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I Definition 4.6 (Parameter “). Given a Binary-BIDB circuit C define534

“(C) =
q

(v,c)œE(C) |c| · 1¬isInd(vm)

|C| (1, . . . , 1) .535

4.2 Our main result536

We solve Problem 1.6 for any fixed ‘ > 0 in what follows.537

Algorithm Idea. Our approximation algorithm (ApproximateÂ� pseudo code in Appendix D.1)538

is based on the following observation. Given a lineage polynomial �(X) = poly(C) for circuit C539

over Binary-BIDB (recall that all c-TIDB can be reduced to Binary-BIDB by Proposition 2.4),540

we have:541

Â� (p1, . . . , pn) =
ÿ

(v,c)œE(C)

1isInd(vm) · c ·

Ÿ

Xiœv
pi. (2)542

Given the above, the algorithm is a sampling based algorithm for the above sum: we543

sample (via SampleMonomial) (v, c) œ E(C) with probability proportional to |c| and544

compute Y = 1isInd(vm) ·
r

Xiœv pi. Repeating the sampling an appropriate number of times545

and computing the average of Y gives us our final estimate. OnePass is used to compute the546

sampling probabilities needed in SampleMonomial (details are in Appendix D).547

Runtime analysis. We can argue the following runtime for the algorithm outlined above:548

I Theorem 4.7. Let C be an arbitrary Binary-BIDB circuit, define �(X) = poly(C), let549

k = deg(C), and let “ = “(C). Further let it be the case that pi Ø p0 for all i œ [n]. Then an550

estimate E of Â�(p1, . . . , pn) satisfying551

Pr
1---E ≠ Â�(p1, . . . , pn)

--- > ‘Õ
· Â�(p1, . . . , pn)

2
Æ ” (3)552

can be computed in time553

O

AA
size(C) +

log 1
”

· k · log k · depth(C))
(‘Õ)2

· (1 ≠ “)2 · p2k
0

B
· M (log (|C| (1, . . . , 1)), log (size(C)))

B
. (4)554

In particular, if p0 > 0 and “ < 1 are absolute constants then the above runtime simplifies to555

Ok

11
1

(‘Õ)2 · size(C) · log 1
”

2
· M (log (|C| (1, . . . , 1)), log (size(C)))

2
.556

The restriction on “ is satisfied by any 1-TIDB (where “ = 0 in the equivalent 1-BIDB557

of Proposition 2.4) as well as for all three queries of the PDBench BIDB benchmark (see558

Appendix D.10 for experimental results). Further, we can alo argue the following result:559

I Lemma 4.8. Given RA
+ query Q and c-TIDB D, let C be the circuit computed by Q (D).560

Then, for the reduced Binary-BIDB D
Õ there exists an equivalent circuit C’ obtained from561

Q (DÕ), such that “ (CÕ) Æ 1 ≠ (c + 1)≠(k≠1) with size (CÕ) Æ size (C) + n ·
!
2(Álog 2cË)+1

≠ 1
"

562

and depth (CÕ) = depth (C) + Álog 2cË.563

Proof of Lemma 4.8. The circuit C’ is built from C in the following manner. For each input564

gate g
i

with g
i
.val = Xt, replace g

i
with the circuit S encoding the sum

q
c

j=1 j · Xt,j . We565

argue that C’ is a valid circuit by the following facts. Let D =
1

{0, . . . , c}
D , D

2
be the566

original c-TIDB C was generated from. Then, by Proposition 2.4 there exists a reduced567
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D
Õ =

1
◊tœDÕ {0, ct} , D

Õ
2

, from which the conversion from C to C’ follows. Both poly (C) and568

poly (CÕ) have the same expected multiplicity since (by Proposition 2.4) the distributions569

P and P
Õ are equivalent and each j · WÕ

t,j
= Wt for WÕ

œ {0, 1}
cn and W œ {0, . . . , c}

D.570

Finally, note that because there exists SÕ
œ CSet (poly (C)) encoding

q
c

j=1 j · Xt,j that is a571

balanced binary tree, the above conversion implies the claimed size and depth bounds of the572

lemma.573

Consider the list of expanded monomials E(C) for c-TIDB circuit C. Let v be an arbitrary574

monomial such that the set of variables in v is vm = Xd1
t,1, . . . , Xd¸

t,¸
with the number of variables575

|vm| = ¸. Then v yields the set of monomials Ev (CÕ) =
1

j1 · Xd1
t,j1

, . . . , j¸ · Xd¸
t,j¸

2

j1,...,j¸œ[0,c]
in576

E(CÕ). Observe that cancellations can only occur for each Xdt
t

œ vm. Consider the number of577

cancellations for Xdt
t

. Then “ Æ 1≠(c + 1)dt≠1, since for each element in
Ó
◊iœ[dt],jiœ[0,c] Xji

Ô
578

there are exactly c + 1 surviving elements with j1 = · · · = jdt , i.e. Xdt
j

for each j œ [0, c]. The579

rest of the (c + 1)dt≠1 cross terms cancel. Regarding the whole monomial v it is the case that580

the proportion of non-cancellations across each Xdt
t

œ vm multiply as non-cancelling terms581

for Xt can only be joined with non-cancelling terms of XdtÕ
tÕ . This then yields the inequality582

1 ≠
r

¸

i=1 (c + 1)di≠1
Æ “ Æ 1 ≠ (c + 1)≠(k≠1) where the inequalities take into account the583

fact that
q

¸

i=1 di Æ k.584

Since this is true for arbitrary v, the bound follows for poly (CÕ). J585

We briefly connect the runtime in Eq. (4) to the algorithm outline earlier (where we586

ignore the dependence on M (·, ·), which is needed to handle the cost of arithmetic operations587

over integers). The size(C) comes from the time taken to run OnePass once (OnePass588

essentially computes |C| (1, . . . , 1) using the natural circuit evaluation algorithm on C). We589

make log 1
”

(‘Õ)2·(1≠“)2·p2k
0

many calls to SampleMonomial (each of which essentially traces O(k)590

random sink to source paths in C all of which by definition have length at most depth(C)).591

Finally, we address the M (log (|C| (1, . . . , 1)), log (size(C))) term in the runtime.592

I Lemma 4.9. For any Binary-BIDB circuit C with deg(C) = k, we have |C| (1, . . . , 1) Æ593

22k·depth(C). Further, if C is a tree, then we have |C| (1, . . . , 1) Æ size(C)O(k).594

Note that the above implies that with the assumption p0 > 0 and “ < 1 are absolute595

constants from Theorem 4.7, then the runtime there simplifies to Ok

1
1

(‘Õ)2 · size(C)2
· log 1

”

2
596

for general circuits C. If C is a tree, then the runtime simplifies to Ok

1
1

(‘Õ)2 · size(C) · log 1
”

2
,597

which then answers Problem 1.6 with yes for such circuits.598

Finally, note that by Proposition E.1 and Lemma E.2 for any RA
+ query Q, there exists a599

circuit Cú for �[Q, D, t] such that depth(Cú) Æ O|Q|(log n) and size(C) Æ Ok (Tdet (Q, D, c)).600

Using this along with Lemma 4.9, Theorem 4.7 and the fact that n Æ Tdet (Q, D, c), we have601

the following corollary:602

I Corollary 4.10. Let Q be an RA
+ query and D be a Binary-BIDB with p0 > 0 and “ < 1603

(where p0, “ as in Theorem 4.7) are absolute constants. Let �(X) = �[Q, D, t] for any result604

tuple t with deg(�) = k. Then one can compute an approximation satisfying Eq. (3) in time605

Ok,|Q|,‘Õ,” (Tdet (OPT (Q) , D, c)) (given Q, D and pi for each i œ [n] that defines P).606

Next, we note that the above result along with Lemma 4.8 answers Problem 1.5 in the607

a�rmative as follows:608

I Corollary 4.11. Let Q be an RA
+ query and D be a c-TIDB with p0 > 0 (where p0609

as in Theorem 4.7) is an absolute constant. Let �(X) = �[Q, D, t] for any result tuple610


