
23:4 Bag PDB Queries

Aaron says: I am unsure of this footnote. @atri may need to word smith this one. I
don’t feel like I entirely understand the purpose of this footnote. E.g., we could have a
query that runs deterministically in �k (n) worst case time; but this doesn’t mean that
T ú (Q, D) doesn’t have a worst case lower bound of � (n)c0 , correct? We would replace
Tdet (Q, D, c) with �k (n), no? If we replace Tdet (Q, D, c) with n, then this doesn’t
accurately reflect the worst case lower bound for counting k-cliques in the first place.

100

already imply the claimed lower bounds if we were to replace the Tdet (OPT (Q) , D, c)101

by just n (indeed these results follow from known lower bounds for deterministic query102

processing). Our contribution is to then identify a family of hard queries where deterministic103

query processing is ‘easy’ but computing the expected multiplicities is hard.104

Our upper bound results. We introduce a (1 ± ‘)-approximation algorithm that105

computes Problem 1.1 in time O‘ (Tdet (OPT (Q) , D, c)). This means, when we are okay106

with approximation, that we solve Problem 1.1 in time linear in the size of the deterministic107

query and bag PDBs are deployable in practice. In contrast, known approximation techniques108

([40, 32]) in set-PDBs need time �(Tdet (OPT (Q) , D, c)2k) (see Appendix G). Further, our109

approximation algorithm works for a more general notion of bag PDBs beyond c-TIDBs (see110

Sec. 2.2).111

1.1 Polynomial Equivalence112

A common encoding of probabilistic databases (e.g., in [30, 29, 5, 2] and many others)113

relies on annotating tuples with lineages or propositional formulas that describe the set of114

possible worlds that the tuple appears in. The bag semantics analog is a provenance/lineage115

polynomial (see Fig. 1) �[Q, D, t] [27], a polynomial with non-zero integer coe�cients and116

exponents, over integer variables X encoding input tuple multiplicities.117

Aaron says: This seems confusing since I thought the goal was to have X be
abstract/typeless.

118

We drop Q, D, and t from �[Q, D, t] when they are clear from the context or irrelevant to119

the discussion. We now specify the problem of computing the expectation of tuple multiplicity120

in the language of lineage polynomials:121

database D that counts the number of k-cliques, the results show a deterministic runtime of �k (n),
implying our lower bounds would hold.

�[fiA(Q), D, t] =
ÿ

tÕ:fiA(tÕ)=t

�[Q, D, tÕ] �[Q1 fi Q2, D, t] =�[Q1, D, t] + �[Q2, D, t]

�[‡◊(Q), D, t] =
I

�[Q, D, t] if ◊(t)
0 otherwise.

�[Q1onQ2, D, t] =�[Q1, D, fiattr(Q1)t]

· �[Q2, D, fiattr(Q2)t]

�[R, D, t] = Xt

Figure 1 Construction of the lineage (polynomial) for an RA+ query Q over an arbitrary
deterministic database D, where X consists of all Xt over all R in D and t in R. Here D.R denotes
the instance of relation R in D. Please note, after we introduce the reduction to 1-BIDB, the base
case will be expressed alternatively.

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:5

I Problem 1.2 (Expected Multiplicity of Lineage Polynomials). Given an RA
+ query Q,122

c-TIDB D and result tuple t, compute the expected multiplicity of the polynomial �[Q, D, t]123

(i.e., EW≥P [�[Q, D, t](W)], where W œ {0, . . . , c}
D).124

We note that computing Problem 1.1 is equivalent (yields the same result as) to computing125

Problem 1.2 (see Proposition 2.8).126

All of our results rely on working with a reduced form
1

Â�
2

of the lineage polynomial �.127

In fact, it turns out that for the 1-TIDB case, computing the expected multiplicity (over128

bag query semantics) is exactly the same as evaluating this reduced polynomial over the129

probabilities that define the 1-TIDB. This is also true when the query input(s) is a block130

independent disjoint probabilistic database [40] (bag query semantics with tuple multiplicity131

at most 1), for which the proof of Lemma 1.4 (introduced shortly) holds . Next, we motivate132

this reduced polynomial. Consider the query Q1 defined as follows over the bag relations of133

Fig. 2:134
135

SELECT DISTINCT 1 FROM T t1 , R r, T t2136

WHERE t1.Point = r.Point1 AND t2.Point = r.Point2137138

It can be verified that � (A, B, C, E, X, Y, Z) for the sole result tuple of Q1 is AXB +
BY E + BZC. Now consider the product query Q2

1 = Q1 ◊ Q1. The lineage polynomial for
Q2

1 is given by �2
1 (A, B, C, E, X, Y, Z)

= A2X2B2 + B2Y 2E2 + B2Z2C2 + 2AXB2Y E + 2AXB2ZC + 2B2Y EZC.

To compute E
#
�2

1
$

we can use linearity of expectation and push the expectation through139

each summand. To keep things simple, let us focus on the monomial �(ABX)2

1 = A2X2B2140

as the procedure is the same for all other monomials of �2
1. Let WX be the random141

variable corresponding to a lineage variable X. Because the distinct variables in the142

product are independent, we can push expectation through them yielding E
#
W 2

A
W 2

X
W 2

B

$
=143

E
#
W 2

A

$
E

#
W 2

X

$
E

#
W 2

B

$
. Since WA, WB œ {0, 1} we can further derive E [WA]E

#
W 2

X

$
E [WB]144

by the fact that for any W œ {0, 1}, W 2 = W . Observe that if X œ {0, 1}, then we145

further would have E [WA]E [WX]E [WB] = pA · pX · pB (denoting Pr [WA = 1] = pA)146

= Â�(ABX)2

1 (pA, pX , pB) (see ii) of Definition 1.3). However, in this example, we get stuck147

with E
#
W 2

X

$
, since WX œ {0, 1, 2} and for WX Ω 2, W 2

X
”= WX .148

Denote the variables of � to be Vars (�) . In the c-TIDB setting, � (X) has an equivalent149

reformulation (�R (XR)) that is of use to us, where |XR| = c · |X| . Given Xt œ Vars (�), by150

definition Xt œ {0, . . . , c}. We can replace Xt by
q

jœ[c] jXt,j where the variables (Xt,j)
jœ[c]151

are disjoint and each Xt,j œ {0, 1}. Then for any W œ {0, . . . , c}
D and corresponding152

reformulated world WR œ {0, 1}
Dc, we set WRt,j = 1 for Wt = j, while WRt,jÕ = 0 for153

all jÕ
”= j œ [c]. By construction then � (X) © �R (XR) (XR = Vars (�R)) since for any154

valuation Xt œ [c] we have the equality Xt = j =
q

jœ[c] jXj .155

Aaron says: I don’t know the rules here, but since we have already (informally)
defined X to be variables of type integer encoding multiplicities (see todo note above)
and thus worlds, it seems that it is fine and natural to refer to valuations of the
variables themselves, without having to use W necessarily. The point I am trying
to get across in the last sentence is, given these semantics and domains, we have an
equivalent polynomial. Or is it wrong to use X and we should rather say, “for any
W œ {0, . . . , c}

D, WR œ {0, 1}
Dc we have that Wt = j =

q
jœ[c] j · WRt,j ?

156

Considering again our example,157
158

CVIT 2016

23:6 Bag PDB Queries

�(ABX)2

1,R
(A, X, B) = �(AXB)2

1

Q

a
ÿ

j1œ[c]

j1Aj1 ,
ÿ

j2œ[c]

j2Xj2 ,
ÿ

j3œ[c]

j3Bj3

R

b159

=

Q

a
ÿ

j1œ[c]

j1Aj1

R

b
2 Q

a
ÿ

j2œ[c]

j2Xj2

R

b
2 Q

a
ÿ

j3œ[c]

j3Bj3

R

b
2

.160

161

Since the set of multiplicities for tuple t by nature are disjoint we can drop all cross terms162

and have �2
1,R

=
q

j1,j2,j3œ[c] j2
1A2

j1j2
2X2

j2j2
3B2

j3 . Computing expectation we get E
#
�2

1,R

$
=163 q

j1,j2,j3œ[c] j2
1j2

2j2
3 E

#
WAj1

$
E

#
WXj2

$
E

#
WBj3

$
, since we now have that all WXj œ {0, 1}.164

This leads us to consider a structure related to the lineage polynomial.165

I Definition 1.3. For any polynomial �
!
(Xt)tœD

"
define the reformulated polynomial166

�R

1
(Xt,j)

tœD,jœ[c]

2
to be the polynomial �R = �

31q
jœ[c] j · Xt,j

2

tœD

4
and ii) define the167

reduced polynomial Â�
1

(Xt,j)
tœD,jœ[c]

2
to be the polynomial resulting from converting �R168

into the standard monomial basis (SMB), 4 removing all monomials containing the term169

Xt,jXt,jÕ for t œ D, j ”= jÕ
œ [c], and setting all variable exponents e > 1 to 1.170

Continuing with the example 5 �2
1 (A, B, C, E, X1, X2, Y, Z) we have171

172

Â�2
1(A, B, C, E, X1, X2, Y, Z) =173

A

Q

a
ÿ

jœ[c]

j2Xj

R

b B+BY E+BZC+2A

Q

a
ÿ

jœ[c]

j2Xj

R

b BY E+2A

Q

a
ÿ

jœ[c]

j2Xj

R

b BZC+2BY EZC =174

ABX1+AB (2)2 X2+BY E+BZC+2AX1BY E+2A (2)2 X2BY E+2AX1BZC+2A (2)2 X2BZC+2BY EZC.175
176

Note that we have argued that for our specific example the expectation that we want is177

Â�2
1(Pr (A = 1) , P r (B = 1) , P r (C = 1)), P r (E = 1) , P r (X1 = 1) , P r (X2 = 1) , P r (Y = 1) , P r (Z = 1)).178

Lemma 1.4 generalizes the equivalence to all RA
+ queries on c-TIDBs (proof in Appendix B.5).179

I Lemma 1.4. For any c-TIDB D, RA
+ query Q, and lineage polynomial � (X) =180

� [Q, D, t] (X), it holds that EW≥P [�R (W)] = Â� (p), where p =
1

(pt,j)
tœD,jœ[c]

2
.181

1.2 Our Techniques182

Lower Bound Proof Techniques.183

Aaron says: Regarding what follows (in the next paragraph): I think this may be
misleading (also, technically incorrect since � is used instead of Â�) since it the lead c2k

of the term in Â� (X) with 2k distinct variables. However, technically, since we have
that Â� (p) is a univariate polynomial, then, indeed this IS an accurate statement, since
the term with 2k distinct variables in Â� (p) is the term with the highest degree (this
assumes for d distinct edges that d Ø k for our special graph query; otherwise, there
is no k-matching, and the leading coe�cient is not c2k). Perhaps we should note this.
However, the context is in light of considering the univariate polynomial Â� (p). Perhaps
change � to Â� (p, . . . , p).

184

4 This is the representation, typically used in set-PDBs, where the polynomial is reresented as sum of
‘pure’ products. See Definition 2.1 for a formal definition.

5 To save clutter we do not show the full expansion for variables with greatest multiplicity = 1 since e.g.
for variable A, the sum of products itself evaluates to 12 · A

2 = A.

23:8 Bag PDB Queries

However, systems can directly emit compact, factorized representations of �(X) (e.g.,217

as a consequence of the standard projection push-down optimization [25]). For example,218

in Fig. 2, B(Y + Z) is a factorized representation of the SMB-form BY + BZ. Accordingly,219

this work uses (arithmetic) circuits6 as the representation system of �(X).220

Given that there exists a representation Cú such that TLC(Q, D, Cú) Æ O (Tdet (OPT (Q) , D, c)),221

we can now focus on the complexity of the EC step. We can represent the factorized lineage222

polynomial by its correspoding arithmetic circuit C (whose size we denote by |C|). As223

we also show in Appendix E.2.2, this size is also bounded by Tdet (OPT (Q) , D, c) (i.e.,224

|Cú
| Æ O (Tdet (OPT (Q) , D, c))). Thus, the question of approximation can be stated as the225

following stronger (since Problem 1.5 has access to all equivalent C representing Q (W) (t)),226

but su�cient condition:227

I Problem 1.6. Given one circuit C that encodes �[Q, D, t] for all result tuples t (one sink228

per t) for c-TIDB D and RA
+ query Q, does there exist an algorithm that computes a229

(1 ± ‘)-approximation of EW≥P [Q (W) (t)] (for all result tuples t) in O (|C|) time?230

For an upper bound on approximating the expected count, it is easy to check that if all the231

probabilties are constant then � (p1, . . . , pn) (i.e. evaluating the original lineage polynomial232

over the probability values) is a constant factor approximation. For example, using Q2
1 from233

above (with c = 1) and pA to denote Pr [A = 1], we can see that234

Aaron says: I changed Problem 1.6 to use c-TIDB. Correct me if this is wrong.
Our results do apply to a more general class of bag-PDB, but the main data model
considered in this paper is c-TIDB.
Also, for the example above and worked out in what follows, it might be better flow to
keep c = 2 and change what is below.

235

�2
1 (p) = p

2
Ap

2
Xp

2
B + p

2
Bp

2
Y p

2
E + p

2
Bp

2
Zp

2
C + 2pApXp

2
BpY pE + 2pApXp

2
BpZpC + 2p

2
BpY pEpZpC236

Æ pApXpB + pBpY pE + pBpZpC + 2pApXpBpY pE + 2pApXpBpZpC + 2pBpY pEpZpC = Â�2
1 (p)237238

If we assume that all seven probability values are at least p0 > 0, we get that �2
1 (p) is in the239

range [(p0)3
· Â�2

1 (p) , Â�2
1 (p)], which is not a tight approximation. In sec. 4 we demonstrate240

that a (1 ± ‘) (multiplicative) approximation with competitive performance is achievable.241

To get an (1 ± ‘)-multiplicative approximation and solve Problem 1.6, using C we uniformly242

sample monomials from the equivalent SMB representation of � (without materializing the243

SMB representation) and ‘adjust’ their contribution to Â� (·).244

Applications. Recent work in heuristic data cleaning [51, 45, 42, 8, 45] emits a PDB when245

insu�cient data exists to select the ‘correct’ data repair. Probabilistic data cleaning is a246

crucial innovation, as the alternative is to arbitrarily select one repair and ‘hope’ that queries247

receive meaningful results. Although PDB queries instead convey the trustworthiness of248

results [37], they are impractically slow [19, 18], even in approximation (see Appendix G).249

Bags, as we consider, are su�cient for production use, where bag-relational algebra is already250

the default for performance reasons. Our results show that bag-PDBs can be competitive,251

laying the groundwork for probabilistic functionality in production database engines.252

Paper Organization. We present relevant background and notation in Sec. 2. We then253

prove our main hardness results in Sec. 3 and present our approximation algorithm in Sec. 4.254

Finally, we discuss related work in Sec. 5 and conclude in Sec. 6. All proofs are in the255

appendix.256

6 An arithmetic circuit is a DAG with variable and/or numeric source nodes and internal, each nodes
representing either an addition or multiplication operator.

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:17

Given the above, the algorithm is a sampling based algorithm for the above sum: we538

sample (via SampleMonomial) (v, c) œ E(C) with probability proportional to |c| and539

compute Y = 1isInd(vm) ·
r

Xiœv pi. Repeating the sampling an appropriate number of times540

and computing the average of Y gives us our final estimate. OnePass is used to compute the541

sampling probabilities needed in SampleMonomial (details are in Appendix D).542

Runtime analysis. We can argue the following runtime for the algorithm outlined above:543

I Theorem 4.7. Let C be an arbitrary Binary-BIDB circuit, define �(X) = poly(C), let544

k = deg(C), and let “ = “(C). Further let it be the case that pi Ø p0 for all i œ [n]. Then an545

estimate E of Â�(p1, . . . , pn) satisfying546

Pr
1---E ≠ Â�(p1, . . . , pn)

--- > ‘Õ
· Â�(p1, . . . , pn)

2
Æ ” (3)547

can be computed in time548

O

AA
size(C) +

log 1
”

· k · log k · depth(C))
(‘Õ)2

· (1 ≠ “)2 · p2k
0

B
· M (log (|C| (1, . . . , 1)), log (size(C)))

B
. (4)549

In particular, if p0 > 0 and “ < 1 are absolute constants then the above runtime simplifies to550

Ok

11
1

(‘Õ)2 · size(C) · log 1
”

2
· M (log (|C| (1, . . . , 1)), log (size(C)))

2
.551

The restriction on “ is satisfied by any 1-TIDB (where “ = 0 in the equivalent 1-BIDB552

of Proposition 2.4) as well as for all three queries of the PDBench BIDB benchmark (see553

Appendix D.10 for experimental results). Further, we can alo argue the following result:554

I Lemma 4.8. Given Binary-BIDB computed from the reduction of Proposition 2.4, “ (C) Æ555

1 ≠ (c + 1)≠(k≠1).556

Proof of Lemma 4.8. Let D
Õ =

1
◊tœDÕ {0, ct} , D

Õ
2

be the reduced Binary-BIDB and D =557
1

{0, . . . , c}
D , D

2
the original c-TIDB.558

By Proposition 2.4, D
Õ is a Binary-BIDB. By Definition 2.3, a block Bt of D

Õ has the559

property that
q

tœD,jœ[c] pt,j Æ 1. Then, if we consider the case of strict inequality, we have560

an extra possible outcome in block Bt, the outcome when no tuple is present in a possible561

world. Let us denote this as t0. Then there are at most c + 1 disjoint tuples in Bt. We argue562

later that the case when t0 is a possibility produces the worst case “.563

Let �Õ (X) be an aribitrary polynomial produced by Q (DÕ) with X = (Xt,j)
tœDÕ,jœ[0,c]564

the set of variables in D
Õ. Let m be an arbitrary monomial in �Õ (X) and vm be the set of565

variables appearing in m. We define a cross term to be any monomial m such that there566

exists j ”= jÕ
œ [0, c] such that Xt,j , Xt,jÕ œ vm.567

The semantics of Fig. 3 show that a new monomial product can only be generated by the568

on operator of RA
+ queries. Further, a cross term may only be produced specifically when569

the join is a self join. The highest number of terms that can be produced by a self join of570

Bt is (c + 1)k, the case for when all tuples join and
q

tœD,jœ[c] pt,c < 1 as noted above. For571

monomials m œ

Ó
◊iœ[k],jœ[0,c] Xt,ji

Ô
, there exist exaclty (c + 1) non-cross terms, specifically572

Xk

t,j
for j œ [0, c]. Then there are exactly (c + 1)k

≠ (c + 1) cross terms (cancellations). This573

implies that “ (C) = 1 ≠
(c+1)

(c+1)k for this case.574

We now show that the case above is indeed the worst case. First, given a self join, it is575

always the case that Xk

t,j
will be in the output since all tuples join with themselves. Then,576

the most number of cancellations occurs when we have that all Xt,j joins with all Xt,jÕ for577

CVIT 2016

23:18 Bag PDB Queries

j ”= jÕ
œ [0, c]. Finally, it is the case that ck

≠ c Æ (c + 1)k
≠ (c + 1) =

q
k

i=1
!

k

i

"
ci

≠ (c ≠ 1)578

for c, k œ N, which implies that the worst case is when we have the ‘extra’ tuple t0 and all579

tuples joining, which is exactly the case above, producing the greatest “ (C) ratio.580

Since the size of any block B is c + 1, it follows that “ (C) ratio for block Bt is the same581

when taken across all blocks of Q (DÕ), since the number of blocks n cancels out of the ratio582

calculations. J583

We briefly connect the runtime in Eq. (4) to the algorithm outline earlier (where we584

ignore the dependence on M (·, ·), which is needed to handle the cost of arithmetic operations585

over integers). The size(C) comes from the time take to run OnePass once (OnePass586

essentially computes |C| (1, . . . , 1) using the natural circuit evaluation algorithm on C). We587

make log 1
”

(‘Õ)2·(1≠“)2·p2k
0

many calls to SampleMonomial (each of which essentially traces O(k)588

random sink to source paths in C all of which by definition have length at most depth(C)).589

Finally, we address the M (log (|C| (1, . . . , 1)), log (size(C))) term in the runtime.590

I Lemma 4.9. For any Binary-BIDB circuit C with deg(C) = k, we have |C| (1, . . . , 1) Æ591

22k·depth(C). Further, if C is a tree, then we have |C| (1, . . . , 1) Æ size(C)O(k).592

Note that the above implies that with the assumption p0 > 0 and “ < 1 are absolute593

constants from Theorem 4.7, then the runtime there simplifies to Ok

1
1

(‘Õ)2 · size(C)2
· log 1

”

2
594

for general circuits C. If C is a tree, then the runtime simplifies to Ok

1
1

(‘Õ)2 · size(C) · log 1
”

2
,595

which then answers Problem 1.6 with yes for such circuits.596

Finally, note that by Proposition E.1 and Lemma E.2 for any RA
+ query Q, there exists a597

circuit Cú for �[Q, D, t] such that depth(Cú) Æ O|Q|(log n) and size(C) Æ Ok (Tdet (Q, D�)).598

Using this along with Lemma 4.9, Theorem 4.7 and the fact that n Æ Tdet (Q, D�), we have599

the following corollary:600

I Corollary 4.10. Let Q be an RA
+ query and D be a Binary-BIDB with p0 > 0 and “ < 1601

(where p0, “ as in Theorem 4.7) are absolute constants. Let �(X) = �[Q, D, t] for any result602

tuple t with deg(�) = k. Then one can compute an approximation satisfying Eq. (3) in time603

Ok,|Q|,‘Õ,” (Tdet (OPT (Q) , D, c)) (given Q, D and pi for each i œ [n] that defines P).604

Next, we note that the above result along with Lemma 4.8 answers Problem 1.5 in the605

a�rmative as follows:606

I Corollary 4.11. Let Q be an RA
+ query and D be a c-TIDB with p0 > 0 (where p0607

as in Theorem 4.7) is an absolute constant. Let �(X) = �[Q, D, t] for any result tuple608

t with deg(�) = k. Then one can compute an approximation satisfying Eq. (3) in time609

Ok,|Q|,‘Õ,”,c (Tdet (OPT (Q) , D, c)) (given Q, D and pt,j for each t œ D, j œ [c] that defines610

P).611

Proof of Corollary 4.11. The proof follows by Proposition 2.4, Lemma 4.8, and Corollary 4.10.612

J613

If we want to approximate the expected multiplicities of all Z = O(nk) result tuples614

t simultaneously, we just need to run the above result with ” replaced by ”

Z
. Note this615

increases the runtime by only a logarithmic factor.616

5 Related Work617

Probabilistic Databases (PDBs) have been studied predominantly for set semantics.618

Approaches for probabilistic query processing (i.e., computing marginal probabilities of619

