%root: main.tex The evaluation of $\abs{\circuit}(1,\ldots, 1)$ can be defined recursively, as follows (where $\circuit_\linput$ and $\circuit_\rinput$ are the `left' and `right' inputs of $\circuit$ if they exist): {\small \begin{align} \label{eq:T-all-ones} \abs{\circuit}(1,\ldots, 1) = \begin{cases} \abs{\circuit_\linput}(1,\ldots, 1) \cdot \abs{\circuit_\rinput}(1,\ldots, 1) &\textbf{if }\circuit.\type = \circmult\\ \abs{\circuit_\linput}(1,\ldots, 1) + \abs{\circuit_\rinput}(1,\ldots, 1) &\textbf{if }\circuit.\type = \circplus \\ |\circuit.\val| &\textbf{if }\circuit.\type = \tnum\\ 1 &\textbf{if }\circuit.\type = \var. \end{cases} \end{align} } It turns out that for proof of \Cref{lem:sample}, we need to argue that when $\circuit.\type = +$, we indeed have \begin{align} \label{eq:T-weights} \circuit.\lwght &\gets \frac{\abs{\circuit_\linput}(1,\ldots, 1)}{\abs{\circuit_\linput}(1,\ldots, 1) + \abs{\circuit_\rinput}(1,\ldots, 1)};\\ \circuit.\rwght &\gets \frac{\abs{\circuit_\rinput}(1,\ldots, 1)}{\abs{\circuit_\linput}(1,\ldots, 1)+ \abs{\circuit_\rinput}(1,\ldots, 1)} \end{align}