious way. Since we are321

particularly using circuits to model lineage polynomials, we can refer to these circuits as322

lineage circuits. However, when the meaning is clear, we will drop the term lineage and only323

refer to them as circuits.324

I Definition 2.7 (Circuit). A circuit C is a Directed Acyclic Graph (DAG) whose source325

gates (in degree of 0) consist of elements in either N or X = (X1, . . . , Xn). For each result326

5 Although Proposition 2.6 follows, e.g., as an obvious consequence of [28]’s Theorem 7.1, we are unaware
of any formal proof for bag-probabilistic databases.

CVIT 2016

23:10 Bag PDB Queries

tuple there exists one sink gate. The internal gates have binary input and are either sum (+)327

or product (◊) gates. Each gate has the following members: type, partial, input, degree,328

Lweight, and Rweight, where type is the value type {+, ◊, var, num} and input the list of329

inputs. Source gates have an extra member val storing the value. CL (CR) denotes the left330

(right) input of C.331

Aaron says: Does the following matter, i.e., does it point anything out special for our
research? EDIT: Lemma 4.8 does use this (when C is a tree) to answer Problem 1.6
with a yes.

332

When the underlying DAG is a tree (with edges pointing towards the root), the structure333

is an expression tree T. In such a case, the root of T is analogous to the sink of C. The fields334

partial, degree, Lweight, and Rweight are used in the proofs of Appendix D.335

The circuits in Fig. 2 encode their respective polynomials in column �. Note that each336

circuit C encodes a tree, with edges pointing towards the root.337

X 2 Y ≠1

◊ ◊ ◊

+ +

◊

Figure 3 Circuit encoding of (X +
2Y)(2X ≠ Y)

We next formally define the relationship of338

circuits with polynomials. While the definition339

assumes one sink for notational convenience, it340

easily generalizes to the multiple sinks case.341

I Definition 2.8 (poly(·)). Denote poly(C) to342

be the function from the sink of circuit C to343

its corresponding polynomial (in SMB). poly(·)344

is recursively defined on C as follows, with345

addition and multiplication following the standard346

interpretation for polynomials:347

poly(C) =

Y
__]

__[

poly(CL) + poly(CR) if C.type = +
poly(CL) · poly(CR) if C.type = ◊

C.val if C.type = var OR num.

348

C need not encode � (X) in the same, default SMB representation. For instance, C could349

encode the factorized representation (X + 2Y)(2X ≠ Y) of � (X) = 2X2 + 3XY ≠ 2Y 2, as350

shown in Fig. 3, while poly(C) = � (X) is always the equivalent SMB representation.351

I Definition 2.9 (Circuit Set). CSet (� (X)) is the set of all possible circuits C such that352

poly(C) = � (X).353

The circuit of Fig. 3 is an element of CSet
!
2X2 + 3XY ≠ 2Y 2"

. One can think of354

CSet (� (X)) as the infinite set of circuits where for each element C, poly (C) = � (X).355

We are now ready to formally state the final version of Problem 1.6.356

I Definition 2.10 (The Expected Result Multiplicity Problem). Let D be an arbitrary BIDB-357

PDB and X be the set of variables annotating tuples in D�. Fix an RA
+ query Q and a358

result tuple t. The Expected Result Multiplicity Problem is defined as follows:359
360

Input: C œ CSet (� (X)) for � (X) = �[Q, D, t] Output: EW≥P [�[Q, D, t](W)]361

2.4 Relationship to Deterministic Query Runtimes362

In Sec. 1, we introduced the structure Tdet (·) to analyze the runtime complexity of Problem 1.1.363

To decouple our results from specific join algorithms, we first abstract the cost of a join.364

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:11

I Definition 2.11 (Join Cost). Denote by Tjoin(R1, . . . , Rm) the runtime of an algorithm365

for computing the m-ary join R1 ÛÙ . . . ÛÙ Rm. We require only that the algorithm must366

enumerate its output, i.e., that Tjoin(R1, . . . , Rm) Ø |R1 ÛÙ . . . ÛÙ Rm|.367

Worst-case optimal join algorithms [37, 36] and query evaluation via factorized databases [39]368

(as well as work on FAQs [33]) can be modeled as RA
+ queries (though the query size is369

data dependent). For these algorithms, Tjoin(R1, . . . , Rn) is linear in the AGM bound [6].370

Our cost model for general query evaluation follows from the join cost:371

Tdet

!
R, D, c

"
= |D.R| Tdet

!
‡Q, D, c

"
= Tdet

!
Q, D

"
Tdet

!
fiQ, D, c

"
= Tdet

!
Q, D, c

"
+

--Q(D)
--

Tdet

!
Q fi QÕ, D, c

"
= Tdet

!
Q, D, c

"
+ Tdet

!
QÕ, D, c

"
+

--Q
!
D

"-- +
--QÕ !

D
"--

Tdet

!
Q1 ÛÙ . . . ÛÙ Qm, D, c

"
= Tdet

!
Q1, D, c

"
+ . . . + Tdet

!
Qm, D, c

"
+ Tjoin(Q1(D), . . . , Qm(D))

372

373

Under this model, an RA
+ query Q evaluated over database D has runtime O(Tdet

!
Q, D

"
).374

We assume that full table scans are used for every base relation access. We can model index375

scans by treating an index scan query ‡◊(R) as a base relation.376

Finally, Lemma E.2 and Lemma E.3 show that for any RA
+ query Q and D, there exists377

a circuit Cú such that TLC(Q, D, Cú) and |Cú
| are both O(Tdet (Q, D, c)). Recall we assumed378

these two bounds when we moved from Problem 1.5 to Problem 1.6.379

3 Hardness of Exact Computation380

In this section, we will prove the hardness results claimed in Table 1 for a specific (family) of381

hard instance (Q, D) for Problem 1.2 where D is a 1-TIDB. Note that this implies hardness382

for c-TIDBs (c Ø 1), BIDBs and general bag-PDB, showing Problem 1.2 cannot be done in383

O (Tdet (OPT (Q) , D, c)) runtime.384

3.1 Preliminaries385

Our hardness results are based on (exactly) counting the number of (not necessarily induced)386

subgraphs in G isomorphic to H. Let # (G, H) denote this quantity. We can think of H387

as being of constant size and G as growing. In particular, we will consider the problems of388

computing the following counts (given G in its adjacency list representation): # (G,) (the389

number of triangles), # (G,) (the number of 3-matchings), and the latter’s generalization390

#
!
G, · · ·

k
"

(the number of k-matchings). We use Tmatch (k, G) to denote the optimal391

runtime of computing #
!
G, · · ·

k
"

exactly. Our hardness results in Sec. 3.2 are based on392

the following hardness results/conjectures:393

I Theorem 3.1 ([11]). Given positive integer k and undirected graph G = (V, E) with394

no self-loops or parallel edges, Tmatch (k, G) Ø Ê (f(k) · |E|
c) for any function f and fixed395

constant c independent of |E| and k (assuming #W[0] ”= #W[1]).396

I Conjecture 3.2. There exists an absolute constant c0 > 0 such that for every G = (V, E),397

we have Tmatch (k, G) Ø �
!
|E|

c0·k"
for large enough k.398

We note that the above conjecture is somewhat non-standard. In particular, the best known399

algorithm to compute #
!
G, · · ·

k
"

takes time �
!
|V |

k/2"
(i.e. if this is the best algorithm400

then c0 = 1
4) [11]. What the above conjecture is saying is that one can only hope for a401

polynomial improvement over the state of the art algorithm to compute #
!
G, · · ·

k
"
.402

Our hardness result in Section 3.3 is based on the following conjectured hardness result:403

CVIT 2016

23:12 Bag PDB Queries

I Conjecture 3.3. There exists a constant ‘0 > 0 such that given an undirected graph404

G = (V, E), computing # (G,) exactly cannot be done in time o
!
|E|

1+‘0
"
.405

The so called Triangle detection hypothesis (cf. [34]), which states that detecting the presence406

of triangles in G takes time �
!
|E|

4/3"
, implies that in Conjecture 3.3 we can take ‘0 Ø

1
3 .407

All of our hardness results rely on a simple lineage polynomial encoding of the edges408

of a graph. To prove our hardness result, consider a graph G = (V, E), where |E| = m,409

V = [n]. Our lineage polynomial has a variable Xi for every i in [n]. Consider the polynomial410

�G(X) =
q

(i,j)œE

Xi · Xj . The hard polynomial for our problem will be a suitable power k Ø 3411

of the polynomial above:412

I Definition 3.4. For any graph G = (V, E) and k Ø 1, define413

�k

G
(X1, . . . , Xn) =

Q

a
ÿ

(i,j)œE

Xi · Xj

R

b
k

.414

Returning to Fig. 2, it is easy to see that �k

G
(X) is the lineage polynomial whose structure415

mirrors the query Q2 from Sec. 1. Let us alias416

417
SELECT 1 FROM T t1 , R r, T t2418

WHERE t1.city = r.city1 AND t2.city = r.city2419420

as Ri for each i œ [k]. The query Qk then becomes421

422
SELECT COUNT (*) FROM R1 JOIN R2 JOIN· · ·JOIN Rk423424

Consider again the c-TIDB instance D of Fig. 2 and, for our hard instance, let c = 1.425

D generalizes to one compatible to Definition 3.4 as follows. Relation T has n tuples426

corresponding to each vertex for i in [n], each with probability pi and R has tuples427

corresponding to the edges E (each with probability of 1).6 In other words, for this instance428

D contains the set of n unary tuples in T (which corresponds to V) and m binary tuples429

in R (which corresponds to E). Note that this implies that �k

G
is indeed a c-TIDB-lineage430

polynomial.431

Aaron says: @atri, we discussed this last meeting, but I am not sure if we really
pinpointed how we want to treat (in a consistent manner) the runtime of Lemma 3.5
since k is a constant and m is growing. Would it be a good idea to be consistent with
the O‘ notation of Problem 1.5 and say Ok(m)

432

Next, we note that the runtime for answering Qk on deterministic database D, as defined433

above, is O (m) (i.e. deterministic query processing is ‘easy’ for this query):434

I Lemma 3.5. Let Qk and D be as defined above. Then Tdet

!
Qk, D

"
is O (km).435

3.2 Multiple Distinct p Values436

We are now ready to present our main hardness result.437

6 Technically, �k
G(X) should have variables corresponding to tuples in R as well, but since they always

are present with probability 1, we drop those. Our argument also works when all the tuples in R also
are present with probability p but to simplify notation we assign probability 1 to edges.

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:13

I Theorem 3.6. Let p0, . . . , p2k be 2k + 1 distinct values in (0, 1]. Then computing438

Â�k

G
(pi, . . . , pi) (over all i œ [2k + 1] for arbitrary G = (V, E) needs time � (Tmatch (k, G)),439

assuming Tmatch (k, G) Ø Ê (|E|).440

Note that the second row of Table 1 follows from Proposition 2.6, Theorem 3.6, Lemma 3.5,441

and Theorem 3.1 while the third row is proved by Proposition 2.6, Theorem 3.6, Lemma 3.5,442

and Conjecture 3.2. Since Conjecture 3.2 is non-standard, the latter hardness result should443

be interpreted as follows. Any substantial polynomial improvement for Problem 1.2 (over the444

trivial algorithm that converts � into SMB and then uses Corollary 2.5 for EC) would lead445

to an improvement over the state of the art upper bounds on Tmatch (k, G). Finally, note446

that Theorem 3.6 needs one to be able to compute the expected multiplicities over (2k + 1)447

distinct values of pi, each of which corresponds to distinct P (for the same D), which explain448

the ‘Multiple’ entry in the second column in the second and third row in Table 1. Next, we449

argue how to get rid of this latter requirement.450

3.3 Single p value451

While Theorem 3.6 shows that computing Â�(p, . . . , p) for multiple values of p in general is452

hard it does not rule out the possibility that one can compute this value exactly for a fixed453

value of p. Indeed, it is easy to check that one can compute Â�(p, . . . , p) exactly in linear time454

for p œ {0, 1}. Next we show that these two are the only possibilities:455

I Theorem 3.7. Fix p œ (0, 1). Then assuming Conjecture 3.3 is true, any algorithm that456

computes Â�3
G

(p, . . . , p) for arbitrary G = (V, E) exactly has to run in time �
1

|E|
1+‘0

2
, where457

‘0 is as defined in Conjecture 3.3.458

Note that Proposition 2.6 and Theorem 3.7 above imply the hardness result in the first459

row of Table 1. We note that Theorem 3.1 and Conjecture 3.2 (and the lower bounds in the460

second and third row of Table 1) need k to be large enough (in particular, we need a family461

of hard queries). But the above Theorem 3.7 (and the lower bound in first row of Table 1)462

holds for k = 3 (and hence for a fixed query).463

4 1 ± ‘ Approximation Algorithm464

In Sec. 3, we showed that Problem 1.2 cannot be solved in O (Tdet (OPT (Q) , D, c)) runtime.465

With this result, we now design an approximation algorithm for our problem that runs in466

O (|C|) for a very broad class of circuits, (thus a�rming Problem 1.6;see the discussion after467

Lemma 4.8 for more). The following approximation algorithm applies to c-TIDB lineage468

polynomials and general BIDB (over bag-RA
+ query semantics) lineage polynomials in469

practice, where for the latter we note that a 1-TIDB is equivalently a 1-BIDB (blocks are470

size 1) and our experimental results (see Appendix D.10) using queries from the PDBench471

benchmark [1] show a low “ (see Definition 4.6) supporting the notion that our bounds hold472

for general BIDB in practice. Corresponding proofs and pseudocode for all formal statements473

and algorithms can be found in Appendix D.474

4.1 Preliminaries and some more notation475

We now introduce definitions and notation related to circuits and polynomials that we will476

need to state our upper bound results. First we introduce the expansion E(C) of circuit477

C which is used in our auxiliary algorithm for sampling monomials when computing the478

approximation.479

CVIT 2016

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:15

4.2 Our main result506

Algorithm Idea. Our approximation algorithm (ApproximateÂ� pseudo code in Appendix D.1)507

is based on the following observation. Given a lineage polynomial �(X) = poly(C) for circuit508

C over 1-BIDB (recall that all c-TIDB can be reduced to 1-BIDB by Definition 2.4), we have:509

510

Â� (p1, . . . , pn) =
ÿ

(v,c)œE(C)

1isInd(vm) · c ·

Ÿ

Xiœv
pi. (2)511

Given the above, the algorithm is a sampling based algorithm for the above sum: we512

sample (via SampleMonomial) (v, c) œ E(C) with probability proportional to |c| and513

compute Y = 1isInd(vm) ·
r

Xiœv pi. Repeating the sampling an appropriate number of times514

and computing the average of Y gives us our final estimate. OnePass is used to compute the515

sampling probabilities needed in SampleMonomial (details are in Appendix D).516

Runtime analysis. We can argue the following runtime for the algorithm outlined above:517

I Theorem 4.7. Let C be an arbitrary 1-BIDB circuit, define �(X) = poly(C), let k =518

deg(C), and let “ = “(C). Further let it be the case that pi Ø p0 for all i œ [n]. Then an519

estimate E of Â�(p1, . . . , pn) satisfying520

Pr
1---E ≠ Â�(p1, . . . , pn)

--- > ‘Õ
· Â�(p1, . . . , pn)

2
Æ ” (3)521

can be computed in time522

O

AA
size(C) +

log 1
”

· k · log k · depth(C))
(‘Õ)2

· (1 ≠ “)2 · p2k
0

B
· M (log (|C| (1, . . . , 1)), log (size(C)))

B
. (4)523

In particular, if p0 > 0 and “ < 1 are absolute constants then the above runtime simplifies to524

Ok

11
1

(‘Õ)2 · size(C) · log 1
”

2
· M (log (|C| (1, . . . , 1)), log (size(C)))

2
.525

The restriction on “ is satisfied by any 1-TIDB (where “ = 0 in the equivalent 1-BIDB526

of Definition 2.4) as well as for all three queries of the PDBench BIDB benchmark (see527

Appendix D.10 for experimental results).528

We briefly connect the runtime in Eq. (4) to the algorithm outline earlier (where we529

ignore the dependence on M (·, ·), which is needed to handle the cost of arithmetic operations530

over integers). The size(C) comes from the time take to run OnePass once (OnePass531

essentially computes |C| (1, . . . , 1) using the natural circuit evaluation algorithm on C). We532

make log 1
”

(‘Õ)2·(1≠“)2·p2k
0

many calls to SampleMonomial (each of which essentially traces O(k)533

random sink to source paths in C all of which by definition have length at most depth(C)).534

Finally, we address the M (log (|C| (1, . . . , 1)), log (size(C))) term in the runtime.535

I Lemma 4.8. For any BIDB circuit C with deg(C) = k, we have |C| (1, . . . , 1) Æ 22k·depth(C).536

Further, if C is a tree, then we have |C| (1, . . . , 1) Æ size(C)O(k).537

Note that the above implies that with the assumption p0 > 0 and “ < 1 are absolute538

constants from Theorem 4.7, then the runtime there simplifies to Ok

1
1

(‘Õ)2 · size(C)2
· log 1

”

2
539

for general circuits C. If C is a tree, then the runtime simplifies to Ok

1
1

(‘Õ)2 · size(C) · log 1
”

2
,540

which then answers Problem 1.6 with yes for such circuits.541

CVIT 2016

23:16 Bag PDB Queries

Aaron says: Is it standard to assume that in the asymptotic notation above, ‘ and ”
are constant? Otherwise this does not uphold Problem 1.6.

542

Finally, note that by Proposition E.1 and Lemma E.2 for any RA
+ query Q, there exists a543

circuit Cú for �[Q, D, t] such that depth(Cú) Æ O|Q|(log n) and size(C) Æ Ok (Tdet (Q, D�)).544

Using this along with Lemma 4.8, Theorem 4.7 and the fact that n Æ Tdet (Q, D�), we answer545

Problem 1.5 in the a�rmative as follows:546

I Corollary 4.9. Let Q be an RA
+ query and D be a 1-BIDB with p0 > 0 and “ < 1 (where547

p0, “ as in Theorem 4.7) are absolute constants. Let �(X) = �[Q, D, t] for any result tuple548

t with deg(�) = k. Then one can compute an approximation satisfying Eq. (3) in time549

Ok,|Q|,‘Õ,” (Tdet (Q, D, c)) (given Q, D and pi for each i œ [n] that defines P).550

Aaron says: What is |Q|? Isn’t that just k?
551

If we want to approximate the expected multiplicities of all Z = O(nk) result tuples552

t simultaneously, we just need to run the above result with ” replaced by ”

Z
. Note this553

increases the runtime by only a logarithmic factor.554

5 Related Work555

Probabilistic Databases (PDBs) have been studied predominantly for set semantics.556

Approaches for probabilistic query processing (i.e., computing marginal probabilities of557

tuples), fall into two broad categories. Intensional (or grounded) query evaluation computes558

the lineage of a tuple and then the probability of the lineage formula. It has been shown559

that computing the marginal probability of a tuple is #P-hard [46] (by reduction from560

weighted model counting). The second category, extensional query evaluation, is in PTIME,561

but is limited to certain classes of queries. Dalvi et al. [14] and Olteanu et al. [21] proved562

dichotomies for UCQs and two classes of queries with negation, respectively. Amarilli et al.563

investigated tractable classes of databases for more complex queries [3]. Another line of work564

studies which structural properties of lineage formulas lead to tractable cases [31, 41, 44]. In565

this paper we focus on intensional query evaluation with polynomials.566

Many data models have been proposed for encoding PDBs more compactly than as sets of567

possible worlds. These include tuple-independent databases [47] (TIDBs), block-independent568

databases (BIDBs) [42], and PC-tables [26]. Fink et al. [19] study aggregate queries over569

a probabilistic version of the extension of K-relations for aggregate queries proposed in [4]570

(pvc-tables) that supports bags, and has runtime complexity linear in the size of the lineage.571

However, this lineage is encoded as a tree; the size (and thus the runtime) are still superlinear572

in Tdet (Q, D, c). The runtime bound is also limited to a specific class of (hierarchical) queries,573

suggesting the possibility of a generalization of [14]’s dichotomy result to bag-PDBs.574

Several techniques for approximating tuple probabilities have been proposed in related575

work [20, 15, 38, 12], relying on Monte Carlo sampling, e.g., [12], or a branch-and-bound576

paradigm [38]. Our approximation algorithm is also based on sampling.577

Compressed Encodings are used for Boolean formulas (e.g, various types of circuits578

including OBDDs [29]) and polynomials (e.g., factorizations [39]) some of which have been579

utilized for probabilistic query processing, e.g., [29]. Compact representations for which580

probabilities can be computed in linear time include OBDDs, SDDs, d-DNNF, and FBDD.581

[16] studies circuits for absorptive semirings while [45] studies circuits that include negation582

(expressed as the monus operation). Algebraic Decision Diagrams [7] (ADDs) generalize583

BDDs to variables with more than two values. Chen et al. [10] introduced the generalized584

disjunctive normal form. Appendix H covers more related work on fine-grained complexity.585

