Aaron says: I am unsure of this footnote. @atri may need to word smith this one. I don't feel like I entirely understand the purpose of this footnote. E.g., we could have a query that runs deterministically in $\Omega_{k}(n)$ worst case time; but this doesn't mean that $T^{*}(Q, \mathcal{D})$ doesn't have a worst case lower bound of $\Omega(n)^{c_{0}}$, correct? We would replace $T_{\text {det }}(Q, D, c)$ with $\Omega_{k}(n)$, no? If we replace $T_{\text {det }}(Q, D, c)$ with n, then this doesn't accurately reflect the worst case lower bound for counting k-cliques in the first place.
already imply the claimed lower bounds if we were to replace the $T_{\text {let }}(\mathrm{OPT}(\mathscr{C}), D, c)$ by just n (indeed these results follow from known lower bounds for deterministic query processing). Our contribution is to then identify a family of hard queries where deterministic

Our upper bound results. We introduce a $(1 \pm \epsilon)$-approximation algorithm that computes Problem 1.1 in time $O_{\epsilon}\left(T_{\text {let }}(\operatorname{OPT}(Q), D, c)\right)$. This means, when we are okay with approximation, that we solve Problem 1.1 in time linear in the size of the deterministic query and bag PBs are deployable in practice. In contrast, known approximation techniques $([40,32])$ in set-PDBs need time $\Omega\left(T_{\text {let }}(\operatorname{OPT}(Q), D, c)^{2 k}\right)$ (see Appendix G). Further, our approximation algorithm works for a more general notion of bag PDBs beyond c-TIDEs (see Sec. 2.2).

1.1 Polynomial Equivalence

A common encoding of probabilistic databases (e.g., in [30, 29, 5, 2] and many others) relies on annotating tuples with lineages or propositional formulas that describe the set of possible worlds that the tuple appears in. The bag semantics analog is a provenance/lineage polynomial (see Fig. 1) $\Phi[Q, D, t][27]$, a polynomial with non-zero integer coefficients and exponents, over integer variables \mathbf{X} encoding input tuple multiplicities.
Aaron says: This seems confusing since I thought the goal was to have \mathbf{X} be abstract/typeless.

We drop Q, D, and t from $\Phi[Q, D, t]$ when they are clear from the context or irrelevant to the discussion. We now specify the problem of computing the expectation of tuple multiplicity in the language of lineage polynomials:
database D that counts the number of k-cliques, the results show a deterministic runtime of $\Omega_{k}(n)$, implying our lower bounds would hold.

$$
\begin{gathered}
\Phi\left[\pi_{A}(Q), \bar{D}, t\right]=\sum_{t^{\prime}: \pi_{A}\left(t^{\prime}\right)=t} \Phi\left[Q, \bar{D}, t^{\prime}\right] \\
\Phi\left[\sigma_{\theta}(Q), \bar{D}, t\right]=\left\{\begin{array}{ll}
\Phi[Q, \bar{D}, t] & \text { if } \theta(t) \\
0 & \text { otherwise. }
\end{array} \Phi\left[Q_{1} \cup Q_{2}, \bar{D}, t\right]=\Phi\left[Q_{1}, \bar{D}, t\right]+\Phi\left[Q_{2}, \bar{D}, t\right]\right. \\
0
\end{gathered}
$$

Figure 1 Construction of the lineage (polynomial) for an $\mathcal{R} \mathcal{A}^{+}$query Q over an arbitrary deterministic database \bar{D}, where \mathbf{X} consists of all X_{t} over all R in \bar{D} and t in R. Here $\bar{D} . R$ denotes the instance of relation R in \bar{D}. Please note, after we introduce the reduction to 1-BIDB, the base case will be expressed alternatively.

- Problem 1.2 (Expected Multiplicity of Lineage Polynomials). Given an $\mathcal{R} \mathcal{A}^{+}$query Q, c-TIDE \mathcal{D} and result tuple t, compute the expected multiplicity of the polynomial $\Phi[Q, D, t]$ (ie., $\mathbb{E} \mathbf{W} \sim \mathcal{P}[\Phi[Q, D, t](\mathbf{W})]$, where $\mathbf{W} \in\{0, \ldots, c\}^{D}$).

We note that computing Problem 1.1 is equivalent (yields the same result as) to computing Problem 1.2 (see Proposition 2.8).

All of our results rely on working with a reduced form $(\widetilde{\Phi})$ of the lineage polynomial Φ. In fact, it turns out that for the 1-TIDB case, computing the expected multiplicity (over bag query semantics) is exactly the same as evaluating this reduced polynomial over the probabilities that define the 1-TIDB. This is also true when the query inputs) is a block independent disjoint probabilistic database [40] (bag query semantics with tuple multiplicity at most 1), for which the proof of Lemma 1.4 (introduced shortly) holds. Next, we motivate this reduced polynomial. Consider the query Q_{1} defined as follows over the bag relations of Fig. 2:

```
SELECT DISTINCT 1 FROM T t , R r, T t t 
WHERE t t . Point = r.Point }\mp@subsup{|}{1}{\mathrm{ AND t }
```

It can be verified that $\Phi(A, B, C, E, X, Y, Z)$ for the sole result tuple of Q_{1} is $A X B+$ $B Y E+B Z C$. Now consider the product query $Q_{1}^{2}=Q_{1} \times Q_{1}$. The lineage polynomial for Q_{1}^{2} is given by $\Phi_{1}^{2}(A, B, C, E, X, Y, Z)$

$$
=A^{2} X^{2} B^{2}+B^{2} Y^{2} E^{2}+B^{2} Z^{2} C^{2}+2 A X B^{2} Y E+2 A X B^{2} Z C+2 B^{2} Y E Z C
$$

To compute $\mathbb{E}\left[\Phi_{1}^{2}\right]$ we can use linearity of expectation and push the expectation through each summand. To keep things simple, let us focus on the monomial $\Phi_{1}^{(A B X)^{2}}=A^{2} X^{2} B^{2}$ as the procedure is the same for all other monomials of Φ_{1}^{2}. Let W_{X} be the random variable corresponding to a lineage variable X. Because the distinct variables in the product are independent, we can push expectation through them yielding $\mathbb{E}\left[W_{A}^{2} W_{X}^{2} W_{B}^{2}\right]=$ $\mathbb{E}\left[W_{A}^{2}\right] \mathbb{E}\left[W_{X}^{2}\right] \mathbb{E}\left[W_{B}^{2}\right]$. Since $W_{A}, W_{B} \in\{0,1\}$ we can further derive $\mathbb{E}\left[W_{A}\right] \mathbb{E}\left[W_{X}^{2}\right] \mathbb{E}\left[W_{B}\right]$ by the fact that for any $W \in\{0,1\}, W^{2}=W$. Observe that if $X \in\{0,1\}$, then we further would have $\mathbb{E}\left[W_{A}\right] \mathbb{E}\left[W_{X}\right] \mathbb{E}\left[W_{B}\right]=p_{A} \cdot p_{X} \cdot p_{B}$ (denoting $\operatorname{Pr}\left[W_{A}=1\right]=p_{A}$) $=\widetilde{\Phi}_{1}^{(A B X)^{2}}\left(p_{A}, p_{X}, p_{B}\right)$ (see $\left.i i\right)$ of Definition 1.3). However, in this example, we get stuck with $\mathbb{E}\left[W_{X}^{2}\right]$, since $W_{X} \in\{0,1,2\}$ and for $W_{X} \leftarrow 2, W_{X}^{2} \neq W_{X}$.

Denote the variables of Φ to be $\operatorname{Vars}(\Phi)$. In the c-TIDB setting, $\Phi(\mathbf{X})$ has an equivalent reformulation $\left(\Phi_{R}\left(\mathbf{X}_{\mathbf{R}}\right)\right)$ that is of use to us, where $\left|\mathbf{X}_{\mathbf{R}}\right|=c \cdot|\mathbf{X}|$. Given $X_{t} \in \operatorname{Vars}(\Phi)$, by definition $X_{t} \in\{0, \ldots, c\}$. We can replace X_{t} by $\sum_{j \in[c]} j X_{t, j}$ where the variables $\left(X_{t, j}\right)_{j \in[c]}$ are disjoint and each $X_{t, j} \in\{0,1\}$. Then for any $\mathbf{W} \in\{0, \ldots, c\}^{D}$ and corresponding reformulated world $\mathbf{W}_{\mathbf{R}} \in\{0,1\}^{D c}$, we set $\mathbf{W}_{\mathbf{R}_{t, j}}=1$ for $\mathbf{W}_{t}=j$, while $\mathbf{W}_{\mathbf{R}_{t, j^{\prime}}}=0$ for all $j^{\prime} \neq j \in[c]$. By construction then $\Phi(\mathbf{X}) \equiv \Phi_{R}\left(\mathbf{X}_{\mathbf{R}}\right)\left(\mathbf{X}_{\mathbf{R}}=\operatorname{Vars}\left(\Phi_{R}\right)\right)$ since for any valuation $X_{t} \in[c]$ we have the equality $X_{t}=j=\sum_{j \in[c]} j X_{j}$.

> Aaron says: I don't know the rules here, but since we have already (informally) defined \mathbf{X} to be variables of type integer encoding multiplicities (see todo note above) and thus worlds, it seems that it is fine and natural to refer to valuations of the variables themselves, without having to use \mathbf{W} necessarily. The point I am trying to get across in the last sentence is, given these semantics and domains, we have an equivalent polynomial. Or is it wrong to use \mathbf{X} and we should rather say, "for any $\mathbf{W} \in\{0, \ldots, c\}^{D}, \mathbf{W}_{\mathbf{R}} \in\{0,1\}^{D c}$ we have that $\mathbf{W}_{t}=j=\sum_{j \in[c]} j \cdot \mathbf{W}_{\mathbf{R}_{t, j}}$?

Considering again our example,

$$
\begin{aligned}
& \Phi_{1, R}^{(A B X)^{2}}(A, X, B)=\Phi_{1}^{(A X B)^{2}}(\left.\sum_{j_{1} \in[c]} j_{1} A_{j_{1}}, \sum_{j_{2} \in[c]} j_{2} X_{j_{2}}, \sum_{j_{3} \in[c]} j_{3} B_{j_{3}}\right) \\
&=\left(\sum_{j_{1} \in[c]} j_{1} A_{j_{1}}\right)^{2}\left(\sum_{j_{2} \in[c]} j_{2} X_{j_{2}}\right)^{2}\left(\sum_{j_{3} \in[c]} j_{3} B_{j_{3}}\right)^{2} .
\end{aligned}
$$

Since the set of multiplicities for tuple t by nature are disjoint we can drop all cross terms and have $\Phi_{1, R}^{2}=\sum_{j_{1}, j_{2}, j_{3} \in[c]} j_{1}^{2} A_{j_{1}}^{2} j_{2}^{2} X_{j_{2}}^{2} j_{3}^{2} B_{j_{3}}^{2}$. Computing expectation we get $\mathbb{E}\left[\Phi_{1, R}^{2}\right]=$ $\sum_{j_{1}, j_{2}, j_{3} \in[c]} j_{1}^{2} j_{2}^{2} j_{3}^{2} \mathbb{E}\left[W_{A_{j_{1}}}\right] \mathbb{E}\left[W_{X_{j_{2}}}\right] \mathbb{E}\left[W_{B_{j_{3}}}\right]$, since we now have that all $W_{X_{j}} \in\{0,1\}$. This leads us to consider a structure related to the lineage polynomial.

- Definition 1.3. For any polynomial $\Phi\left(\left(X_{t}\right)_{t \in D}\right)$ define the reformulated polynomial $\Phi_{R}\left(\left(X_{t, j}\right)_{t \in D, j \in[c]}\right)$ to be the polynomial $\Phi_{R}=\Phi\left(\left(\sum_{j \in[c]} j \cdot X_{t, j}\right)_{t \in D}\right)$ and ii) define the reduced polynomial $\widetilde{\Phi}\left(\left(X_{t, j}\right)_{t \in D, j \in[c]}\right)$ to be the polynomial resulting from converting Φ_{R} into the standard monomial basis (SMB), ${ }^{4}$ removing all monomials containing the term $X_{t, j} X_{t, j^{\prime}}$ for $t \in D, j \neq j^{\prime} \in[c]$, and setting all variable exponents $e>1$ to 1 .
Continuing with the example ${ }^{5} \Phi_{1}^{2}\left(A, B, C, E, X_{1}, X_{2}, Y, Z\right)$ we have

$$
\begin{aligned}
& \widetilde{\Phi}_{1}^{2}\left(A, B, C, E, X_{1}, X_{2}, Y, Z\right)= \\
& A\left(\sum_{j \in[c]} j^{2} X_{j}\right) B+B Y E+B Z C+2 A\left(\sum_{j \in[c]} j^{2} X_{j}\right) B Y E+2 A\left(\sum_{j \in[c]} j^{2} X_{j}\right) B Z C+2 B Y E Z C= \\
& A B X_{1}+A B(2)^{2} X_{2}+B Y E+B Z C+2 A X_{1} B Y E+2 A(2)^{2} X_{2} B Y E+2 A X_{1} B Z C+2 A(2)^{2} X_{2} B Z C+2 B Y E Z C .
\end{aligned}
$$

Note that we have argued that for our specific example the expectation that we want is
$\left.\widetilde{\Phi}_{1}^{2}(\operatorname{Pr}(A=1), \operatorname{Pr}(B=1), \operatorname{Pr}(C=1)), \operatorname{Pr}(E=1), \operatorname{Pr}\left(X_{1}=1\right), \operatorname{Pr}\left(X_{2}=1\right), \operatorname{Pr}(Y=1), \operatorname{Pr}(Z=1)\right)$.
Lemma 1.4 generalizes the equivalence to all $\mathcal{R} \mathcal{A}^{+}$queries on c-TIDBs (proof in Appendix B.5).

- Lemma 1.4. For any c-TIDB $\mathcal{D}, \mathcal{R} \mathcal{A}^{+}$query Q, and lineage polynomial $\Phi(\mathbf{X})=$ $\Phi[Q, D, t](\mathbf{X})$, it holds that $\mathbb{E} \mathbf{W \sim \mathcal { P }}\left[\Phi_{R}(\mathbf{W})\right]=\widetilde{\Phi}(\mathbf{p})$, where $\mathbf{p}=\left(\left(p_{t, j}\right)_{t \in D, j \in[c]}\right)$.

1.2 Our Techniques

Lower Bound Proof Techniques.

Aaron says: Regarding what follows (in the next paragraph): I think this may be misleading (also, technically incorrect since Φ is used instead of $\widetilde{\Phi}$) since it the lead $c_{2 k}$ of the term in $\widetilde{\Phi}(\mathbf{X})$ with $2 k$ distinct variables. However, technically, since we have that $\widetilde{\Phi}(\mathbf{p})$ is a univariate polynomial, then, indeed this IS an accurate statement, since the term with $2 k$ distinct variables in $\widetilde{\Phi}(\mathbf{p})$ is the term with the highest degree (this assumes for d distinct edges that $d \geq k$ for our special graph query; otherwise, there is no k-matching, and the leading coefficient is not $c_{2 k}$). Perhaps we should note this. However, the context is in light of considering the univariate polynomial $\widetilde{\Phi}(\mathbf{p})$. Perhaps change Φ to $\widetilde{\Phi}(p, \ldots, p)$.

[^0]However, systems can directly emit compact, factorized representations of $\Phi(\mathbf{X})$ (e.g., as a consequence of the standard projection push-down optimization [25]). For example, in Fig. $2, B(Y+Z)$ is a factorized representation of the SMB-form $B Y+B Z$. Accordingly, this work uses (arithmetic) circuits ${ }^{6}$ as the representation system of $\Phi(\mathbf{X})$.

Given that there exists a representation C^{*} such that $T_{L C}\left(Q, D, \mathrm{C}^{*}\right) \leq O\left(T_{\text {det }}(\right.$ OPT $\left.(Q), D, c)\right)$, we can now focus on the complexity of the EC step. We can represent the factorized lineage polynomial by its corresponding arithmetic circuit C (whose size we denote by $|\mathrm{C}|$). As we also show in Appendix E.2.2, this size is also bounded by $T_{\text {det }}(\operatorname{OPT}(Q), D, c)$ (i.e., $\left.\left|\mathrm{C}^{*}\right| \leq O\left(T_{\text {det }}(\operatorname{OPT}(Q), D, c)\right)\right)$. Thus, the question of approximation can be stated as the following stronger (since Problem 1.5 has access to all equivalent C representing $Q(\mathbf{W})(t)$), but sufficient condition:

- Problem 1.6. Given one circuit C that encodes $\Phi[Q, D, t]$ for all result tuples t (one sink per t) for c-TIDE \mathcal{D} and $\mathcal{R} \mathcal{A}^{+}$query Q, does there exist an algorithm that computes a $(1 \pm \epsilon)$-approximation of $\mathbb{E} \mathbf{W} \sim \mathcal{P}[Q(\mathbf{W})(t)]$ (for all result tuples t) in $O(|C|)$ time?

For an upper bound on approximating the expected count, it is easy to check that if all the probabilities are constant then $\Phi\left(p_{1}, \ldots, p_{n}\right)$ (i.e. evaluating the original lineage polynomial over the probability values) is a constant factor approximation. For example, using Q_{1}^{2} from above (with $c=1$) and p_{A} to denote $\operatorname{Pr}[A=1]$, we can see that
Aaron says: I changed Problem 1.6 to use c-TIDB. Correct me if this is wrong. Our results do apply to a more general class of bag-PDB, but the main data model considered in this paper is c-TIDB.
Also, for the example above and worked out in what follows, it might be better flow to keep $c=2$ and change what is below.

$$
\begin{aligned}
\Phi_{1}^{2}(\mathbf{p}) & =p_{A}^{2} p_{X}^{2} p_{B}^{2}+p_{B}^{2} p_{Y}^{2} p_{E}^{2}+p_{B}^{2} p_{Z}^{2} p_{C}^{2}+2 p_{A} p_{X} p_{B}^{2} p_{Y} p_{E}+2 p_{A} p_{X} p_{B}^{2} p_{Z} p_{C}+2 p_{B}^{2} p_{Y} p_{E} p_{Z} p_{C} \\
& \leq p_{A} p_{X} p_{B}+p_{B} p_{Y} p_{E}+p_{B} p_{Z} p_{C}+2 p_{A} p_{X} p_{B} p_{Y} p_{E}+2 p_{A} p_{X} p_{B} p_{Z} p_{C}+2 p_{B} p_{Y} p_{E} p_{Z} p_{C}=\widetilde{\Phi}_{1}^{2}(\mathbf{p})
\end{aligned}
$$

If we assume that all seven probability values are at least $p_{0}>0$, we get that $\Phi_{1}^{2}(\mathbf{p})$ is in the range $\left[\left(p_{0}\right)^{3} \cdot \widetilde{\Phi}_{1}^{2}(\mathbf{p}), \widetilde{\Phi}_{1}^{2}(\mathbf{p})\right]$, which is not a tight approximation. In sec. 4 we demonstrate that a $(1 \pm \epsilon)$ (multiplicative) approximation with competitive performance is achievable. To get an ($1 \pm \epsilon$)-multiplicative approximation and solve Problem 1.6, using C we uniformly sample monomials from the equivalent SMB representation of Φ (without materializing the SMB representation) and 'adjust' their contribution to $\widetilde{\Phi}(\cdot)$.
Applications. Recent work in heuristic data cleaning [51, 45, 42, 8, 45] emits a PDB when insufficient data exists to select the 'correct' data repair. Probabilistic data cleaning is a crucial innovation, as the alternative is to arbitrarily select one repair and 'hope' that queries receive meaningful results. Although PDB queries instead convey the trustworthiness of results [37], they are impractically slow [19, 18], even in approximation (see Appendix G). Bags, as we consider, are sufficient for production use, where bag-relational algebra is already the default for performance reasons. Our results show that bag-PDBs can be competitive, laying the groundwork for probabilistic functionality in production database engines.
Paper Organization. We present relevant background and notation in Sec. 2. We then prove our main hardness results in Sec. 3 and present our approximation algorithm in Sec. 4. Finally, we discuss related work in Sec. 5 and conclude in Sec. 6. All proofs are in the appendix.

[^1]

[^0]: ${ }^{4}$ This is the representation, typically used in set-PDBs, where the polynomial is reresented as sum of 'pure' products. See Definition 2.1 for a formal definition.
 ${ }^{5}$ To save clutter we do not show the full expansion for variables with greatest multiplicity $=1$ since e.g. for variable A, the sum of products itself evaluates to $1^{2} \cdot A^{2}=A$.

[^1]: 6 An arithmetic circuit is a DAG with variable and/or numeric source nodes and internal, each nodes representing either an addition or multiplication operator.

