 an equivalent deterministic query. If this is true, then this would open up the way for deployment of c-TIDBs in practice. To analyze this question we denote by $T^{*}(Q, \mathcal{D})$ the 6 optimal runtime complexity of computing Problem 1.1 over c-TIDB \mathcal{D}.

Table 1 Our lower bounds for a specific hard query Q parameterized by k.For $\mathcal{D}=$ $\left\{\{0, \ldots, c\}^{D}, \mathcal{P}\right\}$ those with 'Multiple' in the second column need the algorithm to be able to handle multiple \mathcal{P}, i.e. probability distributions (for a given D). The last column states the hardness assumptions that imply the lower bounds in the first column $\left(\epsilon_{o}, C_{0}, c_{0}\right.$ are constants that are independent of k).
${ }_{71}$ Our lower bound results. Our question is whether or not it is always true that $T^{*}(Q, \mathcal{D}) \leq$ $T_{\text {det }}(\operatorname{OPT}(Q), D, c)$. Unfortunately this is not the case. Table 1 shows our results.
${ }^{1}$ A query Q is an $\mathcal{R} \mathcal{A}^{+}$query if it is composed entirely of one or more of the positive relational operators $\{\sigma, \pi, \bowtie, \cup\}$.

- Problem 1.6. Given one circuit C that encodes $\Phi[Q, D, t]$ for all result tuples t (one sink per t) for bag-PDB \mathcal{D} and $\mathcal{R} \mathcal{A}^{+}$query Q, does there exist an algorithm that computes a $(1 \pm \epsilon)$-approximation of $\mathbb{E} \mathbf{W} \sim \mathcal{P}[Q(\mathbf{W})(t)]$ (for all result tuples t) in $O(|C|)$ time?

For an upper bound on approximating the expected count, it is easy to check that if all the probabilities are constant then $\Phi\left(p_{1}, \ldots, p_{n}\right)$ (i.e. evaluating the original lineage polynomial over the probability values) is a constant factor approximation. For example, using Q^{2} from above, using p_{A} to denote $\operatorname{Pr}[A=1]$ (and similarly for the other variables), we can see that

$$
\begin{aligned}
\Phi_{1}^{2}(\mathbf{p}) & =p_{A}^{2} p_{X}^{2} p_{B}^{2}+p_{B}^{2} p_{Y}^{2} p_{E}^{2}+p_{B}^{2} p_{Z}^{2} p_{C}^{2}+2 p_{A} p_{X} p_{B}^{2} p_{Y} p_{E}+2 p_{A} p_{X} p_{B}^{2} p_{Z} p_{C}+2 p_{B}^{2} p_{Y} p_{E} p_{Z} p_{C} \\
& \leq p_{A} p_{X} p_{B}+p_{B} p_{Y} p_{E}+p_{B} p_{Z} p_{C}+2 p_{A} p_{X} p_{B} p_{Y} p_{E}+2 p_{A} p_{X} p_{B} p_{Z} p_{C}+2 p_{B} p_{Y} p_{E} p_{Z} p_{C}=\widetilde{\Phi}_{1}^{2}(\mathbf{p})
\end{aligned}
$$

If we assume that all seven probability values are at least $p_{0}>0$, we get that $\Phi_{1}^{2}(\mathbf{p})$ is in the range $\left[\left(p_{0}\right)^{3} \cdot \widetilde{\Phi}_{1}^{2}(\mathbf{p}), \widetilde{\Phi}_{1}^{2}(\mathbf{p})\right]$. In sec. 4 we demonstrate that a $(1 \pm \epsilon)$ (multiplicative) approximation with competitive performance is achievable. To get an ($1 \pm \epsilon$)-multiplicative approximation and solve Problem 1.6, using C we uniformly sample monomials from the equivalent SMB representation of Φ (without materializing the SMB representation) and 'adjust' their contribution to $\widetilde{\Phi}(\cdot)$.

Applications. Recent work in heuristic data cleaning [49, 43, 40, 8, 43] emits a PDB when insufficient data exists to select the 'correct' data repair. Probabilistic data cleaning is a crucial innovation, as the alternative is to arbitrarily select one repair and 'hope' that queries receive meaningful results. Although PDB queries instead convey the trustworthiness of results [35], they are impractically slow [18, 17], even in approximation (see Appendix G). Bags, as we consider, are sufficient for production use, where bag-relational algebra is already the default for performance reasons. Our results show that bag-PDBs can be competitive, laying the groundwork for probabilistic functionality in production database engines.

Paper Organization. We present relevant background and notation in Sec. 2. We then prove our main hardness results in Sec. 3 and present our approximation algorithm in Sec. 4. Finally, we discuss related work in Sec. 5 and conclude in Sec. 6. All proofs are in the appendix.

2 Background and Notation

2.1 Polynomial Definition and Terminology

A polynomial over a set of variables \mathbf{S} with $|S|=m$ and individual degree $B<\infty$ is formally defined as (where $c_{\mathrm{d}} \in \mathbb{N}$):

$$
\begin{equation*}
\Phi\left(S_{1}, \ldots, S_{m}\right)=\sum_{\mathbf{d} \in\{0, \ldots, B\}^{D}} c_{\mathbf{d}} \cdot \prod_{i \in[m]} S_{i}^{d_{i}} \tag{1}
\end{equation*}
$$

- Definition 2.1 (Stfondard Monomial Basis). The term $\prod_{i \in[m}\left(S_{i}^{d_{i}}\right.$ in Eq. (1) is a monomial. A polynomial $\Phi(\mathbf{X})$ is in standard monomial basis (SMB) when we keep only the terms with $c_{\mathbf{d}} \neq 0$ from $E q$. (1).

Unless othewise noted, we consider all polynomials to be in SMB representation. When it is unclear, we use SMB (Φ) to denote the SMB form of a polynomial Φ.
Definition 2.2 (Degree). The degree of polynomial $\Phi(\mathbf{X})$ is the largest $\sum_{i \in[m]} d_{i}$ such that $c_{\left(d_{1}, \ldots, d_{n}\right)} \neq 0$. We denote the degree of Φ as $\operatorname{deg}(\Phi)$.

CVIT 2016

[^0]tuple there exists one sink gate. The internal gates have binary input and are either sum (+) or product (\times) gates. Each gate has the following members: type, partial, input, degree, Lweight, and Rweight, where type is the value type $\{+, \times, V A R, N U M\}$ and input the list of inputs. Source gates have an extra member val storing the value. $C_{L}\left(C_{R}\right)$ denotes the left (right) input of C.

Aaron says: Does the following matter, ie., does it point anything out special for our research? EDIT: Lemma 4.8 does use this (when C is a tree) to answer Problem 1.6 with a yes.

When the underlying DAG is a tree (with edges pointing towards the root), the structure is an expression tree T . In such a case, the root of T is analogous to the sink of C . The fields partial, degree, Lweight, and Rweight are used in the proofs of Appendix D.

The circuits in Fig. 2 encode their respective polynomials in column Φ. Note that each circuit C encodes a tree, with edges pointing towards the root.

We next formally define the relationship of
 circuits with polynomials. While the definition assumes one sink for notational convenience, it easily generalizes to the multiple sinks case.
maps Definition $2.8(\operatorname{POLY}(\cdot))$. Bet $\operatorname{POLY}(C)$ the fume the sink of circuit C to its corresponding polynomial (in SMB). $\operatorname{POLY}(\cdot)$ is recursively defined on C as follows, with
Figure 3 Circuit encoding of ($X+$ addition and multiplication following the standard $2 Y)(2 X-Y)$ interpretation for polynomials:

$$
\operatorname{POLY}(C)= \begin{cases}\operatorname{POLY}\left(C_{L}\right)+\operatorname{POLY}\left(C_{R}\right) & \text { if C.type }=+ \\ \operatorname{POLY}\left(C_{L}\right) \cdot \operatorname{POLY}\left(C_{R}\right) & \text { if C.type }=\times \\ \operatorname{C.val} & \text { if C.type }=\operatorname{VAR} \text { OR NUM. }\end{cases}
$$

C need not encode $\Phi(\mathbf{X})$ in the same, default SMB representation. For instance, C could encode the factorized representation $(X+2 Y)(2 X-Y)$ of $\Phi(\mathbf{X})=2 X^{2}+3 X Y-2 Y^{2}$, as shown in Fig. 3, while $\operatorname{POLY}(C)=\Phi(\mathbf{X})$ is always the equivalent SMB representation.

- Definition 2.9 (Circuit Set). $\operatorname{CSet}(\Phi(\mathbf{X}))$ is the set of all possible circuits C such that $\operatorname{POLY}(C)=\Phi(\mathbf{X})$.

The circuit of Fig. 3 is an element of $\operatorname{CSet}\left(2 X^{2}+3 X Y-2 Y^{2}\right)$. One can think of $\operatorname{CSet}(\Phi(\mathbf{X}))$ as the infinite set of circuits where for each element C, POLY $(\mathbf{C})=\Phi(\mathbf{X})$.

We are now ready to formally state the final version of Problem 1.6.

- Definition 2.10 (The Expected Result Multiplicity Problem). Let \mathcal{D} be an arbitrary BIDB$P D B$ and \mathbf{X} be the set of variables annotating tuples in D_{Ω}. Fix an $\mathcal{R} \mathcal{A}^{+}$query Q and a result tuple t. The Expected Result Multiplicity Problem is defined as follows:

Input: $C \in \operatorname{CSet}(\Phi(\mathbf{X}))$ for $\Phi(\mathbf{X})=\Phi[Q, D, t] \quad$ Output: $\mathbb{E}_{\mathbf{W} \sim \mathcal{P}}[\Phi[Q, D, t](\mathbf{W})]$

2.4 Relationship to Deterministic Query Runtime

In Sec. 1, we introduced the structure $T_{\text {let }}(\cdot)$ to analyze the runtime complexity of Problem 1.1. To decouple our results from specific join algorithms, we first abstract the cost of a join.

- Definition 2.11 (Join Cost). Denote by $T_{\text {join }}\left(R_{1}, \ldots, R_{m}\right)$ the runtime of an algorithm for computing the m-arg join $R_{1} \bowtie \ldots \bowtie R_{m}$. We require only that the algorithm must enumerate its output, ie., that $T_{\text {join }}\left(R_{1}, \ldots, R_{m}\right) \geq \mid R_{1} \bowtie \ldots \infty R_{m} l_{\text {lot }}^{\infty}$ en hare'

Worst-case optimal join algorithms [37,36] and query evaluation via factorized databases [39] (as well as work on FAQs [33]) can be modeled as $\mathcal{R} \mathcal{A}^{+}$queries (though the query size is data dependent). For these algorithms, $T_{\text {join }}\left(R_{1}, \ldots, R_{n}\right)$ is linear in the $A G M$ bound [6].

$$
\begin{aligned}
& \quad \begin{array}{l}
T_{\text {det }}(R, \bar{D}, c)=|\bar{D} \cdot R| \quad T_{\text {let }}(\sigma Q, \bar{D}, c)=T_{\text {let }}(Q, \bar{D}) \quad T_{\text {let }}(\pi Q, \bar{D}, c)=T_{\text {let }}(Q, \bar{D}, c)+|Q(\bar{D})| \\
\quad T_{\text {let }}\left(Q \cup Q^{\prime}, \bar{D}, c\right)=T_{\text {let }}(Q, \bar{D}, c)+T_{\text {let }}\left(Q^{\prime}, \bar{D}, c\right)+|Q(\bar{D})|+\left|Q^{\prime}(\bar{D})\right| \\
T_{\text {det }}\left(Q_{1} \bowtie \ldots \bowtie Q_{m}, \bar{D}, c\right)=T_{\text {let }}\left(Q_{1}, \bar{D}, c\right)+\ldots+T_{\text {let }}\left(Q_{m}, \bar{D}, c\right)+T_{\text {join }}\left(Q_{1}(\bar{D}), \ldots, Q_{m}(\bar{D})\right) \\
\text { Under this model, an } \mathcal{R} \mathcal{A}^{+} \text {query } Q \text { evaluated over database } \bar{D} \text { has runtime } O\left(T_{\text {let }}(Q, \bar{D}) .\right. \\
\text { We assume that full table scans are used for every base relation access. We can model index } \\
\text { scans by treating an index scan query } \sigma_{\theta}(R) \text { as a base relation. } \\
\text { Finally, Lemma E. } 2 \text { and Lemma E. show that for any } \mathcal{R} \mathcal{A}^{+} \text {query } Q \text { and } D \text {, there exists } \\
\text { a circuit } \mathrm{C}^{*} \text { such that } T_{L C}\left(Q, D, \mathrm{C}^{*}\right) \text { and }\left|\mathrm{C}^{*}\right| \text { are both } O\left(T_{\text {let }}(D, c)\right) \text {. Recall we assumed } \\
\text { these two bounds when we moved from Problem 1.5 to Problent.6. }
\end{array} \\
& \mathbf{3} \text { Hardness of Exact Computation }
\end{aligned}
$$

In this section, we will prove the hardness results claimed in Table 1 for a specific (family) of hard instance (Q, \mathcal{D}) for Problem 1.2 where \mathcal{D} is a 1-TIDB. Note that this implies hardness for c-TIDBs $(c \geq 1)$, BIDEs and general bag-PDB, showing Problem 1.2 cannot be done in $O\left(T_{\text {det }}(\operatorname{OPT}(Q), D, c)\right)$ runtime.

3.1 Preliminaries

Our hardness results are based on (exactly) counting the number of (not necessarily induced) subgraphs in G isomorphic to H. Let $\#(G, H)$ denote this quantity. We can think of H as being of constant size and G as growing. In particular, we will consider the problems of computing the following counts (given G in its adjacency list representation): \# ($G, \&$) (the number of triangles), \# (G, $\S \circ \%$) (the number of 3 -matchings), and the latter's generalization $\#\left(G, \AA \cdots \AA^{k}\right)$ (the number of k-matchings). We use $T_{\text {match }}(k, G)$ to denote the optimal runtime of computing $\#\left(G, \xi_{\cdots} \S^{k}\right)$ exactly. Our hardness results in Sec. 3.2 are based on the following hardness results/conjectures:

- Theorem 3.1 ([11]). Given positive integer k and undirected graph $G=(V, E)$ with
 no self-loops or parallel edges, $T_{\text {match }}(k, G) \geq \omega\left(f(k) \cdot|E|^{c}\right)$ for any function f and fixed constant c independent of $|E|$ and k (assuming $\# \mathrm{~W}[0] \neq \# \mathrm{~W}[1]$).
- Conjecture 3.2. There exists an absolute constant $c_{0}>0$ such that for every $G=(V, E)$, we have $T_{\text {match }}(k, G) \geq \Omega\left(|E|^{c_{0} \cdot k}\right)$ for large enough k.

We note that the above conjecture is somewhat non-standard. In particular, the best known algorithm to compute $\#\left(G, \xi \cdots \xi^{k}\right)$ takes time $\Omega\left(|V|^{k / 2}\right)$ (i.e. if this is the best algorithm then $c_{0}=\frac{1}{4}$) [11]. What the above conjecture is saying is that one can only hope for a polynomial improvement over the state of the art algorithm to compute $\#\left(G, \S_{\|} \S^{k}\right)$.

Our hardness result in Section 3.3 is based on the following conjectured hardness result:

- Conjecture 3.3. There exists a constant $\epsilon_{0}>0$ such that giver an undirected graph $G=(V, E)$, computing $\#(G, \&)$ exactly cannot be done in time o $\left(|E|^{1+\epsilon_{0}}\right)$.

The so called Triangle detection hypothesis (cf. [34]), which states that detecting the presence of triangles in G takes time $\Omega\left(|E|^{4 / 3}\right)$, implies that in Conjecture 3.3 we can take $\epsilon_{0} \geq \frac{1}{3}$.

All of our hardness results rely on a simple lineage polynomial encoding of the edges of a graph. To prove our hardness result, consider a graph $G=(V, E)$, where $|E|=m$, $V=[n]$. Our lineage polynomial has a variable X_{i} for every i in $[n]$. Consider the polynomial $\Phi_{G}(\mathbf{X})=\sum_{(i, j) \in E} X_{i} \cdot X_{j}$. The hard polynomial for our problem will be a suitable power $k \geq 3$ of the polynomial above:

- Definition 3.4. For any graph $G=(V, E)$ and $k \geq 1$, define

Returning to Fig. 2, it is easy to see that $\Phi_{G}^{k}(\mathbf{X})$ is the lineage polynomial whose structure mirrors the query Q_{2} from Sec. 1. Let us alias

SELECT 1 FROM $T t_{1}$, $\mathrm{r}, \mathrm{T} t_{2}$

```
WHERE }\mp@subsup{t}{1}{}\mathrm{ .city = r.city1 AND t2.city = r.city2
```

as R_{i} for each $i \in[k]$. The query Q^{k} then becomes

```
SELECT COUNT(*) FROM R R JOIN }\mp@subsup{R}{2}{}\mathrm{ JOIN...JOIN }\mp@subsup{R}{k}{
```

Consider again the c-TIDB instance \mathcal{D} of Fig. 2 and, for our hard instance, let $c{ }_{=}{ }_{1}$ \mathcal{D} generalizes to one compatible to Definition 3.4 as follows. Refatigh T has n tuples corresponding to the edges E (each with probability of 1). ${ }^{6}$ In other words, for this instance D contains the set of n unary tuples in T (which corresponds to V) and m binary tuples in R (which corresponds to E). Note that this implies that Φ_{G}^{k} is indeed a c-HDB-lineage polynomial.
Aaron says: @atri, we discussed this last meeting, but I am not sure if we really pinpointed how we want to treat (in a consistent manner) the runtime of Lemma 3.5 since k is a constant and m is growing. Would it be a good idea to be consistent with the O_{ϵ} notation of Problem 1.5 and say $O_{k}(m)$

Next, we note that the runtime for answering Q^{k} on deterministic database D, as defined above, is $O(m)$ (i.e. deterministic query processing is 'easy' for this query):

- Lemma 3.5. Let Q^{k} and D be as defined above. Then $T_{\text {let }}\left(Q^{k}, D\right)$ is $O(k m)$.

3.2 Multiple Distinct p Values

We are now ready to present our main hardness result.

[^1]- Theorem 3.6. Let $p_{0}, \ldots, p_{2 k}$ be $2 k+1$ distinct values in $(0,1]$. Then computing $\widetilde{\Phi}_{G}^{k}\left(p_{i}, \ldots, p_{i}\right)$ (over all $i \in[2 k+1]$ for arbitrary $G=(V, E)$ needs time $\Omega\left(T_{\text {match }}(k, G)\right.$), assuming $T_{\text {match }}(k, G) \geq \omega(|E|)$.

Note that the second row of Table 1 follows from Proposition 2.6, Theorem 3.6, Lemma 3.5, and Theorem 3.1 while the third row is proved by Proposition 2.6, Theorem 3.6, Lemma 3.5, and Conjecture 3.2. Since Conjecture 3.2 is non-standard, the latter hardness result should be interpreted as follows. Any substantial polynomial improvement for Problem 1.2 (over the trivial algorithm that converts Φ into SMB and then uses Corollary 2.5 for EC) would lead to an improvement over the state of the art upper bounds on $T_{\text {match }}(k, G)$. Finally, note that Theorem 3.6 needs one to be able to compute the expected multiplicities over $(2 k+1)$ distinct values of p_{i}, each of which corresponds to distinct \mathcal{P} (for the same D), which explain the 'Multiple' entry in the second column in the second and third row in Table 1. Next, we argue how to get rid of this latter requirement.

3.3 Single p value

While Theorem 3.6 shows that computing $\widetilde{\Phi}(p, \ldots, p)$ for multiple values of p in general is hard it does not rule out the possibility that one can compute this value exactly for a fixed value of p. Indeed, it is easy to check that one can compute $\widetilde{\Phi}(p, \ldots, p)$ exactly in linear time for $p \in\{0,1\}$. Next we show that these two are the only possibilities:

- Theorem 3.7. Fix $p \in(0,1)$. Then assuming Conjecture 3.3 is true, any algorithm that computes $\widetilde{\Phi}_{G}^{3}(p, \ldots, p)$ for arbitrary $G=(V, E)$ exactly has to run in time $\Omega\left(|E|^{1+\epsilon_{0}}\right)$, where ϵ_{0} is as defined in Conjecture 3.3.

Note that Proposition 2.6 and Theorem 3.7 above imply the hardness result in the first row of Table 1. We note that Theorem 3.1 and Conjecture 3.2 (and the lower bounds in the second and third row of Table 1) need k to be large enough (in particular, we need a family of hard queries). But the above Theorem 3.7 (and the lower bound in first row of Table 1) holds for $k=3$ (and hence for a fixed query).

In Sec. 3, we showed that Problem 1.2 cannot be solved in $Q\left(T_{\text {let }}(\right.$ OPT $\left.(Q), D, c)\right)$ runtime. With this result, we now design an approximation algorithm for our problem that runs in $O(|\mathrm{C}|)$ for a very broad class of circuits, (thus affirming Problem 1.6 see the discussion after Lemma 4.8 for more). The following approximation algorithm applies to c-TIDB lineage polynomials and general BIDB (over bag- $\mathcal{R} \mathcal{A}^{+}$query semantics) lineage polynomials in practice, where for the latter we note that a 1-TIDB is equivalently a 1-BIDB (blocks are size 1) and our experimental results (see Appendix D.10) using queries from the PDBench benchmark [1] show a low γ (see Definition 4.6) supporting the notion that our bounds hold for general BIDB in practice. Corresponding proofs and pseudocode for all formal statements and algorithms can be found in Appendix D.

4.1 Preliminaries and some more notation

We now introduce definitions and notation related to circuits and polynomials that we will need to state our upper bound results. First we introduce the expansion E(C) of circuit C which is used in our auxiliary algorithm for sampling monomials when computing the approximation.

Did not

CVIT 2016

$41 \pm \in$ Approximation Algorithm

 $\cdot u \sqrt{e}$

S. Fens, B. Glavic, A. Huber, O. Kennedy, A. Rudra

4.2 Our main result

Algorithm Idea. Our approximation algorithm (Approximate $\widetilde{\Phi}$ pseudo code in Appendix D.1) is based on the following observation. Given a lineage polynomial $\Phi(\mathbf{X})=\operatorname{POLY}(\mathrm{C})$ for circuit C over 1-BIDB (recall that all c-TIDB can be reduced to 1-BIDB by Definition 2.4), we have:

$$
\begin{equation*}
\widetilde{\Phi}\left(p_{1}, \ldots, p_{n}\right)=\sum_{(\mathrm{v}, \mathrm{c}) \in \mathrm{E}(\mathrm{C})} \mathbb{1}_{\mathrm{ISIND}\left(\mathrm{v}_{\mathrm{m}}\right)} \cdot \mathrm{c} \cdot \prod_{X_{i} \in \mathrm{v}} p_{i} . \tag{2}
\end{equation*}
$$

Given the above, the algorithm is a sampling based algorithm for the above sum: we sample (via SampleMonomial) (v, c) $\in \mathrm{E}(\mathrm{C})$ with probability proportional to $|\mathrm{c}|$ and compute $\mathrm{Y}=\mathbb{1}_{\mathrm{ISIND}\left(\mathrm{v}_{\mathrm{m}}\right)} \cdot \prod_{X_{i} \in \mathrm{v}} p_{i}$. Repeating the sampling an appropriate number of times and computing the average of Y gives us our final estimate. OnePass is used to compute the sampling probabilities needed in SampleMonomial (details are in Appendix D).
Runtime analysis. We can argue the following runtime for the algorithm outlined above:

- Theorem 4.7. Let C be an arbitrary 1-BIDB circuit, define $\Phi(\mathbf{X})=\operatorname{POLY}(C)$, let $k=$ $\operatorname{DEG}(C)$, and let $\gamma=\gamma(C)$. Further let it be the case that $p_{i} \geq p_{0}$ for all $i \in[n]$. Then an estimate \mathcal{E} of $\widetilde{\Phi}\left(p_{1}, \ldots, p_{n}\right)$ satisfying

$$
\begin{equation*}
\operatorname{Pr}\left(\left|\mathcal{E}-\widetilde{\Phi}\left(p_{1}, \ldots, p_{n}\right)\right|>\epsilon^{\prime} \cdot \widetilde{\Phi}\left(p_{1}, \ldots, p_{n}\right)\right) \leq \delta \tag{3}
\end{equation*}
$$

can be computed in time

$$
\begin{equation*}
O\left(\left(\operatorname{SIZE}(C)+\frac{\left.\log \frac{1}{\delta} \cdot k \cdot \log k \cdot \operatorname{DEPTH}(C)\right)}{\left(\epsilon^{\prime}\right)^{2} \cdot(1-\gamma)^{2} \cdot p_{0}^{2 k}}\right) \cdot \overline{\mathcal{M}}(\log (|C|(1, \ldots, 1)), \log (\operatorname{SIZE}(C)))\right) \tag{4}
\end{equation*}
$$

In particular, if $p_{0}>0$ and $\gamma<1$ are absolute constants then the above runtime simplifies to $O_{k}\left(\left(\frac{1}{\left(\epsilon^{\prime}\right)^{2}} \cdot \operatorname{SIZE}(C) \cdot \log \frac{1}{\delta}\right) \cdot \overline{\mathcal{M}}(\log (|C|(1, \ldots, 1)), \log (\operatorname{SIZE}(C)))\right)$.

The restriction on γ is satisfied by any 1-TIDB (where $\gamma=0$ in the equivalent 1-BIDB of Definition 2.4) as well as for all three queries of the PDBench BIDB benchmark (see Appendix D. 10 for experimental results).

We briefly connect the runtime in Eq. (4) to the algorithm outline earlier (where we ignore the dependence on $\overline{\mathcal{M}}(\cdot, \cdot)$, which is needed to handle the cost of arithmetic operations over integers). The size (C) comes from the time take to run OnePass once (OnePass essentially computes $|\mathrm{C}|(1, \ldots, 1)$ using the natural circuit evaluation algorithm on C$)$. We make $\frac{\log \frac{1}{\delta}}{\left(\epsilon^{\prime}\right)^{2} \cdot(1-\gamma)^{2} \cdot p_{0}^{2 k}}$ many calls to SampleMonomial (each of which essentially traces $O(k)$ random sink to source paths in C all of which by definition have length at most $\operatorname{DEPTH}(\mathrm{C})$).

Finally, we address the $\overline{\mathcal{M}}(\log (|\mathrm{C}|(1, \ldots, 1)), \log (\operatorname{SIZE}(\mathrm{C})))$ term in the runtime.

- Lemma 4.8. For any BIDB circuit C with $\operatorname{DEG}(C)=k$, we have $|C|(1, \ldots, 1) \leq 2^{2^{k} \cdot \operatorname{DEPTH}(C)}$. Further, if C is a tree, then we have $|C|(1, \ldots, 1) \leq \operatorname{SIZE}(C)^{O(k)}$.

Note that the above implies that with the assumption $p_{0}>0$ and $\gamma<1$ are absolute constants from Theorem 4.7, then the runtime there simplifies to $O_{k}\left(\frac{1}{\left(\epsilon^{\prime}\right)^{2}} \cdot \operatorname{SIZE}(\mathrm{C})^{2} \cdot \log \frac{1}{\delta}\right)$ for general circuits C. If C is a tree, then the runtime simplifies to $O_{k}\left(\frac{1}{\left(\epsilon^{\prime}\right)^{2}} \cdot \operatorname{SIZE}(\mathrm{C}) \cdot \log \frac{1}{\delta}\right)$, which then answers Problem 1.6 with yes for such circuits.

Aaron says: Is it standard to assume that in the asymptotic notation above ϵ and δ are constant? Otherwise this does not uphold Problem 1.6.

Finally, note that by Proposition E. 1 and Lemma E. 2 for any $\mathcal{R} \mathcal{A}^{+}$query Q, there exists a circuit C^{*} for $\Phi[Q, D, t]$ such that $\operatorname{DEPTH}\left(\mathrm{C}^{*}\right) \leq O_{|Q|}(\log n)$ and $\operatorname{sIzE}(\mathrm{C}) \leq O_{k}\left(T_{\text {det }}\left(Q, D_{\Omega}\right)\right)$. Using this along with Lemma 4.8, Theorem 4.7 and the fact that $n \leq T_{\text {jet }}\left(Q, D_{\Omega}\right)$, we answer Problem 1.5 in the affirmative as follows:

- Corollary 4.9. Let Q be an $\mathcal{R} \mathcal{A}^{+}$query and \mathcal{D} be a 1-BIDB with $p_{0}>0$ and $\gamma<1$ (where p_{0}, γ as in Theorem 4.7) are absolute constants. Let $\Phi(\mathbf{X})=\Phi[Q, D, t]$ for any result tuple t with $\operatorname{deg}(\Phi)=k$. Then bonk can compute an approximation satisfying Eq. (3) in time $O_{k,|Q|, \epsilon^{\prime}, \delta}\left(T_{\text {det }}(Q, D, c)\right.$) (rider Q, D and p_{i} for each $i \in[n]$ that defines $\left.\mathcal{P}\right)$.

Aaron says: What is $|Q|$? Is 1 't that just k ?

If we want to approximate the expected multiplicities of all $Z=O\left(n^{k}\right)$ result tuples t simultaneously, we just need to run the above result with δ replaced by $\frac{\delta}{Z}$. Note this increases the runtime by only a logarithmic factor.

5 Related Work

Probabilistic Databases (PBs) have been studied predominantly for set semantics. Approaches for probabilistic query processing (ie., computing marginal probabilities of tuples), fall into two broad categories. Intensional (or grounded) query evaluation computes the lineage of a tuple and then the probability of the lineage formula. It has been shown that computing the marginal probability of a tuple is \#P-hard [46] (by reduction from weighted model counting). The second category, extensional query evaluation, is in PTIME, but is limited to certain classes of queries. Dalvi et al. [14] and Olteanu et al. [21] proved dichotomies for UCQs and two classes of queries with negation, respectively. Amarilli et al. investigated tractable classes of databases for more complex queries [3]. Another line of work studies which structural properties of lineage formulas lead to tractable cases [31, 41, 44]. In this paper we focus on intensional query evaluation with polynomials.

Many data models have been proposed for encoding PBs more compactly than as sets of possible worlds. These include tuple-independent databases [47] (TIDEs), block-independent databases (BIDEs) [42], and PC-tables [26]. Fink et al. [19] study aggregate queries over a probabilistic version of the extension of K-relations for aggregate queries proposed in [4] (pvc-tables) that supports bags, and has runtime complexity linear in the size of the lineage. However, this lineage is encoded as a tree; the size (and thus the runtime) are still superlinear in $T_{\text {det }}(Q, D, c)$. The runtime bound is also limited to a specific class of (hierarchical) queries, suggesting the possibility of a generalization of [14]'s dichotomy result to bag-PDBs.

Several techniques for approximating tuple probabilities have been proposed in related work [20, 15, 38, 12], relying on Monte Carlo sampling, e.g., [12], or a branch-and-bound paradigm [38]. Our approximation algorithm is also based on sampling.
Compressed Encoding are used for Boolean formulas (e.g, various types of circuits including OBDDs [29]) and polynomials (e.g., factorizations [39]) some of which have been utilized for probabilistic query processing, e.g., [29]. Compact representations for which probabilities can be computed in linear time include OBDDs, GDs, d-DNNF, and FBDD. [16] studies circuits for absorptive semirings while [45] studies circuits that include negation (expressed as the monus operation). Algebraic Decision Diagrams [7] (ADDs) generalize RDs to variables with more than two values. Chen et al. [10] introduced the generalized disjunctive normal form. Appendix H covers more related work on fine-grained complexity.

[^0]: 5 Although Proposition 2.6 follows, e.g., as an obvious consequence of [28]'s Theorem 7.1, we are unaware of any formal proof for bag-probabilistic databases.

[^1]: 6 Technically, $\Phi_{G}^{k}(\mathbf{X})$ should have variables corresponding to tuples in R as well, but since they always are present with probability 1, we drop those. Our argument also works when all the tuples in R also are present with probability p but to simplify notation we assign probability 1 to edges.

