Parameterized and Fine-Grained Analysis of Query Evaluation Over Bag PBs

Tu Fend \square
Illinois Institute of Technology, Chicago, USA
Boris Slavic \square
Illinois Institute of Technology, USA
Aaron Huber \square
University at Buffalo, USA
Oliver Kennedy \square
10 University at Buffalo, USA
Atri Rudra \square
University at Buffalo, USA

Abstract

- Abstract

The problem of computing the marginal probability of a tuple in the result of a query over setprobabilistic databases (PBs) is a fundamental problem in set-PDBs. In this work, we study the analog problem for bag semantics: computing a tuple's expected multiplicity exactly and approximately. We are specifically interested in the fine-grained complexity and how it compares to the complexity of deterministic query evaluation algorithms - if these complexities are comparable, it opens the door to practical deployment of probabilistic databases. Unfortunately, our results imply that computing expected multiplicities for Bag-PDBs based on the results produced by such query evaluation algorithms introduces super-linear overhead (under parameterized complexity hardness assumptions/conjectures). We proceed to study approximation of expected multiplicities of result tuples of positive relational algebra queries $\left(\mathcal{R} \mathcal{A}^{+}\right)$over c-TIDEs and for a nontrivial subclass of block-independent databases (BIDEs). We develop a sampling algorithm that computes a ($1 \pm \epsilon$)-approximation of the expected multiplicity of an output tuple in time linear in the runtime of a comparable deterministic query for any $\mathcal{R} \mathcal{A}^{+}$query.

2012 ACM Subject Classification Information systems \rightarrow Incomplete data
Keywords and phrases PDB, bags, polynomial, boolean formula, etc.

1 Introduction

This work explores the problem of computinesthe expectation of a tuple's multiplicity in a

 c-TIDE. A c-TIDE, $\mathcal{D}=\left(\{0, \ldots, c\}^{D}, \mathcal{P}\right)$ encodes a bag of uncertain tuples such that each tuple models c disjoint events, where each such set of disjoint events is itself independent of the others. A tuple in \mathcal{D} has a multiplicity of at most c. The set of all worlds is encoded in $\{0, \ldots, c\}^{D}$, which is the set of all vectors of length $|D|$ such that each index corresponds

$$
37
$$ to a distinct $t \in D$ storing its multiplipity. \mathcal{P} is prot distribution or er the set of worlds. A given world $\mathbf{W}=\{0, \ldots, c\}$ can be interpreted for each \mathbf{W} tuple t_{i} appears then be erased across n base tuples ortre encoding as $n \neq j=\operatorname{Pr}[W[\eta=j]$, where each distribution is independent for $t \in \sqrt{27}$. Allowing for $\leq c$ multiplicities across all tuples gives rise to having $\leq(c+1)^{n}$ possible worlds instead of the usual 2^{n} possible worlds of the traditional set TIDB. In this work, it is natural to be specifically considering bag query

$$
\begin{aligned}
& \Phi\left[\pi_{A}(Q), \bar{D}, t\right]=\sum_{t^{\prime}: \pi_{A}\left(t^{\prime}\right)=t} \Phi\left[Q, \bar{D}, t^{\prime}\right] \quad \Phi\left[Q_{1} \cup Q_{2}, \bar{D}, t\right]=\Phi\left[Q_{1}, \bar{D}, t\right]+\Phi\left[Q_{2}, \bar{D}, t\right] \\
& \Phi\left[\sigma_{\theta}(Q), \bar{D}, t\right]=\left\{\begin{array}{ll}
\Phi[Q, \bar{D}, t] & \text { if } \theta(t) \\
0 & \text { otherwise. }
\end{array} \quad \Phi\left[Q_{1} \bowtie Q_{2}, \bar{D}, t\right]=\Phi\left[Q_{1}, \bar{D}, \pi_{\text {str } \left.\left(Q_{1}\right) t\right]} \quad . \Phi\left[Q_{2}, \bar{D}, \pi_{\text {att } \left.\left(Q_{2}\right) t\right]}\right.\right.\right. \\
& \Phi[R, \bar{D}, t]=X_{t}
\end{aligned}
$$

Figure 1 Construction of the lineage (polynomial) for an $\mathcal{R} \mathcal{A}^{+}$query over a c-TIDB, where \mathbf{X} consists of all X_{t} over all R in \bar{D} and in R. Here $\bar{D} . R$ denotes the instance of relation R in \bar{D}. Please note, after we introduct the reduction to 1-BIDB, the base case will be expressed alternatively.

76
77

1.1 Polynomial Equivalence

A common encoding of probabilistic databases (e.g., in [28, 27, 5, 2] and many others) relies on annotating tuples with lineages, propositional formulas that describe the set of possible worlds that the tuple appears in. The bag semantics analog is a provenance/lineage polynomial $\Phi[Q, \bar{D}, t][25]$, a polynomial with non-zero integer coefficients and exponents, over integer variables \mathbf{X} encoding input tuple multiplicities.

We drop Q, \bar{D}, and t from $\Phi[Q, \bar{D}, t]$ when they are clear from the context or irrelevant to the discussion. We now specify the problem of computing the expectation of tuple multiplicity in the language of lineage polynomials:

bl ho
ono
c-TIDE \mathcal{D} and re tuple t, compute the expect Polynomials). Given an $\mathcal{R} \mathcal{A}^{+}$que
(ie., $\mathbb{E} \mathbf{W} \sim \mathcal{P}[\Phi[Q, . \operatorname{t}](\mathbf{W})]$, where $\mathbf{W} \in\{0, \ldots, c\}$).
We note that computing Problem 1.1 is equivalent to computing Problem 1.3 (see Proposition 2.1).

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra

150
 153
 154
 155

156

- Lemma 1.7. Let \mathcal{D} be a 1-BIDB such that the probability distribution \mathcal{P} over $\mathbf{W} \in$ $\{0,1\}^{|D|}$ (the set of all worlds) is induced by the disjoint condition and the probability vector $\mathbf{p}=\left(p_{1}, \ldots, p_{|D|}\right)$ where $p_{i}=\operatorname{Pr}\left(W_{i}=1\right)$. For any 1-BIDB-lineage polynomial $\Phi(\mathbf{X})=\Phi[Q, \bar{D}, t](\mathbf{X})$, it holds that $\mathbb{E}_{\mathbf{W} \sim \mathcal{P}}[\Phi(\mathbf{W})]=\widetilde{\Phi}(\mathbf{p})$.

To prove our hardness result we show that for the same Q from the example above, for an arbitrary 'product width' k, the query Q^{k} is able to encode various hard graph-counting problems (assuming $O(n)$ tuples rather than the $O(1)$ tuples in Fig. 2). We do so by considering an arbitrary graph G (analogous to the Route relation of Q) and analyzing how the coefficients in the (univariate) polynomial $\widetilde{\Phi}(p, \ldots, p)$ relate to counts of subgraphs in G that are isomorphic to various graphs with k edges. E.g., we exploit the fact that the leading coefficient in Φ corresponding to Q^{k} is proportional to the number of k-matching in G, a
 known hard problem in parameterized/fine-grained complexity literature.

For an upper bound on approximating the expected count, it is easy to check that if all the probabilties are constant then $\Phi\left(p_{1}, \ldots, p_{n}\right)$ (i.e. evaluating the original lineage polynomial over the probability values) is a constant factor approximation. For example, using Q^{2} from above, using p_{A} to denote $\operatorname{Pr}[A=1]$ (and similarly for the other variables), we can see that

$$
\begin{aligned}
\Phi^{2}(\mathbf{p}) & =p_{A}^{2} p_{X}^{2} p_{B}^{2}+p_{B}^{2} p_{Y}^{2} p_{E}^{2}+p_{B}^{2} p_{Z}^{2} p_{C}^{2}+2 p_{A} p_{X} p_{B}^{2} p_{Y} p_{E}+2 p_{A} p_{X} p_{B}^{2} p_{Z} p_{C}+2 p_{B}^{2} p_{Y} p_{E} p_{Z} p_{C} \\
& \leq p_{A} p_{X} p_{B}+p_{B} p_{Y} p_{E}+p_{B} p_{Z} p_{C}+2 p_{A} p_{X} p_{B} p_{Y} p_{E}+2 p_{A} p_{X} p_{B} p_{Z} p_{C}+2 p_{B} p_{Y} p_{E} p_{Z} p_{C}=\widetilde{\Phi}(\mathbf{p})
\end{aligned}
$$

If we assume that all seven probability values are at least $p_{0}>0$, we get that $\Phi^{2}(\mathbf{p})$ is in the range $\left[\left(p_{0}\right)^{3} \cdot \widetilde{\Phi}(\mathbf{p}), \widetilde{\Phi}(\mathbf{p})\right]$. To get an $(1 \pm \epsilon)$-multiplicative approximation we uniformly sample monomials from the SMB representation of Φ and 'adjust' their contribution to $\widetilde{\Phi}(\cdot)$.
Upper Bound Techniques. Our negative results
 e 1) indicate that c-TIDEs can not achieve comparable performance to deterministic databases for exact results (under complexity
 assumptions). In fact, under plausible hardness conjectures, one cannot (drastically) improve upon the trivial algorithm to exactly compute the expected multiplicities for IIDBs. A natural followup is whether we can do better if we ring to settle for an arpation to the expected multiplities. In the remainder of we demonstrate that a ($1 \pm \epsilon$) (multiplicative) approximation with competitive performance is achievable.

D

$Q(D)(t) \equiv \Phi(\mathbf{X})$

$\mathbb{E}[\Phi(\mathbf{X})]$

- Figure 2 Intensional Query Evaluation Model $\left(Q=\pi_{\text {City }}\left(\right.\right.$ Route $_{\text {City }_{1}=\text { City }}$ OnTime $)$).

We adopt the two-step intensional model of query evaluation used in set-PI s, as illustrated in Fig. 2: (i) Lineage Computation (LC): Given input D and Q, output tuple t that possibly satisfies Q, annotated with its lineage polynomial $(\Phi(\mathbf{X})=\Phi[0, t](\mathbf{X}))$; (ii) Exp action Computation (EC): Given $\Phi(\mathbf{X})$ for each tuple, compute $\mathbb{E}[\mathbf{W})]$. Let $T_{L C}(Q$, C) denote the runtime of LC when it outputs C (which is a representation of Φ
as an arithmetic circuit - more on this representation shortly). Denote by $T_{E C}$ (C) (recall C is the output of LC) the runtime of EC, allowing us to formally define our objective:

- Problem 1.8 (Bag-c-TIDB linear time approximation). Given c-TIDB $\mathcal{D}, \mathcal{R} \mathcal{A}^{+}$query Q, is there a $(1 \pm \epsilon)$-approximation of $\mathbb{E}_{\mathbf{D} \sim \mathcal{P}_{\bar{\Omega}}}[Q(\mathbf{D})(t)]$ for all result tuples t where $\exists C$ $T_{L C}(Q, D, C)+T_{E C}(C) \leq O_{\epsilon}\left(T_{d e t}^{*}(Q, D)\right) ?$

We show in Appendix E.2.1 an $O\left(T_{\text {det }}^{*}(Q, D)\right)$ algorithm for constructing the lineage polynomial for all result tuples of an $\mathcal{R} \mathcal{A}^{+}$query Q (or more more precisely, a single circuit C with one sink per tuple representing the tuple's lineage). A key insight of this paper is that the representation of C matters. For example, if we insist that C represent the lineage polynomial in SMB, the answer to the above question in general is no, since then we will need $|\mathrm{C}| \geq \Omega\left(\left(T_{\text {det }}^{*}(Q, D)\right)^{k}\right)$, and hence, just $T_{L C}(Q, D, C)$ will be too large.

However, systems can directly emit compact, factorized representations of $\Phi(\mathbf{X})$ (e.g., as a consequence of the standard projection push-down optimization [23]). For example, in Fig. 2, $B(Y+Z)$ is a factorized representation of the SMB-form $B Y+B Z$. Accordingly, this work uses (arithmetic) circuits ${ }^{2}$ as the representation system of $\Phi(\mathbf{X})$.

Given that there exists a representation C^{*} such that $T_{L C}\left(Q, D, \mathrm{C}^{*}\right) \leq O\left(T_{\text {det }}^{*}(Q, D)\right)$, we can now focus on the complexity of EC. We can represent the factorized lineage polynomial by its correspoding arithmetic circuit C (whose size we denote by $|\mathrm{C}|$). As we also show in Appendix E.2.2, this size is also bounded by $T_{\text {det }}^{*}(Q, D)$ (i.e. $\left|\mathrm{C}^{*}\right| \leq Q\left(T_{\text {det }}^{*}(Q, D)\right.$) the question of approximation can be reframed a

- Problem 1.9 (Problem 1.8 reframed). Given one circuit C that encodes $\Phi[Q, \bar{D}, t]$ for all result tuples t (one sink per t) for bag-PDB \mathcal{D} and $\mathcal{R} \mathcal{A}^{+}$query Q, does there exist an algorithm that computes a $(1 \pm \epsilon)$-approximation of $\mathbb{E}_{\mathbf{D} \sim \mathcal{P}_{\bar{\Omega}}}[Q(\mathbf{D})(t)]$ (for all result tuples t) in $O(|C|)$ time?

Old Stuff

A probabilistic database $(\mathrm{PDB}) \mathcal{D}$ is a pair $\left(\bar{\Omega}, \mathcal{P}_{\bar{\Omega}}\right)$, where $\bar{\Omega}$ is a set of deterministic database instances called possible worlds and $\mathcal{P}_{\bar{\Omega}}$ is a probability distribution over $\bar{\Omega}$. A tuple independent database (TIDB) (to which we will refer to later) is a PDB such that each tuple is an independent random event. A commonly studied problem in probabilistic databases is, given a query $Q, \operatorname{PDB} \mathcal{D}$, and possible query result tuple t, to compute the tuple's marginal probability of being in the query's result, i.e., computing the expectation of a Boolean random variable over $\mathcal{P}_{\bar{\Omega}}$ that is 1 for every $D \in \bar{\Omega}$ for which $t \in Q(D)$ and 0 otherwise. In this work, we are interested in bag semantics, where each tuple is associated with a multiplicity. Following [25], we model bag databases (resp., relations) as functions from each t to the tuple's multiplicity $D(t) \in \mathbb{N}$ in a possible world D. We refer to such a probabilistic database as a bag probabilistic database or bag PDB for short.

The natural generalization of the (set) problem of computing marginal probabilities of query result tuples to bag semantics is to compute the expectation of a random variable over $\mathcal{P}_{\bar{\Omega}}$ that is assigned value $Q(D)(t) \in \mathbb{N}$ in world $D \in \bar{\Omega}$, formally $\mathbb{E}_{\mathbf{D} \sim \mathcal{P}_{\bar{\Omega}}}[Q(\mathbf{D})(t)]$.

[^0]
[^0]: 2 An arithmetic circuit is a DAG with variable and/or numeric source nodes and internal, each nodes representing either an addition or multiplication operator.

