- Definition 4.6 (Parameter γ). Given a Binary-BIDB circuit C define

$$
\gamma(C)=\frac{\sum_{(v, c) \in E(C)}|c| \cdot \mathbb{1}_{\neg I S I N D\left(v_{m}\right)}}{|C|(1, \ldots, 1)} .
$$

4.2 Our main result

We solve Problem 1.6 for any fixed $\epsilon>0$ in what follows.
Algorithm Idea. Our approximation algorithm (Approximate $\widetilde{\Phi}$ pseudo code in Appendix D.1) is based on the following observation. Given a lineage polynomial $\Phi(\mathbf{X})=\operatorname{POLY}(\mathrm{C})$ for circuit C over Binary-BIDB (recall that all c-TIDB can be reduced to Binary-BIDB by Proposition 2.4), we have:

$$
\begin{equation*}
\widetilde{\Phi}\left(p_{1}, \ldots, p_{n}\right)=\sum_{(\mathrm{v}, \mathrm{c}) \in \mathrm{E}(\mathrm{C})} \mathbb{1}_{\mathrm{ISIND}\left(\mathrm{v}_{\mathrm{m}}\right)} \cdot \mathrm{c} \cdot \prod_{X_{i} \in \mathrm{v}} p_{i} . \tag{2}
\end{equation*}
$$

Given the above, the algorithm is a sampling based algorithm for the above sum: we sample (via SampleMonomial) (v, c$) \in \mathrm{E}(\mathrm{C})$ with probability proportional to $|\mathrm{c}|$ and compute $\mathrm{Y}=\mathbb{1}_{\mathrm{ISIND}\left(\mathrm{V}_{\mathrm{a}}\right)} \cdot \prod_{X_{i} \in \mathrm{v}} p_{i}$. Repeating the sampling an appropriate number of times and computing the average of Y gives us our final estimate. OnePass is used to compute the sampling probabilities needed in SampleMonomial (details are in Appendix D).
Runtime analysis. We can argue the following runtime for the algorithm outlined above:

- Theorem 4.7. Let C be an arbitrary Binary-BIDB circuit, define $\phi(\not X)=\operatorname{POLY}(C)$, let $k=\operatorname{DEG}(C)$, and let $\gamma=\gamma(C)$. Further let it be the case that $p_{i} \geq p_{0}$ ger all $i \in[n]$. Then an estimate \mathcal{E} of $\widetilde{\Phi}\left(p_{1}, \ldots, p_{n}\right)$ satisfying

$$
\begin{equation*}
\operatorname{Pr}\left(\left|\mathcal{E}-\widetilde{\Phi}\left(p_{1}, \ldots, p_{n}\right)\right|>\epsilon^{\prime} \cdot \widetilde{\Phi}\left(p_{1}, \ldots, p_{n}\right)\right) \leq \delta \tag{3}
\end{equation*}
$$

can be computed in time

$$
\begin{equation*}
O\left(\left(\operatorname{SIZE}(C)+\frac{\left.\log \frac{1}{\delta} \cdot k \cdot \log k \cdot \operatorname{DEPTH}(C)\right)}{\left(\epsilon^{\prime}\right)^{2} \cdot(1-\gamma)^{2} \cdot p_{0}^{2 k}}\right) \cdot \overline{\mathcal{M}}(\log (|C|(1, \ldots, 1)), \log (\operatorname{SIZE}(C)))\right) \tag{4}
\end{equation*}
$$

In particular, if $p_{0}>0$ and $\gamma<1$ are absolute constants then the above runtime simplifies to $O_{k}\left(\left(\frac{1}{\left(\epsilon^{\prime}\right)^{2}} \cdot \operatorname{SIZE}(C) \cdot \log \frac{1}{\delta}\right) \cdot \overline{\mathcal{M}}(\log (|C|(1, \ldots, 1)), \log (\operatorname{SIZE}(C)))\right)$.

The restriction on γ is satisfied by any 1-TIDB (where $\gamma=0$ in the equivalent 1-BIDB of Proposition 2.4) as well as for all three queries of the PDBench BIDB benchmark (s\& Appendix D. 10 for experimental results). Further, we can all argue the following result:

- Lemma 4.8. Given $\mathcal{R} \mathcal{A}^{+}$query (and c-TIDB \mathcal{D}, let C be the circuit computed by Q (D. Then, for the reduced Binary-BHOBDD' then exists an equivalent circuit C' obtained from $Q\left(D^{\prime}\right)$, such that $\gamma\left(C^{\prime}\right) \leq 1-(c+1)^{-(k-1)}$ with SIZE $\left(C^{\prime}\right) \leq \operatorname{SIZE}(C) \quad n \cdot\left(2^{(\lceil\log 2 c\rceil)+1}-1\right)$ and $\left.\operatorname{DEPTH}\left(C^{\prime}\right)=\operatorname{DEPTH}(C)+(\log 2 c\rceil.\right) O(\log C)$
Proof of Lemma 4.8. The circuit C^{\prime} ' is built from C in the following manner. For each input gate g_{i} with $\mathrm{g}_{i} \cdot \mathrm{val}=X_{t}$, replace g_{i} with the circuit S encoding the sum $\sum_{j=1}^{c} j \cdot X_{j, j}$. We argue that C^{\prime} is a valid circuit by the following facts. Let $\mathcal{D}=\left(\{0, \ldots, c\}^{D}\right.$ be the original c-TIDB C was generated from. Then, by Proposition 2.4 there exists a

