

Note: Don't forget to change the opening of S1 to not use the term product distribution, but rather state that $\$$ Imathcal\{P\}\$ is a probability alstribution.

Aaron says: Does the following matter, i.e., does it point anything out special for our research?

When the underlying DAG is a tree (with edges pointing towards the root), the structure is an expression tree T . In such a case, the root of T is analogous to the sink of C . The fields partial, degree, Lweight, and Rweight are used in the proofs of Appendix D.

The circuits in Fig. 2 encode their respective polynomials in column Φ. Note that each circuit C encodes a tree, with edges pointing towards the root.

We next formally define the relationship of

Figure 3 Circuit encoding of $(X+$ $2 Y)(2 X-Y)$ circuits with polynomials. While the definition assumes one sink for notational convenience, it easily generalizes to the multiple sinks case.

- Definition $2.7(\operatorname{POLY}(\cdot))$. Denote Poly (C) to be the function from the sink of circuit C to its corresponding polynomial (in SMB). $\operatorname{POLY}(\cdot)$ is recursively defined on C as follows, with addition and multiplication following the standard interpretation for polynomials:

$$
\operatorname{POLY}(C)= \begin{cases}\operatorname{POLY}\left(C_{L}\right)+\operatorname{POLY}\left(C_{R}\right) & \text { if C.type }=+ \\ \operatorname{POLY}\left(C_{L}\right) \cdot \operatorname{POLY}\left(C_{R}\right) & \text { if C.type }=\times \\ \operatorname{C.val} & \text { if C.type }=\operatorname{VAR} \text { OR NUM. }\end{cases}
$$

[^0]2.3 Relationship to Deterministig Query Ryntimes
se cence couple our results from specific join argorithms, we first abstract the cost of a join.

- Definition 2.10 (Join Cost). Denote by $T_{\text {join }}\left(R_{1}, \ldots, R_{m}\right)$ the runtime of an algorithm for computing the m-ary join $R_{1} \bowtie \ldots \bowtie R_{m}$. We require only that the algorithm must enumerate its output, i.e., that $T_{\text {join }}\left(R_{1}, \ldots, R_{m}\right) \geq\left|R_{1} \bowtie \ldots \bowtie R_{m}\right|$.

Worst-case optimal join algorithms [37, 36] and query evaluation via factorized databases [39] (as well as work on FAQs [33]) can be modeled as $\mathcal{R} \mathcal{A}^{+}$queries (though the query size is data dependent). For these algorithms, $T_{\text {join }}\left(R_{1}, \ldots, R_{n}\right)$ is linear in the $A G M$ bound [6]. Our cost model for general query evaluation follows from the join cost:

$$
\begin{gathered}
T_{\text {det }}(R, D)=|D \cdot R| \quad T_{\text {det }}(\sigma Q, D)=T_{\text {det }}(Q, D) \quad T_{\text {det }}(\pi Q, D)=T_{\text {det }}(Q, D)+|Q(D)| \\
T_{\text {det }}\left(Q \cup Q^{\prime}, D\right)=T_{\text {det }}(Q, D)+T_{\text {det }}\left(Q^{\prime}, D\right)+|Q(D)|+\left|Q^{\prime}(D)\right| \\
T_{\text {det }}\left(Q_{1} \bowtie \ldots \bowtie Q_{m}, D\right)=T_{\text {det }}\left(Q_{1}, D\right)+\ldots+T_{\text {det }}\left(Q_{m}, D\right)+T_{\text {join }}\left(Q_{1}(D), \ldots, Q_{m}(D)\right)
\end{gathered}
$$

Under this model, an $\mathcal{R} \mathcal{A}^{+}$query Q evaluated over database D has runtime $O\left(T_{\text {det }}(Q, D)\right.$). We assume that full table scans are used for every base relation access. We can model index scans by treating an index scan query $\sigma_{\theta}(R)$ as a base relation.

Finally, Lemma E. 2 and Lemma E. 3 show that for any $\mathcal{R} \mathcal{A}^{+}$query Q and D_{Ω} there exists a circuit C^{*} such that $\left.T_{L C}\left(Q, \Delta Q^{*},\right\rangle^{*}\right)$ and $\left|\mathrm{C}^{*}\right|$ are both $O\left(T_{\text {det }}\left(Q, D_{\Omega}\right)\right.$ Recall we assumed these two bounds when we morid from Problem 1.5 to Problem

3 Hardness of Exact Computation

In this section, we will prove the hardness results claimed in Table 1 for a specific (family) of hard instance (Q, \mathcal{D}) for Problem 1.2 where \mathcal{D} is a 1-TIDB. Note that this implies hardness for c-TIDBs $(c \geq 1)$, BIDBs and general bag-PDB, showing Problem 1.2 cannot be done in $O\left(T_{\text {det }}^{*}(Q, D)\right)$ runtime.

3.1 Preliminaries

Our hardness results are based on (exactly) counting the number of (not necessarily induced) subgraphs in G isomorphic to H. Let $\#(G, H)$ denote this quantity. We can think of H

[^0]: ${ }^{4}$ Although Proposition 2.5 follows, e.g., as an obvious consequence of [28]'s Theorem 7.1, we are unaware of any formal proof for bag-probabilistic databases.

