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Abstract13

The problem of computing the marginal probability of a tuple in the result of a query over set-14

probabilistic databases (PDBs) can be reduced to calculating the probability of the lineage formula15

of the result, a Boolean formula over random variables representing the existence of tuples in the16

database’s possible worlds. The analog for bag semantics is a natural number-valued polynomial over17

random variables that evaluates to the multiplicity of the tuple in each world. In this work, we study18

the problem of calculating the expectation of such polynomials (a tuple’s expected multiplicity)19

exactly and approximately. For tuple-independent databases (TIDBs), the expected multiplicity20

of a query result tuple can trivially be computed in linear time in the size of the tuple’s lineage,21

if this polynomial is encoded as a sum of products (the standard operating procedure for Set-22

PDBs). However, using a reduction from the problem of counting k-matchings, we demonstrate23

that calculating the expectation is #W[1]-hard when the polynomial is compressed, for example24

through factorization. Such factorized representations are exploited by modern join algorithms25

(e.g., worst-case optimal joins), and so our results imply that computing probabilities for Bag-PDB26

based on the results produced by such algorithms introduces super-linear overhead. The problem27

stays hard even for polynomials generated by conjunctive queries (CQs) if all input tuples have a28

fixed probability p (s.t. p ∈ (0, 1)). We proceed to study polynomials of result tuples of union of29

conjunctive queries (UCQs) over TIDBs and for a non-trivial subclass of block-independent databases30

(BIDBs). We develop a sampling algorithm that computes a 1 ± ϵ-approximation of the expectation31

of polynomial circuits in linear time in the size of the polynomial. By removing Bag-PDB’s reliance32

on the sum-of-products representation of polynomials, this result paves the way for future work on33

PDBs that are competitive with deterministic databases.34
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1 Introduction38

A probabilistic database D = (Ω, P) is set of deterministic databases Ω = {D1, . . . , Dn} called39

possible worlds, paired with a probability distribution P over these worlds. A well-studied40

problem in probabilistic databases is to take a query Q and a probabilistic database D, and41

compute the marginal probability of a tuple t (i.e., its probability of appearing in the result42

of query Q over D). This problem is #P-hard for set semantics, even for tuple-independent43

probabilistic databases [35] (TIDBs), which are a subclass of probabilistic databases where44
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23:2 Bag PDB Queries

OnT ime Cityℓ Φ p
Buffalo La 0.9
Chicago Lb 0.5
Bremen Lc 0.5
Zurich Ld 1.0

(a) Relation OnT ime

Route City1 City2 Φ p
Buffalo Chicago Ra 1.0
Chicago Zurich Rb 1.0
Chicago Bremen Rc 1.0

(b) Relation Route

Q1 City Φ EΩ∼P[Q(D)(t)]
Buffalo La · Ra 0.9
Chicago Lb · Rb + Lb · Rc 0.5 · 1.0 + 0.5 · 1.0 = 1.0

(c) Q1’s Result

Rb Lb Rc

× ×

+

Rb Rc

Lb +

×

(d) Two circuits for Q1(Chicago)
Figure 1 TIDB instance and query results for Example 1.1.

tuples are independent events. The dichotomy of Dalvi and Suciu [10] separates the hard45

cases, from cases that are in PTIME for unions of conjunctive queries (UCQs). In this work46

we consider bag semantics, where each tuple is associated with a multiplicity Di(t) in each47

possible world Di and study the analogous problem of computing the expectation of the48

multiplicity of a query result tuple t (denoted Q(D)(t)):49

E
D∼P

[Q(D)(t)] =
∑
D∈Ω

Q(D)(t) ·P(D) (Expected Result Multiplicity) (1)50

▶ Example 1.1. Consider the bag-TIDB relations shown in Fig. 1. We define a TIDB under51

bag semantics analogously to the set case: each input tuple is associated with a probability of52

having a multiplicity of one (and otherwise multiplicity zero), and tuples are independent53

random events. Ignore column Φ for now. In this example, we have shipping routes that54

are certain (probability 1.0) and information about whether shipping at locations is on time55

(with a certain probability). Query Q1, shown below returns starting points of shipping routes56

where shipment processing is on time.57

Q1(City) :−OnTime(City), Route(City, _)

Fig. 1c shows the possible results of this query. For example, there is a 90% probability58

there is a single route starting in Buffalo that is on time, and the expected multiplicity of59

this result tuple is 0.9. There are two shipping routes starting in Chicago. Since the Chicago60

location has a 50% probability of being on schedule (we assume that delays are linked), the61

expected multiplicity of this result tuple is 0.5 + 0.5 = 1.0.62

A well-known result in probabilistic databases is that under set semantics, the marginal63

probability of a query result t can be computed based on the tuple’s lineage. The lineage of64

a tuple is a Boolean formula (an element of the semiring PosBool[X] [19] of positive Boolean65

expressions) over random variables (X = (X1, . . . , Xn)) that encode the existence of input66

tuples. Each possible world D corresponds to an assignment {0, 1}n of the variables in X to67

either true (the tuple exists in this world) or false (the tuple does not exist in this world).68

Importantly, the following holds: if the lineage formula for t evaluates to true under the69

assignment for a world D, then t ∈ Q(D). Thus, the marginal probability of tuple t is equal70

to the probability that its lineage evaluates to true (with respect to the obvious analog of71

probability distribution P defined over X).72

For bag semantics, the lineage of a tuple is a polynomial over variables X = (X1, . . . , Xn)73

with coefficients in the set of natural numbers N (an element of semiring N[X]). Analogously74

to sets, evaluating the lineage for t over an assignment corresponding to a possible world75
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yields the multiplicity of the result tuple t in this world. Thus, instead of using Eq. (1)76

to compute the expected result multiplicity of a tuple t, we can equivalently compute the77

expectation of the lineage polynomial of t, which for this example we denote as Φt
Q,D or78

Φ if the parameters are clear from the context1. In this work, we study the complexity of79

computing the expectation of such polynomials encoded as arithmetic circuits.80

▶ Example 1.2. Associating a lineage variable with every input tuple as shown in Fig. 1, we81

can compute the lineage of every result tuple as shown in Fig. 1b. For example, the tuple82

Chicago is in the result, because Lb joins with both Rb and Rc. Its lineage is Φ = Lb·Rb+Lb·Rc.83

The expected multiplicity of this result tuple is calculated by summing the multiplicity of the84

result tuple, weighted by its probability, over all possible worlds. In this example, Φ is a sum of85

products (SOP), and so we can use linearity of expectation to solve the problem in linear time86

(in the size of Φ). The expectation of the sum is the sum of the expectations of monomials.87

The expectation of each monomial is then computed by multiplying the probabilities of the88

variables (tuples) occurring in the monomial. The expected multiplicity for Chicago is 1.0.89

The expected multiplicity of a query result can be computed in linear time (in the size90

of the result’s lineage) if the lineage is in SOP form. However, this need not be true for91

compressed representations of polynomials, including factorized polynomials or arithmetic92

circuits. For instance, Fig. 1d shows two circuits encoding the lineage of the result tuple93

(Chicago) from Example 1.2. The left circuit encodes the lineage as a SOP while the right94

circuit uses distributivity to push the addition gate below the multiplication, resulting in a95

smaller circuit. Given that there is a large body of work (on, e.g., deterministic bag-relational96

query processing) that can output such compressed representations [24, 30], an interesting97

question is whether computing expectations is still in linear time for such compressed98

representations. If the answer is in the affirmative, then probabilities over bag-PDBs can99

be computed with linear overhead (in the size of the compressed representation) using any100

algorithm that computes compressed lineage polynomials. Unfortunately, we prove that this101

is not the case: computing the expected count of a query result tuple is super-linear under102

standard complexity assumptions (#W[1]-hard) in the size of a lineage circuit.103

Concretely, we make the following contributions: (i) We show that the expected result104

multiplicity problem (Definition 2.14) for conjunctive queries for bag-TIDBs is #W[1]-hard105

in the size of a lineage circuit by reduction from counting the number of k-matchings over106

an arbitrary graph; (ii) We present an (1 ± ϵ)-multiplicative approximation algorithm for107

bag-TIDBs and show that for typical database usage patterns (e.g. when the circuit is a108

tree or is generated by recent worst-case optimal join algorithms or their FAQ followups [24])109

its complexity is linear in the size of the compressed lineage encoding; (iii) We generalize the110

approximation algorithm to bag-BIDBs, a more general model of probabilistic data; (iv)111

We further prove that for RA+ queries (an equivalently expressive, but factorizable form112

of UCQs), we can approximate the expected output tuple multiplicities with only O(log Z)113

overhead (where Z is the number of output tuples) over the runtime of a broad class of query114

processing algorithms. We also observe that our results trivially extend to higher moments115

of the tuple multiplicity (instead of just the expectation).116

Overview of our Techniques. All of our results rely on working with a reduced form of the117

lineage polynomial Φ. In fact, it turns out that for the TIDB (and BIDB) case, computing118

the expected multiplicity is exactly the same as evaluating this reduced polynomial over the119

1 In later sections, where we focus on a single lineage polynomial, we will simply refer to Φt
Q,D as Q.

CVIT 2016



23:4 Bag PDB Queries

probabilities that define the TIDB/BIDB. Next, we motivate this reduced polynomial by120

continuing Example 1.1.121

Consider the query Q() :−OnTime(City), Route(City, City′), OnT ime(City′) over the122

bag relations of Fig. 1. It can be verified that Φ for Q is LaLb + LbLd + LbLc. Now consider123

the product query Q2() :−Q(), Q(). The lineage polynomial for Q2 is given by Φ2:124

(LaLb + LbLd + LbLc)2 = L2
aL2

b + L2
bL2

d + L2
bL2

c + 2LaL2
bLd + 2LaL2

bLc + 2L2
bLdLc.125

The expectation E
[
Φ2] then is:126

127

E [La]E
[
L2

b

]
+ E

[
L2

b

]
E
[
L2

d

]
+ E

[
L2

b

]
E
[
L2

c

]
+ 2E [La]E

[
L2

b

]
E [Ld]128

+ 2E [La]E
[
L2

b

]
E [Lc] + 2E

[
L2

b

]
E [Ld]E [Lc]129

130

If the domain of a random variable W is {0, 1}, then for any k > 0, E
[
W k
]

= E [W ], which131

means that E
[
Φ2] simplifies to:132

E
[
L2

a

]
E [Lb]+E [Lb]E [Ld]+E [Lb]E [Lc]+2E [La]E [Lb]E [Ld]+2E [La]E [Lb]E [Lc]+2E [Lb]E [Ld]E [Lc]133

This property leads us to consider a structure related to the lineage polynomial.134

▶ Definition 1.3. For any polynomial Q(X), define the reduced polynomial Q̃(X) to be the135

polynomial obtained by setting all exponents e > 1 in the SOP form of Q(X) to 1.136

With Φ2 as an example, we have:137

Φ̃2(La, Lb, Lc, Ld) = LaLb + LbLd + LbWc + 2LaLbLd + 2LaLbLc + 2LbLcLd138
139

It can be verified that the reduced polynomial is a closed form of the expected count (i.e.,140

E
[
Φ2] = Φ̃2(P [La = 1] , P [Lb = 1] , P [Lc = 1]), P [Ld = 1])). In fact, we show in Lemma 2.8141

that this equivalence holds for all UCQs over TIDB/BIDB.142

To prove our hardness result we show that for the same Q considered in the running143

example, the query Qk is able to encode various hard graph-counting problems. We do so by144

analyzing how the coefficients in the (univariate) polynomial Φ̃ (p, . . . , p) relate to counts of145

various sub-graphs on k edges in an arbitrary graph G (which is used to define the relations146

in Q). For the upper bound it is easy to check that if all the probabilties are constant147

then Φ (P [X1 = 1] , . . . , P [Xn = 1]) (i.e. evaluating the original lineage polynomial over148

the probability values) is a constant factor approximation. To get an (1± ϵ)-multiplicative149

approximation we sample monomials from Φ and ‘adjust’ their contribution to Φ̃ (·).150

Paper Organization. We present relevant background and notation in Sec. 2. We then151

prove our main hardness results in Sec. 3 and present our approximation algorithm in Sec. 4.152

We present some (easy) generalizations of our results in Sec. 5 and also discuss extensions153

from computing expectations of polynomials to the expected result multiplicity problem154

(Definition 2.14). Finally, we discuss related work in Sec. 6 and conclude in Sec. 7.155

2 Background and Notation156

2.1 Probabilistic Databases (PDBs)157

An incomplete database Ω is a set of deterministic databases D called possible worlds. Denote158

the schema of D as sch(D). A probabilistic database D is a pair (Ω, P) where Ω is an159

incomplete database and P is a probability distribution over Ω. Queries over probabilistic160

databases are evaluated using the so-called possible world semantics. Under the possible161
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JπA(R)KD(t) =
∑

t′:πA(t′)=t

JRKD(t′) J(R1 ∪R2)KD(t) =JR1KD(t) + JR2KD(t)

Jσθ(R)KD(t) =
{

JRKD(t) if θ(t)
0K otherwise.

J(R1 ⋊⋉ R2)KD(t) =JR1KD(πsch(R1)(t))
· JR2KD(πsch(R2)(t))

JRKD(t) =R(t)

Figure 2 Evaluation semantics J·KD for N[X]-DBs [19].

world semantics, the result of a query Q over an incomplete database Ω is the set of query162

answers produced by evaluating Q over each possible world: Q(Ω) = { Q(D) | D ∈ Ω }.163

For a probabilistic database D = (Ω, P), the result of a query is the pair (Q(Ω), P′) where164

P′ is a probability distribution over Q(Ω) that assigns to each possible query result the sum165

of the probabilities of the worlds that produce this answer:166

∀D ∈ Q(Ω) : P′(D) =
∑

D′∈Ω:Q(D′)=D

P(D′)167

Let N[X] denote the set of polynomials over variables X = (X1, . . . , Xn) with natural168

number coefficients and exponents. We model incomplete relations using Green et. al.’s169

N[X]-databases [19], discussed in detail in Appendix A.1 and summarized here. In an N[X]-170

database, relations are defined as functions from tuples to elements of N[X], typically called171

annotations. We write R(t) to denote the polynomial annotating tuple t in relation R. Note172

that R(t) is the lineage polynomial for t. Each possible world is defined by an assignment of173

N binary values W ∈ {0, 1}|X| to X. The multiplicity of t ∈ R in this possible world, denoted174

R(t)(W), is obtained by evaluating the polynomial annotating t on W. N[X]-relations are175

closed under RA+ (Fig. 2).176

We will use N[X]-PDB D, defined as the tuple (ΩN[X], P), where N[X]-database ΩN[X] is177

paired with probability distribution P. We denote by Qt the annotation of tuple t in the178

result of Q on an implicit N[X]-PDB (i.e., Qt = Q(D)(t) for some D) and as before, interpret179

it as a function Qt : {0, 1}|X| → N from vectors of variable assignments to the corresponding180

value of the annotating polynomial. N[X]-PDBs and a function Mod (which transforms an181

N[X]-PDB to classical, or N-PDB [19, 14]) are both formalized in Appendix A.1.182

▶ Proposition 2.1 (Expectation of polynomials). Given an N-PDB D = (Ω, P) and N[X]-PDB183

D = (Ω′
N[X], P′) where Mod(D) = D, we have: EΩ∼P[Q(Ω)(t)] = EW∼P′ [Qt(W)] . 2

184

A formal proof of Proposition 2.1 is given in Appendix A.3. This proposition shows that185

computing expected tuple multiplicities is equivalent to computing the expectation of a186

polynomial (for that tuple) from a probability distribution over all possible assignments of187

variables in the polynomial to {0, 1}. We focus on this problem from now on, assume an188

implicit result tuple, and so drop the subscript from Qt (i.e., Q will denote a polynomial).189

2 Although assumed by most prior work on set-probabilistic databases, e.g., as an obvious consequence
of [21]’s Theorem 7.1, we are unaware of any formal proof for bag-probabilistic databases.

CVIT 2016



23:6 Bag PDB Queries

2.1.1 TIDBs and BIDBs190

In this paper, we focus on two popular forms of PDBs: Block-Independent (BIDB) and191

Tuple-Independent (TIDB) PDBs. A BIDB D = (ΩN[X], P) is an N[X]-PDB such that (i)192

every tuple is annotated with either 0 (i.e., the tuple does not exist) or a unique variable Xi193

and (ii) that the tuples t of D for which D(t) ̸= 0 can be partitioned into a set of blocks194

such that variables from separate blocks are independent of each other and variables from195

the same block are disjoint events. In other words, each random variable corresponds to the196

event of a single tuple’s presence. A TIDB is a BIDB where each block contains exactly197

one tuple. Appendix A.2 explains TIDBs and BIDBs in greater detail. In a BIDB (and by198

extension a TIDB) D, tuples are partitioned into ℓ blocks b1, . . . , bℓ where tuple ti,j ∈ bi is199

associated with a probability pti,j
= P[Xi,j = 1], and is annotated with a unique variable200

Xi,j .3 Because blocks are independent and tuples from the same block are disjoint, the201

probabilities pti,j and the blocks induce the probability distribution P of D. We will write202

a BIDB-lineage polynomial Q(X) for a BIDB with ℓ blocks as Q(X) = Q(X1,1, . . . , X1,|b1|,203

. . . , Xℓ,|bℓ|), where |bi| denotes the size of bi.4204

2.2 Reduced Polynomials and Equivalences205

We now introduce some terminology and develop a reduced form (a closed form of the206

polynomial’s expectation) for polynomials over probability distributions derived from a BIDB207

or TIDB. Note that a polynomial over X = (X1, . . . , Xn) is formally defined as:208

Q(X1, . . . , Xn) =
∑

d=(d1,...,dn)∈Nn

cd ·
n∏

i=1
Xdi

i . (2)209

▶ Definition 2.2 (Standard Monomial Basis). From above, the term
∏n

i=1 Xdi
i is a monomial.210

A polynomial Q(X) is in standard monomial basis (SMB) when we keep only the terms with211

ci ̸= 0 from Eq. (2).212

We consider SMB as the default representation of a polynomial. We use SMB(Q) to denote213

the SMB form of a polynomial Q.214

▶ Definition 2.3 (Degree). The degree of polynomial Q(X) is the largest
∑n

i=1 di such that215

c(d1,...,dn) ̸= 0.216

The degree of the polynomial X2 + 2XY + Y 2 is 2. Product terms in lineage arise only217

from join operations (Fig. 2), so intuitively, the degree of a lineage polynomial is analogous218

to the largest number of joins in any clause of the UCQ query that created it. In this paper219

we consider only finite degree polynomials. We call a polynomial Q(X) a BIDB-lineage220

polynomial (resp., TIDB-lineage polynomial, or simply lineage polynomial), if there exists a221

RA+ query Q, BIDB D (TIDB D, or N[X]-PDB D), and tuple t such that Q(X) = Q(D)(t).222

▶ Definition 2.4 (Modding with a set). Let S be a set of polynomials over X. Then Q(X)223

mod S is the polynomial obtained by taking the mod of Q(X) over all polynomials in S (order224

does not matter).225

3 Although only a single independent, [|bi|+1]-valued variable is customarily used per block, we decompose
it into |bi| correlated {0, 1}-valued variables per block that can be used directly in polynomials (without
an indicator function). For tj ∈ bi, the event (Xi,j = 1) corresponds to the event (Xi = j) in the
customary annotation scheme.

4 Later on in the paper, especially in Sec. 4, we will overload notation and rename the variables as
X1, . . . , Xn, where n =

∑ℓ

i=1 |bi|.
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For example for a set of polynomials S =
{

X2 −X, Y 2 − Y
}

, taking the polynomial 2X2 +226

3XY − 2Y 2 mod S yields 2X + 3XY − 2Y .227

▶ Definition 2.5 (B, T ). Given the set of BIDB variables {Xi,j}, define228

B =
{

Xi,j · Xi,j′ | i ∈ [ℓ], j ̸= j′ ∈ [ |bi| ]
}

T =
{

X2
i,j − Xi,j | i ∈ [ℓ], j ∈ [ |bi| ]

}229

▶ Definition 2.6 (Reduced BIDB Polynomials). Let Q(X) be a BIDB-lineage polynomial. The230

reduced form Q̃(X) of Q(X) is: Q̃(X) = Q(X) mod (T ∪ B)231

All exponents e > 1 in SMB(Q(X)) are reduced to e = 1 via mod T . Performing the232

modulus of Q̃(X) with B ensures the disjoint condition of BIDB, removing monomials with233

lineage variables from the same block. For the special case of TIDBs, the second step is not234

necessary since every block contains a single tuple.235

▶ Definition 2.7 (Valid Worlds). For probability distribution P, the set of valid worlds η236

consists of all the worlds with probability value greater than 0; i.e., for variable vector W237

η = { w | P [W = w] > 0 }238

Next, we show why the reduced form is useful for our purposes:239

▶ Lemma 2.8. Let D be a BIDB over variables X = {X1, . . . , Xn} and with probability240

distribution P produced by the tuple probability vector p = (p1, . . . , pn) over all w in η. For241

any BIDB-lineage polynomial Q(X) based on D and query Q we have:242

E
W∼P

[Q(W)] = Q̃(p).243

Note that in the preceding lemma, we have assigned p to the variables X. Intuitively,244

Lemma 2.8 states that when we replace each variable Xi with its probability pi in the reduced245

form of a BIDB-lineage polynomial and evaluate the resulting expression in R, then the246

result is the expectation of the polynomial.247

▶ Corollary 2.9. If Q is a BIDB-lineage polynomial, then the expectation of Q, i.e., E [Q] =248

Q̃ (p1, . . . , pn) can be computed in O(size (SMB(Q))), where size (Q) (Definition 4.4) is249

proportional to the total number of multiplication/addition operators in Q.250

2.3 Problem Definition251

We first formally define circuits, an encoding of polynomials that we use throughout the paper.252

Since we are particularly using lineage circuits, we drop the term lineage and only refer to253

them as circuits. For illustrative purposes consider the polynomial Q(X) = 2X2 +3XY −2Y 2
254

over X = [X, Y ].255

We represent query polynomials via arithmetic circuits [6], a standard way to represent256

polynomials over fields (particularly in the field of algebraic complexity) that we use for257

polynomials over N in the obvious way.258

▶ Definition 2.10 (Circuit). A circuit C is a Directed Acyclic Graph (DAG) whose source259

nodes (in degree of 0) consist of elements in either R or X. The internal nodes and (the260

single) sink node of C (corresponding to the result tuple t) have binary input and are either261

sum (+) or product (×) gates. Each node in a circuit C has the following members: type,262

val, partial, input, degree and Lweight, Rweight, where type is the type of value stored263

in the node (one of {+,×, var, num}, val is the value stored (a constant or variable), and264

input is the list of the nodes inputs. We use CL to denote the left input and CR the right input265

CVIT 2016



23:8 Bag PDB Queries

X Y W Z

× ×

+

(a) Circuit encoding XY + W Z, a special case
of an expression tree

X 2 Y −1

× × ×

+ +

×

(b) Circuit encoding of (X + 2Y )(2X − Y )

Figure 3 Example circuit encodings

or the sink of circuit C. When the underlying DAG is a tree (with edges pointing towards the266

root), we will refer to the structure as an expression tree T. Note that in such a case, the root267

of T is analogous to the sink of C.268

As stated in Definition 2.10, every internal node has at most two in-edges, is labeled as269

an addition or a multiplication node, and has no limit on its outdegree. Note that if we limit270

the outdegree to one, then we get expression trees. We ignore the fields partial, Lweight,271

and Rweight until Sec. 4.272

▶ Example 2.11. The circuit C in Fig. 3a encodes the polynomial XY + WZ. Note that273

circuit C encodes a tree, with edges pointing towards the root.274

The semantics of circuits follows the obvious interpretation. We next define its relationship275

with polynomials formally:276

▶ Definition 2.12 (poly(·)). Denote poly(C) to be the function from circuit C to its277

corresponding polynomial. poly(·) is recursively defined on C as follows, with addition and278

multiplication following the standard interpretation for polynomials:279

poly(C) =


poly(CL) + poly(CR) if C.type = +
poly(CL) · poly(CR) if C.type = ×
C.val if C.type = var OR num.

280

Note that C need not encode an expression in SMB. For instance, C could represent a281

compressed form of the running example, such as (X + 2Y )(2X − Y ), as shown in Fig. 3b,282

while poly(C) = 2X2 + 3XY − 2Y 2.283

▶ Definition 2.13 (Circuit Set). CSet(Q (X)) is the set of all possible circuits C such that284

poly(C) = Q(X).285

The circuit of Fig. 3b is an element of CSet(2X2 + 3XY − 2Y 2). One can think of286

CSet(Q (X)) as the infinite set of circuits each of which model an encoding (factorization)287

equal to poly(C). Note that Definition 2.13 implies that C ∈ CSet(poly(C)).288

We are now ready to formally state our main problem.289

▶ Definition 2.14 (The Expected Result Multiplicity Problem). Let X = (X1, . . . , Xn), and290

D be an N[X]-PDB over X with probability distribution P over assignments X→ {0, 1}, Q291

an n-ary query, and t an n-ary tuple. The Expected Result Multiplicity Problem is292

defined as follows:293
294

Input: A circuit C ∈ CSet(Q (X)) for Q(X) = Q(D)(t) Output: EW∼P[Q(W)]295
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3 Hardness of exact computation296

In this section, we will prove that computing E
W∼P

[Q(W)] exactly for a TIDB-lineage297

polynomial Q(X) generated from a project-join query (even an expression tree representation)298

is #W[1]-hard. Note that this implies hardness for BIDBs and general N[X]-PDBs under299

bag semantics. Furthermore, we demonstrate in Sec. 3.3 that the problem remains hard,300

even if P [Xi = 1] = p for all Xi and any fixed valued p ∈ (0, 1) as long as certain popular301

hardness conjectures in fine-grained complexity hold.302

3.1 Preliminaries303

Our hardness results are based on (exactly) counting the number of occurrences of a subgraph304

H in G. Let # (G, H) denote the number of occurrences of H in graph G. We can think of305

H as being of constant size and G as growing. In particular, we will consider the problems of306

computing the following counts (given G as an input and its adjacency list representation):307

# (G, ) (the number of triangles), # (G, ) (the number of 3-matchings), and the latter’s308

generalization #
(
G, · · · k

)
(the number of k-matchings). Our hardness result in Sec. 3.2309

is based on the following result:310

▶ Theorem 3.1 ([8]). Given positive integer k and undirected graph G with no self-loops or311

parallel edges, computing #
(
G, · · · k

)
exactly is #W[1]-hard (parameterization is in k).312

The above result means that we cannot hope to count the number of k-matchings in G = (V, E)313

in time f(k) · |V |c for any function f and constant c independent of k. In fact, all known314

algorithms to solve this problem take time |V |Ω(k). Our hardness result in Section 3.3 is315

based on the following conjectured hardness result:316

▶ Conjecture 3.2. There exists a constant ϵ0 > 0 such that given an undirected graph317

G = (V, E), computing exactly # (G, ) cannot be done in time o
(
|E|1+ϵ0

)
.318

Based on the so called Triangle detection hypothesis (cf. [25]), which states that detection of319

whether G has a triangle or not takes time Ω
(
|E|4/3), implies that in Conjecture 3.2 we can320

take ϵ0 ≥ 1
3 .321

Both of our hardness results rely on a simple query polynomial encoding of the edges322

of a graph. To prove our hardness result, consider a graph G(V, E), where |E| = m,323

|V | = n. Our query polynomial has a variable Xi for every i in [n]. Consider the polynomial324

QG(X) =
∑

(i,j)∈E

Xi ·Xj . The hard polynomial for our problem will be a suitable power k ≥ 3325

of the polynomial above:326

▶ Definition 3.3. For any graph G = ([n], E) and k ≥ 1, define327

Qk
G(X1, . . . , Xn) =

 ∑
(i,j)∈E

Xi ·Xj

k

328

Our hardness results only need a TIDB instance; We also consider the special case when all329

the tuple probabilities (probabilities assigned to Xi by p) are the same value. Note that our330

hardness results even hold for the expression trees.331

Returning to Fig. 1, it is easy to see that Qk
G(X) generalizes our running example query:332

Qk
G :−OnTime(C1), Route(C1, C ′

1), OnT ime(C ′
1), . . . , OnT ime(Ck), Route(Ck, C ′

k), OnT ime(C ′
k)333
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where adapting the PDB instance in Fig. 1, relation OnTime has n tuples corresponding334

to each vertex in V = [n] each with probability p and Route(City1, City2) has tuples335

corresponding to the edges E (each with probability of 1).5 Note that this implies that our336

hard query polynomial can be represented as an expression tree produced by a project-join337

query with same probability value for each input tuple pi.338

3.2 Multiple Distinct p Values339

We are now ready to present our main hardness result.340

▶ Theorem 3.4. Computing Q̃k
G(pi, . . . , pi) for arbitrary G and any (2k + 1) distinct values341

pi (0 ≤ i ≤ 2k) is #W[1]-hard (parameterization is in k).342

We will prove the above result by reducing from the problem of computing the number of343

k-matchings in G. Given the current best-known algorithm for this counting problem, our344

results imply that unless the state-of-the-art k-matching algorithms are improved, we cannot345

hope to solve our problem in time better than Ωk

(
mk/2) where m = |E|, which is only346

quadratically faster than expanding Qk
G(X) into its SMB form and then using Corollary 2.9.347

By contrast the approximation algorithm we present in Sec. 4 has runtime Ok (m) for this348

query.349

The following lemma reduces the problem of counting k-matchings in a graph to our problem350

(and proves Theorem 3.4):351

▶ Lemma 3.5. Let p0, . . . , p2k be distinct values in (0, 1]. Then given the values Q̃k
G(pi, . . . , pi)352

for 0 ≤ i ≤ 2k, the number of k-matchings in G can be computed in O
(
k3) time.353

3.3 Single p value354

While Theorem 3.4 shows that computing Q̃(p, . . . , p) in general is hard it does not rule out355

the possibility that one can compute this value exactly for a fixed value of p. Indeed, it is356

easy to check that one can compute Q̃(p, . . . , p) exactly in linear time for p ∈ {0, 1}. In this357

section, we show that these two are the only possibilities:358

▶ Theorem 3.6. Fix p ∈ (0, 1). Then assuming Conjecture 3.2 is true, any algorithm that359

computes Q̃3
G(p, . . . , p) from G exactly has to run in time Ω

(
m1+ϵ0

)
, where ϵ0 is as defined360

in Conjecture 3.2.361

The above shows the hardness for a very specific query polynomial but it is easy to come362

up with an infinite family of hard query polynomials by ‘embedding’ Q̃3
G into an infinite363

family of trivial query polynomials. Unlike Theorem 3.4 the above result does not show that364

computing Q̃3
G(p, . . . , p) for a fixed p ∈ (0, 1) is #W[1]-hard. However, in Sec. 4 we show365

that if we are willing to compute an approximation that this problem (and indeed solving366

our problem for a much more general setting) is in linear time.367

We will prove the above result by the following reduction:368

▶ Theorem 3.7. Fix p ∈ (0, 1). Let G be a graph on m edges. If we can compute Q̃3
G(p, . . . , p)369

exactly in T (m) time, then we can exactly compute # (G, ) in O (T (m) + m) time.370

5 Technically, Qk
G(X) should have variables corresponding to tuples in Route as well, but since they

always are present with probability 1, we drop those. Our argument also works when all the tuples in
Route also are present with probability p but to simplify notation we assign probability 1 to edges.
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The following result immediately implies Theorem 3.7:371

▶ Lemma 3.8. Fix p ∈ (0, 1). Given Q̃3
G(ℓ)(p, . . . , p) for ℓ ∈ [2], we can compute in O(m)372

time a vector b ∈ R3 such that373 (
1− 3p −(3p2 − p3)

10(3p2 − p3) 10(3p2 − p3)

)
·
(

# (G, )]
# (G, )

)
= b,374

allowing us to compute # (G, ) and # (G, ) in O(1) time.375

4 1± ϵ Approximation Algorithm376

In Sec. 3, we showed that computing the expected multiplicity of a compressed lineage377

polynomial for TIDB (even just based on project-join queries), and by extension BIDB (or378

any N[X]-PDB) is unlikely to be possible in linear time (Theorem 3.4), even if all tuples have379

the same probability (Theorem 3.6). Given this, we now design an approximation algorithm380

for our problem that runs in linear time.6 The folowing approximation algorithm applies381

to BIDB, though our bounds are more meaningful for a non-trivial subclass of BIDBs that382

contains both TIDBs, as well as the PDBench benchmark [1].383

4.1 Preliminaries and some more notation384

We now introduce useful definitions and notation related to circuits and polynomials. All385

proofs and missing pseudocode can be found in Appendix C.386

▶ Definition 4.1 (Variables in a monomial). Given a monomial v, we use var(v) to denote387

the set of variables in v.388

For example the monomial XY has var(XY ) = {X, Y }.389

▶ Definition 4.2 (E(C)). The logical view of E(C) is a list of tuples (v, c), where v is a set of390

variables and c is in R. E(C) has the following recursive definition (◦ is list concatenation).391

E(C) =


E(CL) ◦ E(CR) if C.type = +
{(vL ∪ vR, cL · cR) | (vL, cL) ∈ E(CL), (vR, cR) ∈ E(CR)} if C.type = ×
List [(∅, C.val)] if C.type = num
List [({C.val}, 1)] if C.type = var.

392

For further explanation, please refer to Example C.2.393

▶ Definition 4.3 (|C| (X)). For any circuit C, the corresponding positive circuit, denoted |C|,394

is obtained from C as follows. For each leaf node ℓ of C where ℓ.type is num, update ℓ.value395

to |ℓ.value|.396

Please see Example C.3 for an illustration.397

▶ Definition 4.4 (size(·)). The function size takes a circuit C as input and outputs the398

number of gates (nodes) in C.399

▶ Definition 4.5 (depth(·)). The function depth has circuit C as input and outputs the400

number of levels in C.401

6 For a very broad class of circuits: please see the discussion after Lemma 4.11 for more.
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▶ Definition 4.6 (deg(·)). 7 deg(C) is defined recursively as follows:402

deg(C) =


max(deg(CL), deg(CR)) if C.type = +
deg(CL) + deg(CR) + 1 if C.type = ×
0 otherwise.

403

Finally, we will need the following notation for the complexity of multiplying large integers:404

▶ Definition 4.7 (M (·, ·)). 8 In a RAM model of word size of W -bits, M (M, W ) denotes405

the complexity of multiplying two integers represented with M -bits. (We will assume that for406

input of size N , W = O(log N).407

4.2 Our main result408

▶ Theorem 4.8. Let C be a circuit for a UCQ over BIDB and define Q(X) = poly(C) and409

let k = deg(C). Then an estimate E of Q̃(p1, . . . , pn) can be computed in time410

O

((
size(C) +

log 1
δ

· |C|2 (1, . . . , 1) · k · log k · depth(C))
(ϵ′)2 · Q̃2(p1, . . . , pn)

)
· M (log (|C| (1, . . . , 1)), log (size(C)))

)
411

such that412

P
(∣∣∣E − Q̃(p1, . . . , pn)

∣∣∣ > ϵ′ · Q̃(p1, . . . , pn)
)
≤ δ. (3)413

To get linear runtime results from Theorem 4.8, we will need to define another parameter414

modeling the (weighted) number of monomials in E(C) to be ‘canceled’ when it is modded415

with B (Definition 2.5).416

▶ Definition 4.9 (Parameter γ). Given an expression tree C, define417

γ(C) =
∑

(v,c)∈E(C) |c| · 1 (v mod B ≡ 0)
|C| (1, . . . , 1)418

We next present a few corollaries of Theorem 4.8.419

▶ Corollary 4.10. Let Q(X) be as in Theorem 4.8 and let γ = γ(C). Further let it be the420

case that pi ≥ p0 for all i ∈ [n]. Then an estimate E of Q̃(p1, . . . , pn) satisfying Eq. (3) can421

be computed in time422

O

((
size(C) +

log 1
δ · k · log k · depth(C))
(ϵ′)2 · (1− γ)2 · p2k

0

)
· M (log (|C| (1, . . . , 1)), log (size(C)))

)
423

In particular, if p0 > 0 and γ < 1 are absolute constants then the above runtime simplifies to424

Ok

((
1

(ϵ′)2 · size(C) · log 1
δ

)
· M (log (|C| (1, . . . , 1)), log (size(C)))

)
.425

The restriction on γ is satisfied by any TIDB (where γ = 0) as well as for all three queries426

of the PDBench BIDB benchmark (see Appendix C.11 for experimental results).427

Finally, we address the M (log (|C| (1, . . . , 1)), log (size(C))) term in the runtime.428

7 Note that the degree of poly(|C|) is always upper bounded by deg(C) and the latter can be strictly
larger (e.g. consider the case when C multiplies two copies of the constant 1– here we have deg(C) = 1
but degree of poly(|C|) is 0).

8 We note that when doing arithmetic operations on the RAM model for input of size N , we have that
M (O(log N), O(log N)) = O(1). More generally we have M (N, O(log N)) = O(N log N log log N).
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Algorithm 1 ApproximateQ̃(C, p, δ, ϵ)

Input: C: Circuit
Input: p = (p1, . . . , pn) ∈ [0, 1]N
Input: δ ∈ [0, 1]
Input: ϵ ∈ [0, 1]
Output: acc ∈ R

1: acc← 0
2: N←

⌈
2 log 2

δ

ϵ2

⌉
3: (Cmod, size)← OnePass (C) ▷ OnePass is Algorithm 2
4: for i ∈ 1 to N do ▷ Perform the required number of samples
5: (M, sgni)← SampleMonomial (Cmod) ▷ SampleMonomial is Algorithm 3. Note

that sgni is the sign of the monomial’s coefficient and not the coefficient itself
6: if M has at most one variable from each block then
7: Yi ←

∏
Xj∈var(M) pj

8: Yi ← Yi × sgni
9: acc← acc + Yi ▷ Store the sum over all samples

10: end if
11: end for
12: acc← acc× size

N
13: return acc

▶ Lemma 4.11. For any circuit C with deg(C) = k, we have |C| (1, . . . , 1) ≤ 22k·size(C).429

Further, under either of the following conditions:430

1. C is a tree,431

2. C encodes the run of the algorithm in [24] on an FAQ query,432

we have |C| (1, . . . , 1) ≤ size(C)O(k).433

Note that the above implies that with the assumption p0 > 0 and γ < 1 are absolute434

constants from Corollary 4.10, then the runtime there simplies to Ok

(
1

(ϵ′)2 · size(C)2 · log 1
δ

)
435

for general circuits C and to Ok

(
1

(ϵ′)2 · size(C) · log 1
δ

)
for the case when C satisfies the specific436

conditions in Lemma 4.11. In Appendix C.4 we argue that these conditions are very general437

and encompass many interesting scenarios, including query evaluation under RA+ or FAQ.438

4.3 Approximating Q̃439

The algorithm (ApproximateQ̃ detailed in Algorithm 1) to prove Theorem 4.8 follows from440

the following observation. Given a query polynomial Q(X) = poly(C) for circuit C over441

BIDB, we can exactly represent Q̃(X) as follows:442

Q̃ (X1, . . . , Xn) =
∑

(v,c)∈E(C)

1 (v mod B ̸≡ 0) · c ·
∏

Xi∈var(v)

Xi (4)443

Given the above, the algorithm is a sampling based algorithm for the above sum: we sample444

(via SampleMonomial) (v, c) ∈ E(C) with probability proportional to |c| and compute445

Y = 1 (v mod B ̸≡ 0) ·
∏

Xi∈var(v) pi. Taking N samples and computing the average of Y446

gives us our final estimate. OnePass is used to compute the sampling probabilities needed447

in SampleMonomial (details are in Appendix C).448
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5 More on Circuits and Moments449

We formalize our claim from Sec. 1 that a linear approximation algorithm for our problem450

implies that PDB queries (under bag semantics) can be answered (approximately) in the451

same runtime as deterministic queries under reasonable assumptions. Lastly, we generalize452

our result for expectation to other moments.453

The cost model. So far our analysis of ApproximateQ̃ has been in terms of the size454

of the lineage circuits. We now show that this model corresponds to the behavior of a455

deterministic database by proving that for any RA+ query Q, we can construct a compressed456

circuit for Q and BIDB D of size (and in runtime) linear in that of a general class of query457

processing algorithms for the same query Q on a deterministic database D. We assume a458

linear relationship between input sizes |D| and |D| (i.e., ∃c, D ∈ D s.t. |D| ≤ c · |D|)). 9 We459

adopt a minimalistic compute-bound model of query evaluation drawn from the worst-case460

optimal join literature [28, 26].461

cost(R, D) = |R| cost(σQ, D) = cost(Q, D) cost(πQ, D) = cost(Q, D) + |Q(D)|
cost(Q ∪Q′, D) = cost(Q, D) + cost(Q′, D) + |Q(D)|+ |Q′(D)|

cost(Q1 ▷◁ . . . ▷◁ Qn, D) = cost(Q1, D) + . . . + cost(Qn, D) + |Q1(D) ▷◁ . . . ▷◁ Qn(D)|

462

463

Under this model a query Q evaluated over database D has runtime O(cost(Q, D)). We464

assume that full table scans are used for every base relation access. We can model index465

scans by treating an index scan query σθ(R) as a base relation.466

It can be verified that worst-case optimal join algorithms [28, 26], as well as query467

evaluation via factorized databases [30] (and work on FAQs [24]) can be modeled as select-468

union-project-join queries (though these queries can be data dependent).10 Further, it can be469

verified that the above cost model on the corresponding SPJU join queries correctly captures470

their runtime.471

We are now ready to formally state our claim from Sec. 1:472

▶ Corollary 5.1. Given an SPJU query Q over a TIDB D and let Dmax denote the world473

containing all tuples of D, we can compute a (1± ϵ)-approximation of the expectation for474

each output tuple in Q(D) with probability at least 1− δ in time475

Ok

(
1
ϵ2 · cost(Q, Dmax) · log 1

δ
· log(n)

)
476

Proof. This follows from Lemma D.1 (Appendix D.1.2) and Corollary 4.10 (where the latter477

is used with δ being substituted11 with δ
nk ).478

Higher Moments. We make a simple observation to conclude the presentation of our479

results. So far we have only focused on the expectation of Q. In addition, we could e.g. prove480

bounds of probability of the multiplicity being at least 1. Progress can be made on this as481

follows: For any positive integer m we can compute the m-th moment of the multiplicities,482

9 This is a reasonable assumption because each block of a BIDB represents entities with uncertain
attributes. In practice there is often a limited number of alternatives for each block (e.g., which of five
conflicting data sources to trust). Note that all TIDBs trivially fulfill this condition (i.e., c = 1).

10 This claim can be verified by e.g. simply looking at the Generic-Join algorithm in [28] and factorize
algorithm in [30].

11 Recall that Corollary 4.10 is stated for a single output tuple so to get the required guarantee for all (at
most nk) output tuples of Q we get at most δ

nk probability of failure for each output tuple and then
just a union bound over all output tuples.
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allowing us to e.g. use Chebyschev inequality or other high moment based probability bounds483

on the events we might be interested in. We leave further investigations for future work.484

6 Related Work485

Probabilistic Databases (PDBs) have been studied predominantly for set semantics.486

Approaches for probabilistic query processing (i.e., computing marginal probabilities of487

tuples), fall into two broad categories. Intensional (or grounded) query evaluation computes488

the lineage of a tuple and then the probability of the lineage formula. It has been shown489

that computing the marginal probability of a tuple is #P-hard [36] (by reduction from490

weighted model counting). The second category, extensional query evaluation, is in PTIME,491

but is limited to certain classes of queries. Dalvi et al. [11] and Olteanu et al. [17] proved492

dichotomies for UCQs and two classes of queries with negation, respectively. Amarilli et al.493

investigated tractable classes of databases for more complex queries [2]. Another line of work,494

studies which structural properties of lineage formulas lead to tractable cases [23, 31, 33]. In495

this paper we focus on intensional query evaluation with polynomials.496

Many data models have been proposed for encoding PDBs more compactly than as sets of497

possible worlds. These include tuple-independent databases [37] (TIDBs), block-independent498

databases (BIDBs) [32], and PC-tables [20]. Fink et al. [15] study aggregate queries over499

a probabilistic version of the extension of K-relations for aggregate queries proposed in [3]500

(pvc-tables). As an extension of K-relations, this approach supports bags. In contrast,501

we study a less general data model (N[X]-PDBs) and query class, but provide a linear502

time approximation algorithm and provide new insights into the complexity of computing503

expectations while [15] computes probabilities for individual output annotations.504

Several techniques for approximating tuple probabilities have been proposed in related505

work [16, 12, 29, 9], relying on Monte Carlo sampling, e.g., [9], or a branch-and-bound506

paradigm [29]. Our approximation algorithm is also based on sampling.507

Compressed Encodings are used for Boolean formulas (e.g, various types of circuits508

including OBDDs [22]) and polynomials (e.g., factorizations [30]) some of which have been509

utilized for probabilistic query processing, e.g., [22]. Compact representations for which510

probabilities can be computed in linear time include OBDDs, SDDs, d-DNNF, and FBDD.511

[13] studies circuits for absorptive semirings while [34] studies circuits that include negation512

(expressed as the monus operation). Algebraic Decision Diagrams [5] (ADDs) generalize513

BDDs to variables with more than two values. Chen et al. [7] introduced the generalized514

disjunctive normal form. Appendix E covers more related work on fine-grained complexity.515

7 Conclusions and Future Work516

We have studied the problem of calculating the expectation of lineage polynomials over517

BIDBs. This problem has a practical application in probabilistic databases over multisets,518

where it corresponds to calculating the expected multiplicity of a query result tuple. While519

the expectation of a polynomial can be calculated in linear time for polynomials in SOP520

form, the problem is #W[1]-hard for factorized polynomials (proven through a reduction521

from the problem of counting k-matchings). We prove that it is possible to approximate the522

expectation of a lineage polynomial in linear time UCQs over TIDBs and BIDBs (under the523

assumption that there are few cancellations). Interesting directions for future work include524

development of a dichotomy for bag PDBs and approximations for more general data models.525
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A Missing details from Section 2605

A.1 K-relations and N[X]-PDBs606

We use K-relations to model bags. A K-relation [19] is a relation whose tuples are annotated607

with elements from a commutative semiring K = (K,⊕K,⊗K, 0K, 1K). A commutative608

semiring is a structure with a domain K and associative and commutative binary operations609

⊕K and ⊗K such that ⊗K distributes over ⊕K, 0K is the identity of ⊕K, 1K is the identity610

of ⊗K, and 0K annihilates all elements of K when combined by ⊗K. Let U be a countable611

domain of values. Formally, an n-ary K-relation over U is a function R : Un → K with612

finite support supp(R) = {t | R(t) ̸= 0K}. A K-database is a set of K-relations. It will be613

convenient to also interpret a K-database as a function from tuples to annotations. Thus,614

R(t) (resp., D(t)) denotes the annotation associated by K-relation R (K-database D) to t.615

For completeness, we briefly review the semantics for RA+ queries over K-relations [19]616

illustrated in Fig. 2. In Fig. 2, we use J·KD to denote the result of evaluating query Q617

over K-database D, assume that tuples are of appropriate arity, use sch(R) to denote the618

attributes of R, and use πA(t) to denote the projection of tuple t on a list of attributes A.619

Furthermore, θ(t) denotes the (Boolean) result of evaluating condition θ over t.620

Consider the semiring N = (N, +,×, 0, 1) of natural numbers. N-databases model bag621

semantics by annotating each tuple with its multiplicity. A probabilistic N-database (N-PDB)622

is a PDB where each possible world is an N-database. We study the problem of computing623

statistical moments for query results over such databases. Specifically, given a probabilistic624

N-database D = (Ω, P), query Q, and possible result tuple t, we use Q(D)(t) for D ∈ Ω as625

input in RHS of Eq. (1) to compute the expected multiplicity of t. Note that the tables of626

Fig. 1 have an implicit 1 N-valued annotation for each tuple in tables OnTime and Route.627

Intuitively, the expectation of Q(D)(t) is the number of duplicates of t we expect to find in628

result of query Q.629

Let N[X] denote the set of polynomials over variables X = (X1, . . . , Xn) with natural630

number coefficients and exponents. Consider now the semiring (N[X], +, ·, 0, 1) whose domain631

is N[X], with the standard addition and multiplication of polynomials. We will use N[X]-PDB632

D, defined as the tuple (ΩN[X], P), where N[X]-database ΩN[X] is paired with probability633

distribution P. We denote by Qt the annotation of tuple t in the result of Q on an634

implicit N[X]-PDB (i.e., Qt = Q(D)(t) for some D) and as before, interpret it as a function635

Qt : {0, 1}|X| → N from vectors of variable assignments to the corresponding value of the636

annotating polynomial. N[X]-PDBs and a function Mod (which transforms an N[X]-PDB to637

an equivalent N-PDB) are both formalized next.638

To justify the use of N[X]-databases, we need to show that we can encode any N-PDB in639

this way and that the query semantics over this representation coincides with query semantics640

over N-PDB. For that it will be opportune to define representation systems for N-PDBs.641

▶ Definition A.1 (Representation System). A representation system for N-PDBs is a tuple642

(M, Mod) where M is a set of representations and Mod associates with each M ∈ M an643

N-PDB D. We say that a representation system is closed under a class of queries Q if for644

any query Q ∈ Q we have:645

Mod(Q(M)) = Q(Mod(M))646

A representation system is complete if for every N-PDB D there exists M ∈ M such647

that:648

Mod(M) = D649
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As mentioned above we will use N[X]-databases paired with a probability distribution as650

a representation system. We refer to such databases as N[X]-PDBs and use bold symbols to651

distinguish them from possible worlds (which are N-databases). Formally, an N[X]-PDB is652

an N[X]-database ΩN[X] and a probability distribution P over assignments φ of the variables653

X = {X1, . . . , Xn} occurring in annotations of ΩN[X] to {0, 1}. Note that an assignment654

φ : X → {0, 1}n can be represented as a vector w ∈ {0, 1}n where w[i] records the value655

assigned to variable Xi. Thus, from now on we will solely use such vectors which we refer656

to as world vectors and implicitly understand them to represent assignments. Given an657

assignment φ we use φ(D) to denote the semiring homomorphism N[X]→ N that applies658

the assignment φ to all variables of a polynomial and evaluates the resulting expression in N.659

▶ Definition A.2 (N[X]-PDBs). An N[X]-PDB D over variables X = {X1, . . . , Xn} is660

a tuple (ΩN[X], P) where D is an N[X]-database and P is a probability distribution over661

w ∈ {0, 1}n. We use φw to denote the assignment corresponding to w ∈ {0, 1}n. The N-PDB662

Mod(D) = (Ω, P′) encoded by D is defined as:663

Ω = {φw(D) | w ∈ {0, 1}n}664

∀D ∈ Ω : P ′(D) =
∑

w∈{0,1}n:φw(D)=D

P (w)665

666

For instance, consider a D consisting of a single tuple t1 = (1) annotated with X1 + X2667

with probability distribution P ([0, 0]) = 0, P ([0, 1]) = 0, P ([1, 0]) = 0.3 and P ([1, 1]) = 0.7.668

This N[X]-PDB encodes two possible worlds (with non-zero) probability that we denote669

using their world vectors.670

D[0,1](t1) = 1 and D[1,1](t1) = 2671

Importantly, as the following proposition shows, any finite N-PDB can be encoded as an672

N[X]-PDB and N[X]-PDBs are closed under positive relational algebra queries, the class of673

queries we are interested in in this work.674

▶ Proposition A.3. N[X]-PDBs are a complete representation system for N-PDBs that is675

closed under RA+ queries.676

Proof. To prove that N[X]-PDBs are complete consider the following construction that for677

any N-PDB D = (Ω, P) produces an N[X]-PDB D = (ΩN[X], P′) such that Mod(D) = D.678

Let Ω = {D1, . . . , D|Ω|} and let max(Di) denote maxtDi(t). For each world Di we create a679

corresponding variable Xi. In ΩN[X] we assign each tuple t the polynomial:680

ΩN[X](t) =
|Ω|∑
i=1

Di(t) ·Xi681

The probability distribution P′ assigns all world vectors zero probability except for |Ω| world682

vectors (representing the possible worlds) wi. All elements of wi are zero except for the683

position corresponding to variables Xi which is set to 1. Unfolding definitions it is trivial684

to show that Mod(D) = D. Thus, N[X] are a complete representation system. The closure685

under RA+ queries follows from the fact that an assignment X → {0, 1} is a semiring686

homomorphism and that semiring homomorphisms commute with queries over K-relations.687

Now let us consider computing the expected multiplicity of a tuple t in the result of a688

query Q over an N-PDB D using the annotation of t in the result of evaluating Q over an689
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N[X]-PDB D for which Mod(D) = D. The expectation of the polynomial Q = Q(D)(t)690

based on the probability distribution of D over the variables in D is:691

E
W∼P

[Q(W)] =
∑

w∈{0,1}n

φw(Q(D)(t)) · P (w) (5)692

Since N[X]-PDBs D are a complete representation system for N-PDBs which are closed693

under RA+, computing the expectation of the multiplicity of a tuple t in the result of an694

RA+ query over the N-PDB Mod(D), is the same as computing the expectation of the695

polynomial Q(D)(t). ◀696

A.2 TIDBs and BIDBs in the N[X]-PDB model697

Two important subclasses of N[X]-PDBs that are of interest to us are the bag versions of698

tuple-independent databases (TIDBs) and block-independent databases (BIDBs). Under set699

semantics, a TIDB is a deterministic database D where each tuple t is assigned a probability700

pt. The set of possible worlds represented by a TIDB D is all subsets of D. The probability701

of each world is the product of the probabilities of all tuples that exist with one minus702

the probability of all tuples of D that are not part of this world, i.e., tuples are treated703

as independent random events. In a BIDB, we also assign each tuple a probability, but704

additionally partition D into blocks. The possible worlds of a BIDB D are all subsets of D705

that contain at most one tuple from each block. Note then that the tuples sharing the same706

block are disjoint, and the sum of the probabilitites of all the tuples in the same block b is 1.707

The probability of such a world is the product of the probabilities of all tuples present in the708

world. For bag TIDBs and BIDBs, we define the probability of a tuple to be the probability709

that the tuple exists with multiplicity at least 1.710

As already noted above, in this work, we define TIDBs and BIDBs as subclasses of711

N[X]-PDBs. In this work, we consider one further deviation from the standard: We use bag712

semantics for queries. Even though tuples cannot occur more than once in the input TIDB713

or BIDB, they can occur with a multiplicity larger than one in the result of a query. Since714

in TIDBs and BIDBs, there is a one-to-one correspondence between tuples in the database715

and variables, we can interpret a vector w ∈ {0, 1}n as denoting which tuples exist in the716

possible world φw(D) (the ones where w[j] = 1). For BIDBs specifically, note that that at717

most one of the bits corresponding to tuples in each block will be set (i.e., for any pair of718

bits wj , wj′ that are part of the same block bi ⊇ {ti,j , ti,j′}, at most one of them will be set).719

Denote the vector p to be a vector whose elements are the individual probabilities pi of each720

tuple ti. Let P(p) denote the distribution induced by p.721

E
W∼P(p)

[Q(W)] =
∑

w∈{0,1}n

s.t.wj ,wj′ =1↛∃bi⊇{ti,j ,ti′,j}

Q(w)
∏

j∈[n]
s.t.wj=1

pj

∏
j∈[n]

s.t.wj=0

(1− pi) (6)722

723

Recall that tuple blocks in a TIDB always have size 1, so the outer summation of eq. (6) is724

over the full set of vectors.725

A.3 Proof of Proposition 2.1726

Proof. We need to prove for N-PDB D = (Ω, P) and N[X]-PDB D = (D′, P′) where727

Mod(D) = D that ED∼P[Q(D)(t)] = EW∼P′ [Qt(W)] By expanding Qt and the expectation728
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we have:729

E
W∼P′

[Qt(W)] =
∑

w∈{0,1}n

P ′(w) ·Q(D)(t)(w)730

731

From Mod(D) = D, we have that the range of φw(D) is Ω, so732

=
∑
D∈Ω

∑
w∈{0,1}n:φw(D)=D

P ′(w) ·Q(D)(t)(w)733

734

In the inner sum, φw(D) = D, so by distributivity of + over ×735

=
∑
D∈Ω

Q(D)(t)
∑

w∈{0,1}n:φw(D)=D

P ′(w)736

737

From the definition of P , given Mod(D) = D, we get738

=
∑
D∈Ω

Q(D)(t) · P (D) = E
D∼P

[Q(D)(t)]739

740

◀741

A.4 Lemma A.4742

▶ Lemma A.4. If Q(X1, . . . , Xn) =
∑

d∈{0,...,B}n

qd ·
n∏

i=1
s.t.di≥1

Xdi
i then Q̃(X1, . . . , Xn) =

∑
d∈η

qd ·743

n∏
i=1

s.t.di≥1

Xi744

Proof. Follows by the construction of Q̃ in definition 2.6. ◀745

A.5 Proposition A.5746

Note the following fact:747

▶ Proposition A.5. For any BIDB-lineage polynomial Q(X1, . . . , Xn) and all w ∈ η, it holds748

that Q(w) = Q̃(w).749

Proof. Note that any Q in factorized form is equivalent to its SMB expansion. For each750

term in the expanded form, further note that for all b ∈ {0, 1} and all e ≥ 1, be = b. ◀751

A.6 Proof for Lemma 2.8752

Proof. Let Q be the generalized polynomial, i.e., the polynomial of n variables with highest753

degree = B:754

Q(X1, . . . , Xn) =
∑

d∈{0,...,B}n

qd ·
n∏

i=1
s.t.di≥1

Xdi
i755

. Then, in expectation we have756

E
W

[Q(W)] =
∑
d∈η

qd · E
w

 n∏
i=1

s.t.di≥1

wdi
i

 (7)757
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=
∑
d∈η

qd ·
n∏

i=1
s.t.di≥1

E
w

[
wdi

i

]
(8)758

=
∑
d∈η

qd ·
n∏

i=1
s.t.di≥1

E
w

[wi] (9)759

=
∑
d∈η

qd ·
n∏

i=1
s.t.di≥1

pi (10)760

= Q̃(p1, . . . , pn) (11)761
762

In steps eq. (7) and eq. (8), by linearity of expectation (recall the variables are independent,763

or the monomial expectation is 0), the expecation can be pushed all the way inside of the764

product. In eq. (9), note that wi ∈ {0, 1} which further implies that for any exponent e ≥ 1,765

we
i = wi. Next, in eq. (10) the expectation of a tuple is indeed its probability.766

Finally, observe Eq. (11) by construction in Lemma A.4, that Q̃(p1, . . . , pn) is exactly767

the product of probabilities of each variable in each monomial across the entire sum. ◀768

A.7 Proof For Corollary 2.9769

Proof. Note that lemma 2.8 shows that E [Q] = Q̃(p1, . . . , pn). Therefore, if Q is already770

in SMB form, one only needs to compute Q(p1, . . . , pn) ignoring exponent terms (note that771

such a polynomial is Q̃(p1, . . . , pn)), which indeed has O(SMB(|Q|)) computations. ◀772

B Missing details from Section 3773

We use Lemma 3.5 to prove Theorem 3.4:774

B.1 Proof of Theorem 3.4775

Proof. For the sake of contradiction, let us assume we can solve our problem in f(k) ·mc time776

for some absolute constant c. Then given a graph G we can compute the query polynomial or777

rather, expression tree representation of Q̃k
G (in the obvious way) in O(km) time. Then after778

we run our algorithm on Q̃k
G, we get Q̃k

G(pi, . . . , pi) for 0 ≤ i ≤ 2k in additional f(k) ·mc
779

time. Lemma 3.5 then computes the number of k-matchings in G in O(k3) time. Thus,780

overall we have an algorithm for computing the number of k-matchings in time781

O(km) + f(k) ·mc + O(k3) ≤
(
O(k3) + f(k)

)
·mc+1

782

≤
(
O(k3) + f(k)

)
· n2c+2,783

784

which contradicts Theorem 3.1. ◀785

B.2 Proof of Lemma 3.5786

Proof. We first argue that Q̃k
G(p, . . . , p) =

2k∑
i=0

ci · pi. First, since QG(X) has degree 2, it787

follows that Qk
G(X) has degree 2k. By definition, Q̃k

G(X) sets every exponent e > 1 to e = 1,788

which means that deg(Q̃k
G) ≤ deg(Qk

G) = 2k. Thus, if we think of p as a variable, then789
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Q̃k
G(p, . . . , p) is a univariate polynomial of degree at most deg(Q̃k

G) ≤ 2k. Thus, we can790

write791

Q̃k
G(p, . . . , p) =

2k∑
i=0

cip
i

792

We note that ci is exactly the number of monomials in the SMB expansion of Qk
G(X) composed793

of i distinct variables.12
794

Given that we then have 2k + 1 distinct values of Q̃k
G(p, . . . , p) for 0 ≤ i ≤ 2k, it follows795

that we have a linear system of the form M · c = b where the ith row of M is
(
p0

i . . . p2k
i

)
,796

c is the coefficient vector (c0, . . . , c2k), and b is the vector such that b[i] = Q̃k
G(pi, . . . , pi).797

In other words, matrix M is the Vandermonde matrix, from which it follows that we have798

a matrix with full rank (the pi’s are distinct), and we can solve the linear system in O(k3)799

time (e.g., using Gaussian Elimination) to determine c exactly. Thus, after O(k3) work, we800

know c and in particular, c2k exactly. Next, we show why we can compute #
(
G, · · · k

)
801

from c2k in O(1) additional time. We claim that c2k is k! ·#
(
G, · · · k

)
. This can be seen802

intuitively by looking at the original factorized representation803

Qk
G(X) =

∑
(i1,j1),··· ,(ik,jk)∈E

Xi1Xj1 · · ·Xik
Xjk

,804

where across each of the k products, an arbitrary k-matching can be selected
∏k

i=1 i = k!805

times. Indeed, note that each k-matching (i1, j1) . . . (ik, jk) in G corresponds to the monomial806 ∏k
ℓ=1 Xiℓ

Xjℓ
in Qk

G(X), with distinct indexes. Second, the only surviving monomials807 ∏k
ℓ=1 Xiℓ

Xjℓ
of degree exactly 2k in Q̃k

G(X) must have that all of i1, j1, . . . , ik, jk are distinct808

in Qk
G(X). By the last two statements, only monomials composed of 2k distinct variables in809

Qk
G(X) (and hence of degree 2k in Q̃k

G(X)) correspond to a k-matching in G.810

Notice that each of the k! permutations of an arbitrary monomial maps to the same811

distinct k-matching in G, and this implies a k! to 1 mapping between degree 2k monomials812

in Q̃k
G(X) and k-matchings in G. It then follows that c2k = k! ·#

(
G, · · · k

)
. Thus, simply813

dividing c2k by k! gives us #
(
G, · · · k

)
, as needed. ◀814

B.3 Subgraph Notation and O(1) Closed Formulas815

We need all the possible edge patterns in an arbitrary G with at most three distinct edges.816

We have already seen , and , so we define the remaining patterns:817

Single Edge ( )818

2-path ( )819

2-matching ( )820

3-star ( )–this is the graph that results when all three edges share exactly one common821

endpoint. The remaining endpoint for each edge is disconnected from any endpoint of822

the remaining two edges.823

Disjoint Two-Path ( )–this subgraph consists of a two-path and a remaining disjoint824

edge.825

12 Since Q̃k
G(X) does not have any monomial with degree < 2, it is the case that c0 = c1 = 0 but for the

sake of simplcity we will ignore this observation.
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For any graph G, the following formulas for # (G, H) compute their respective patterns826

exactly in O(m) time, with di representing the degree of vertex i (proofs are in Appendix B.4):827

# (G, ) = m, (12)828

# (G, ) =
∑
i∈V

(
di

2

)
(13)829

# (G, ) =
∑

(i,j)∈E

m− di − dj + 1
2 (14)830

# (G, ) =
∑
i∈V

(
di

3

)
(15)831

# (G, ) + 3# (G, ) =
∑

(i,j)∈E

(
m− di − dj + 1

2

)
(16)832

# (G, ) + 3# (G, ) =
∑

(i,j)∈E

(di − 1) · (dj − 1) (17)833

834

835

B.4 Proofs of Eq. (12)-Eq. (17)836

The proofs for Eq. (12), Eq. (13) and Eq. (15) are immediate.837

Proof of Eq. (14). For edge (i, j) connecting arbitrary vertices i and j, finding all other838

edges in G disjoint to (i, j) is equivalent to finding all edges that are not connected to either839

vertex i or j. The number of such edges is m− di − dj + 1, where we add 1 since edge (i, j)840

is removed twice when subtracting both di and dj . Since the summation is iterating over841

all edges such that a pair ((i, j), (k, ℓ)) will also be counted as ((k, ℓ), (i, j)), division by 2842

then eliminates this double counting. Note that m and di for all i ∈ V can be computed in843

one pass over the set of edges by simply maintaining counts for each quantity. Finally, the844

summation is also one traversal through the set of edges where each operation is either a845

lookup (O(1) time) or an addition operation (also O(1)) time. ◀846

Proof of Eq. (16). Eq. (16) is true for similar reasons. For edge (i, j), it is necessary to find847

two additional edges, disjoint or connected. As in our argument for Eq. (14), once the number848

of edges disjoint to (i, j) have been computed, then we only need to consider all possible849

combinations of two edges from the set of disjoint edges, since it doesn’t matter if the two850

edges are connected or not. Note, the factor 3 of is necessary to account for the triple851

counting of 3-matchings. It is also the case that, since the two path in is connected, that852

there will be no double counting by the fact that the summation automatically disconnects853

the current edge, meaning that a two matching at the current vertex will not be counted. The854

sum over all such edge combinations is precisely then # (G, ) + 3# (G, ). Note that855

all di and di − 3 factorials can be computed in O(m) time, and then each combination
(

n
3
)

856

can be performed with constant time operations, yielding the claimed O(m) run time. ◀857

Proof of Eq. (17). To compute # (G, ), note that for an arbitrary edge (i, j), a 3-path858

exists for edge pair (i, ℓ) and (j, k) where i, j, k, ℓ are distinct. Further, the quantity (di −859

1) · (dj − 1) represents the number of 3-edge subgraphs with middle edge (i, j) and outer860

edges (i, ℓ), (j, k) such that ℓ ̸= j and k ̸= i. When k = ℓ, the resulting subgraph is a triangle,861

and when k ̸= ℓ, the subgraph is a 3-path. Summing over all edges (i, j) gives Eq. (17) by862

observing that each triangle is counted thrice, while each 3-path is counted just once. For863
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reasons similar to Eq. (14), all di can be computed in O(m) time and each summand can864

then be computed in O(1) time, yielding an overall O(m) run time. ◀865

B.5 Proof of Theorem 3.6866

Proof. For the sake of contradiction, assume that for any G, we can compute Q̃3
G(p, . . . , p)867

in o
(
m1+ϵ0

)
time. Let G be the input graph. It is easy to see that one can compute the868

expression tree for Q3
G(X) in O(m) time. Then by Theorem 3.7 we can compute # (G, )869

in further time o
(
m1+ϵ0

)
+ O(m). Thus, the overall, reduction takes o

(
m1+ϵ0

)
+ O(m) =870

o
(
m1+ϵ0

)
time, which violates Conjecture 3.2. ◀871

B.6 Tools to prove Lemma 3.8872

Note that Q̃3
G(p, . . . , p) as a polynomial in p has degree at most six. Next, we figure out the873

exact coefficients since this would be useful in our arguments:874

▶ Lemma B.1. For any p, we have:875

Q̃3
G(p, . . . , p) = # (G, ) p2 + 6# (G, ) p3 + 6# (G, ) p4 + 6# (G, ) p3

876

+ 6# (G, ) p4 + 6# (G, ) p4 + 6# (G, ) p5 + 6# (G, ) p6. (18)877878

B.6.1 Proof for Lemma B.1879

Proof. By definition we have that880

Q3
G(X) =

∑
(i1,j1),(i2,j2),(i3,j3)∈E

3∏
ℓ=1

Xiℓ
Xjℓ

.881

Hence Q̃3
G(X) has degree six. Note that the monomial

∏3
ℓ=1 Xiℓ

Xjℓ
will contribute to the882

coefficient of pν in Q̃3
G(X), where ν is the number of distinct variables in the monomial. Let883

e1 = (i1, j1), e2 = (i2, j2), e3 = (i3, j3). We compute Q̃3
G(X) by considering each of the three884

forms that the triple (e1, e2, e3) can take.885

case 1: e1 = e2 = e3 (all edges are the same). There are exactly m = # (G, ) such886

triples, each with a p2 factor in Q̃3
G (p, . . . , p).887

case 2: This case occurs when there are two distinct edges of the three, call them e and888

e′. When there are two distinct edges, there is then the occurence when 2 variables in the889

triple (e1, e2, e3) are bound to e. There are three combinations for this occurrence in Q3
G(X).890

Analogusly, there are three such occurrences in Q3
G(X) when there is only one occurrence of891

e, i.e. 2 of the variables in (e1, e2, e3) are e′. This implies that all 3 + 3 = 6 combinations of892

two distinct edges e and e′ contribute to the same monomial in Q̃3
G. Since e ̸= e′, this case893

produces the following edge patterns: , , which contribute 6p3 and 6p4 respectively to894

Q̃3
G (p, . . . , p).895

case 3: All e1, e2 and e3 are distinct. For this case, we have 3! = 6 permutations of896

(e1, e2, e3), each of which contribute to the same monomial in the SMB representation of897

Q3
G(X). This case consists of the following edge patterns: , , , , , which898

contribute 6p3, 6p4, 6p4, 6p5 and 6p6 respectively to Q̃3
G (p, . . . , p). ◀899

Since p is fixed, Lemma B.1 gives us one linear equation in # (G, ) and # (G, ) (we900

can handle the other counts due to equations (12)-(17)). However, we need to generate901

one more independent linear equation in these two variables. Towards this end we generate902

another graph related to G:903
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▶ Definition B.2. For ℓ > 1, let graph G(ℓ) be a graph generated from an arbitrary graph904

G(1), by replacing every edge e of G(1) with a ℓ-path, such that all inner vertexes of an ℓ-path905

replacement edge are disjoint from the inner vertexes of any other ℓ-path replacement edge.906

Next, we relate the various sub-graph counts in G(2) to G(1) (G).907

▶ Lemma B.3. The 3-matchings in graph G(2) satisfy the identity:908

#
(

G(2),
)

= 8 ·#
(

G(1),
)

+ 6 ·#
(

G(1),
)

909

+ 4 ·#
(

G(1),
)

+ 4 ·#
(

G(1),
)

+ 2 ·#
(

G(1),
)

.910
911

▶ Lemma B.4. For ℓ > 1 and any graph G(ℓ), #
(
G(ℓ),

)
= 0.912

B.7 Proof of Theorem 3.7913

Proof. We can compute G(2) from G(1) in O(m) time. Additionally, if in time O(T (m)), we914

have Q̃3
G(ℓ)(p, . . . , p) for ℓ ∈ [2], then the theorem follows by Lemma 3.8. ◀ In other words,915

if Theorem 3.7 holds, then so must Theorem 3.6.916

B.8 Proofs for Lemma B.3, Lemma B.4, and Lemma 3.8917

Before proceeding, let us introduce a few more helpful definitions.918

▶ Definition B.5. For ℓ > 1, we use Eℓ to denote the set of edges in G(ℓ). For any graph919

G(ℓ), its edges are denoted by the a pair (e, b), such that b ∈ {0, . . . , ℓ− 1} and e ∈ E1, where920

(e, 0), . . . , (e, ℓ− 1) is the ℓ-path that replaces the edge e.921

▶ Definition B.6 (E(ℓ)
S ). Given an arbitrary subgraph S(1) of G(1), let E

(1)
S denote the set of922

edges in S(1). Define then E
(ℓ)
S for ℓ > 1 as the set of edges in the generated subgraph S(ℓ)

923

(i.e. when we apply Definition B.2 to S(1)).924

For example, consider S(1) with edges E
(1)
S = {e1}. Then the edge set of S(2) is defined925

as E
(2)
S = {(e1, 0), (e1, 1)}.926

▶ Definition B.7. Let
(

E
t

)
denote the set of subsets in E with exactly t edges. In a similar927

manner,
(

E
≤t

)
is used to mean the subsets of E with t or fewer edges.928

The following function fℓ is a mapping from every 3-edge shape in G(ℓ) to its ‘projection’929

in G(1).930

▶ Definition B.8. Let fℓ :
(

Eℓ

3
)
7→
(

E1
≤3
)

be defined as follows. For any element s ∈
(

Eℓ

3
)

such931

that s = {(e1, b1), (e2, b2), (e3, b3)}, define:932

fℓ ({(e1, b1), (e2, b2), (e3, b3)}) = {e1, e2, e3} .933

▶ Definition B.9 (f−1
ℓ ). For an arbitrary subgraph S(1) of G(1) with at most m ≤ 3 edges, the934

inverse function f−1
ℓ :

(
E1
≤3
)
7→ 2(Eℓ

3 ) takes E
(1)
S and outputs the set of all elements s ∈

(E
(ℓ)
S
3
)

935

such that fℓ(s) = E
(1)
S .936

Note, importantly, that when we discuss f−1
ℓ , that each edge present in E

(1)
S must have937

an edge in s ∈ f−1
ℓ (S) that projects down to it. In particular, if |E(1)

S | = 3, then it must be938

the case that each s ∈ f−1
ℓ (S) consists of the following set of edges: {(ei, b), (ej , b′), (em, b′′)},939

where i, j and m are distinct.940

We first note that fℓ is well-defined:941
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▶ Lemma B.10. fℓ is a function.942

Proof. Note that fℓ is properly defined. For any S ∈
(

Eℓ

3
)
, |f(S)| ≤ 3, since it has to be the943

case that any subset of 3 edges in Eℓ will map to at most three edges in E1. All mappings944

are in the required range. Then, since for any b ∈ {0, . . . , ℓ − 1} the map (e, b) 7→ e is a945

function and has exactly one mapping, which implies that fℓ is a function. ◀946

We are now ready to prove the structural lemmas. Note that fℓ maps subsets of three947

edges in G(ℓ) to a subset of at most three edges in E1. To prove the structural lemmas, we948

will use the map f−1
ℓ . In particular, to count the number of occurrences of , , in949

G(ℓ) we count for each S ∈
(

E1
≤3
)
, how many of / / subgraphs appear in f−1

ℓ (S).950

B.8.1 Proof of Lemma B.3951

Proof. For each subset E
(1)
S ∈

(
E1
≤3
)
, we count the number of 3-matchings in the 3-edge952

subgraphs of G(2) in f−1
2 (E(1)

S ). We first consider the case of E
(1)
S ∈

(
E1
3
)
, where E

(1)
S953

is composed of the edges e1, e2, e3 and f−1
2 (E(1)

S ) is the set of all 3-edge subsets s ∈954

{(e1, 0), (e1, 1), (e2, 0), (e2, 1), (e3, 0), (e3, 1)} such that fℓ(s) = {e1, e2, e3}.955

We do a case analysis based on the subgraph S(1) induced by E
(1)
S (denoted E

(1)
S ≡ S(1)):956

3-matching ( )957

When S(1) is isomorphic to , it is the case that edges in E
(2)
S are not disjoint only for the958

pairs (ei, 0), (ei, 1) for i ∈ {1, 2, 3}. All choices for b1, b2, b3 ∈ {0, 1}, (e1, b1), (e2, b2), (e3, b3)959

will compose a 3-matching. One can see that we have a total of two possible choices for bi960

for each edge ei in G(1) yielding 23 = 8 possible 3-matchings in f−1
2 (E(1)

S ).961

Disjoint Two-Path ( )962

For S(1) isomorphic to edges e2, e3 form a 2-path with e1 being disjoint. This means963

that (e2, 0), (e2, 1), (e3, 0), (e3, 1) form a 4-path while (e1, 0), (e1, 1) is its own disjoint 2-path.964

We can only pick either (e1, 0) or (e1, 1) for f−1
2 (E(1)

S ), and then we need to pick a 2-matching965

from e2 and e3. Note that the four path allows there to be 3 possible 2 matchings, specifically,966

{(e2, 0), (e3, 0)} , {(e2, 0), (e3, 1)} , {(e2, 1), (e3, 1)} .967

Since these two selections can be made independently, there are 2 · 3 = 6 distinct968

3-matchings in f−1
2 (E(1)

S ).969

3-star ( )970

When S(1) is isomorphic to , the inner edges (ei, 1) of E
(2)
S are all connected, and the971

outer edges (ei, 0) are all disjoint. Note that for a valid 3 matching it must be the case that972

at most one inner edge can be part of the set of disjoint edges. For the case of when exactly973

one inner edge is chosen, there exist 3 possiblities, based on which inner edge is chosen.974

Note that if (ei, 1) is chosen, the matching has to choose (ej , 0) for j ̸= i and (ej′ , 0) for975

j′ ̸= i, j′ ̸= j. The remaining possible 3-matching occurs when all 3 outer edges are chosen.976

Thus, there are four 3-matchings in f−1
2 (E(1)

S ).977

3-path ( )978
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When S(1) is isomorphic to it is the case that all edges beginning with e1 and ending with e3979

are successively connected. This means that the edges of E
(2)
S form a 6-path. For a 3-matching980

to exist in f−1
2 (E(1)

S ), we cannot pick both (ei, 0) and (ei, 1) or both (ei, 1) and (ej , 0) where981

j = i + 1. There are four such possibilities: {(e1, 0), (e2, 0), (e3, 0)}, {(e1, 0), (e2, 0), (e3, 1)},982

{(e1, 0), (e2, 1), (e3, 1)} , {(e1, 1), (e2, 1), (e3, 1)}, a total of four 3-matchings in f−1
2 (E(1)

S ).983

Triangle ( )984

For S(1) isomorphic to , note that it is the case that the edges in E
(2)
S are connected in a985

successive manner, but this time in a cycle, such that (e1, 0) and (e3, 1) are also connected.986

While this is similar to the discussion of the three path above, the first and last edges are987

not disjoint, since they are connected. This rules out both subsets of (e1, 0), (e2, 0), (e3, 1)988

and (e1, 0), (e2, 1), (e3, 1), yielding two 3-matchings.989

Let us now consider when E
(1)
S ∈

(
E1
≤2
)
, i.e. patterns among990

2-matching ( ), 2-path ( ), 1 edge ( )991

When |E(1)
S | = 2, we can only pick one from each of two pairs, {(e1, 0), (e1, 1)} and992

{(e2, 0), (e2, 1)}. This implies that a 3-matching cannot exist in f−1
2 (E(1)

S ). The same993

argument holds for |E(1)
S | = 1, where we can only pick one edge from the pair {(e1, 0), (e1, 1)}.994

Trivially, no 3-matching exists in f−1
2 (E(1)

S ).995

Observe that all of the arguments above focused solely on the subgraph S(1) is isomorphmic.996

In other words, all E
(1)
S of a given “shape” yield the same number of 3-matchings in f−1

2 (E(1)
S ),997

and this is why we get the required identity using the above case analysis. ◀998

B.8.2 Proof of Lemma B.4999

Proof. The number of triangles in G(ℓ) for ℓ ≥ 2 will always be 0 for the simple fact that all1000

cycles in G(ℓ) will have at least six edges. ◀1001

B.8.3 Proof of Lemma 3.81002

Proof. The proof consists of two parts. First we need to show that a vector b satisfying the1003

linear system exists and further can be computed in O(m) time. Second we need to show1004

that # (G, ) , # (G, ) can indeed be computed in time O(1).1005

The lemma claims that for M =
(

1− 3p −(3p2 − p3)
10(3p2 − p3) 10(3p2 − p3)

)
, x =

(
# (G, )]
# (G, )

)
1006

satisfies the system M · x = b.1007

To prove the first step, we use Lemma B.1 to derive the following equality (dropping the1008

superscript and referring to G(1) as G):1009

# (G, ) p2 + 6# (G, ) p3 + 6# (G, ) p4 + 6# (G, ) p3 + 6# (G, ) p4
1010

+ 6# (G, ) p4 + 6# (G, ) p5 + 6# (G, ) p6 = Q̃3
G(p, . . . , p)

(19)
1011

# (G, ) + # (G, ) p + # (G, ) p2 + # (G, ) p3
1012

= Q̃3
G(p, . . . , p)

6p3 − # (G, )
6p

−# (G, )−# (G, ) p−# (G, ) p

(20)

1013

# (G, ) (1− 3p)−# (G, ) (3p2 − p3) =1014
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Q̃3
G(p, . . . , p)

6p3 − # (G, )
6p

−# (G, )−# (G, ) p−# (G, ) p1015

−
[
# (G, ) p2 + 3# (G, ) p2]− [# (G, ) p + 3# (G, ) p]

(21)
1016

1017

Eq. (19) is the result of Lemma B.1. We obtain the remaining equations through standard1018

algebraic manipulations.1019

Note that the LHS of Eq. (21) is indeed the product M[1] · x[1]. Further note that this1020

product is equal to the RHS of Eq. (21), where every term is computable in O(m) time (by1021

equations (12)-(17)). We set b[1] to the RHS of Eq. (21).1022

We follow the same process in deriving an equality for G(2). Replacing occurrences of1023

G with G(2), we obtain Eq. (21) for G(2). Substituting identities from Lemma B.3 and1024

Lemma B.4 we obtain1025

0− (8# (G, ) +6# (G, ) + 4# (G, ) + 4# (G, ) + 2# (G, ) (3p2 − p3)
)

=1026

Q̃3
G(2)(p, . . . , p)

6p3 −
#
(
G(2),

)
6p

−#
(

G(2),
)
−#

(
G(2),

)
p−#

(
G(2),

)
p1027

−
[
#
(

G(2),
)

p2 + 3#
(

G(2),
)

p2
]
−
[
#
(

G(2),
)

p + 3#
(

G(2),
)

p
]

(22)
1028

(10# (G, ) + 10G )(3p2 − p3) =1029

Q̃3
G(2)(p, . . . , p)

6p3 −
#
(
G(2),

)
6p

−#
(

G(2),
)
−#

(
G(2),

)
p−#

(
G(2),

)
p1030

−
[
#
(

G(2),
)

p + 3#
(

G(2),
)

p
]
−
[
#
(

G(2),
)

p2 − 3#
(

G(2),
)

p2
]

1031

+ (4# (G, ) + [6# (G, ) + 18# (G, )] + [4# (G, ) + 12# (G, )]) (3p2 − p3)
(23)

1032

1033

As in the previous equality derivation for G, note that the LHS of Eq. (23) is the same as1034

M[2] · x[2]. The RHS of Eq. (23) has terms all computable (by equations (12)-(17)) in O(m)1035

time. Setting b[2] to the RHS then completes the proof of step 1.1036

Note that if M has full rank then one can compute # (G, ) and # (G, ) in O(1)1037

using Gaussian elimination.1038

To show that M indeed has full rank, we will show that Det (M) ≠ 0 for every p ∈ (0, 1).1039

Let M =1040 ∣∣∣∣ 1− 3p −(3p2 − p3)
10(3p2 − p3) 10(3p2 − p3)

∣∣∣∣ = (1− 3p) · 10(3p2 − p3) + 10(3p2 − p3) · (3p2 − p3)1041

= 10(3p2 − p3) · (1− 3p + 3p2 − p3) = 10(3p2 − p3) · (−p3 + 3p2 − 3p + 1)1042

= 10p2(3− p) · (1− p)3 (24)1043
1044

From Eq. (24) it can easily be seen that the roots of Det (M) are 0, 1, and 3. Hence there1045

are no roots in (0, 1) and Lemma 3.8 follows. ◀1046

C Missing Details from Section 41047

In the following definitions and examples, we use the following polynomial as an example:1048

Q(X, Y ) = 2X2 + 3XY − 2Y 2. (25)1049
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▶ Definition C.1 (Pure Expansion). The pure expansion of a polynomial Q is formed by1050

computing all product of sums occurring in Q, without combining like monomials. The pure1051

expansion of Q generalizes Definition 2.2 by allowing monomials mi = mj for i ̸= j.1052

Note that similar in spirit to Definition 2.6, E(C) Definition 4.2 reduces all variable exponents1053

e > 1 to e = 1.1054

In the following, we abuse notation and write v to denote the monomial obtained as the1055

products of the variables in the set.1056

▶ Example C.2 (Example for Definition 4.2). Consider the factorized representation (X +1057

2Y )(2X − Y ) of the polynomial in Eq. (25). Its circuit C is illustrated in Fig. 3b. The pure1058

expansion of the product is 2X2−XY +4XY−2Y 2 and the E(C) is [(X, 2), (XY,−1), (XY, 4), (Y,−2)].1059

E(C) effectively13 encodes the reduced form of poly (C), decoupling each monomial into a1060

set of variables v and a real coefficient c. However, unlike the constraint on the input to1061

compute Q̃, the input circuit C does not need to be in SMB/SOP form.1062

▶ Example C.3 (Example for Definition 4.3). Using the same factorization from Example C.2,1063

poly(|C|) = (X + 2Y )(2X + Y ) = 2X2 + XY + 4XY + 2Y 2 = 2X2 + 5XY + 2Y 2. Note that1064

this is not the same as the polynomial from Eq. (25).1065

▶ Definition C.4 (Evaluation). Given a circuit C and a valuation a ∈ Rn, we define the1066

evaluation of C on a as C(a) = poly(C)(a).1067

▶ Definition C.5 (Subcircuit). A subcircuit of a circuit C is a circuit S such that S is a DAG1068

subgraph of the DAG representing C. The sink of S has exactly one gate g.1069

C.1 Proof of Theorem 4.81070

In order to prove Theorem 4.8, we will need to argue the correctness of ApproximateQ̃,1071

which relies on the correctness of auxiliary algorithms OnePass and SampleMonomial.1072

▶ Lemma C.6. The OnePass function completes in time:

O
(
size(C) · M (log (|C(1 . . . , 1)|), log size(C)

)
OnePass guarantees two post-conditions: First, for each subcircuit S of C, we have that1073

S.partial is set to |S| (1, . . . , 1). Second, when S.type = +, S.Lweight = |SL|(1,...,1)
|S|(1,...,1) and1074

likewise for S.Rweight.1075

To prove correctness of Algorithm 1, we only use the following fact that follows from the1076

above lemma: for the modified circuit (Cmod), Cmod.partial = |C| (1, . . . , 1).1077

▶ Lemma C.7. The function SampleMonomial completes in time

O(log k · k · depth(C) · M (log (|C| (1, . . . , 1)), log size(C)))

where k = deg(C). The function returns every (v, sign(c)) for (v, c) ∈ E(C) with probability1078
|c|

|C|(1,...,1) .1079

With the above two lemmas, we are ready to argue the following result:1080

13 The minor difference here is that E(C) encodes the reduced form over the SOP expansion of the compressed
representation, as opposed to the SMB representation
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▶ Theorem C.8. For any C with deg(poly(|C|)) = k, algorithm 1 outputs an estimate acc1081

of Q̃(p1, . . . , pn) such that1082

P
(∣∣∣acc− Q̃(p1, . . . , pn)

∣∣∣ > ϵ · |C| (1, . . . , 1)
)
≤ δ,1083

in O
((

size(C) + log 1
δ

ϵ2 · k · log k · depth(C)
)
· M (log (|C| (1, . . . , 1)), log size(C))

)
time.1084

Before proving Theorem C.8, we use it to argue our main result, Theorem 4.8.1085

Proof. Set E = ApproximateQ̃(C, (p1, . . . , pn), δ, ϵ′), where1086

ϵ′ = ϵ · Q̃(p1, . . . , pn) · (1− γ)
|C| (1, . . . , 1) ,1087

which achieves the claimed accuracy bound on E due to Theorem C.8.1088

The claim on the runtime follows from Theorem C.8 since1089

1
(ϵ′)2 · log

(
1
δ

)
=

log 1
δ

ϵ2
(

Q̃(p1,...,pN )
|C|(1,...,1)

)21090

=
log 1

δ · |C|
2 (1, . . . , 1)

ϵ2 · Q̃2(p1, . . . , pn)
,1091

1092

which completes the proof. ◀1093

We now return to the proof of Theorem C.8:1094

C.2 Proof of Theorem C.81095

Proof. Consider now the random variables Y1, . . . , Yn, where each Yi is the value of Yi after1096

Line 8 is executed. In particular, note that we have1097

Yi = 1 (v mod B ̸≡ 0) ·
∏

Xi∈var(v)

pi,1098

where the indicator variable handles the check in Line 6 Then for random variable Yi, it is1099

the case that1100

E [Yi] =
∑

(v,c)∈E(C)

1 (v mod B ̸≡ 0) · c ·
∏

Xi∈var(v) pi

|C| (1, . . . , 1)1101

= Q̃(p1, . . . , pn)
|C| (1, . . . , 1) ,1102

1103

where in the first equality we use the fact that sgni · |c| = c and the second equality follows1104

from Eq. (4) with Xi substituted by pi.1105

Let Y = 1
N

∑N
i=1 Yi. It is also true that1106

E
[
Y
]

= 1
N

N∑
i=1

E [Yi] = Q̃(p1, . . . , pn)
|C| (1, . . . , 1) .1107

Hoeffding’s inequality states that if we know that each Yi (which are all independent)1108

always lie in the intervals [ai, bi], then it is true that1109

P
(∣∣Y− E

[
Y
]∣∣ ≥ ϵ

)
≤ 2 exp

(
− 2N2ϵ2∑N

i=1(bi − ai)2

)
.1110
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Line 5 shows that sgni has a value in {−1, 1} that is multiplied with O(k) pi ∈ [0, 1],1111

which implies the range for each Yi is [−1, 1]. Using Hoeffding’s inequality, we then get:1112

P
( ∣∣Y− E

[
Y
] ∣∣ ≥ ϵ

)
≤ 2 exp

(
−2N2ϵ2

22N

)
= 2 exp

(
−Nϵ2

2

)
≤ δ,1113

where the last inequality follows from our choice of N in Line 2.1114

For the claimed probability bound of P
(∣∣∣acc− Q̃(p1, . . . , pn)

∣∣∣ > ϵ · |C| (1, . . . , 1)
)
≤ δ,1115

note that in the algorithm, acc is exactly Y · |C| (1, . . . , 1). Multiplying the rest of the terms1116

by the same factor yields the said bound.1117

This concludes the proof for the first claim of theorem C.8. We prove the claim on the1118

runtime next.1119

Run-time Analysis1120

The runtime of the algorithm is dominated by Line 3 (which by Lemma C.6 takes time1121

O
(

size(C) · M
(

log
(
|C|2 (1, . . . , 1)

)
, log (size(C))

))
) and the N iterations of the loop in1122

Line 4. Each iteration’s run time is dominated by the call to Line 5 (which by Lemma C.71123

takes O
(

log k · k · depth(C) · M
(

log
(
|C|2 (1, . . . , 1)

)
, log (size(C))

))
) and Line 6, which1124

by the subsequent argument takes O(k log k) time. We sort the O(k) variables by their block1125

IDs and then check if there is a duplicate block ID or not. Adding up all the times discussed1126

here gives us the desired overall runtime. ◀1127

C.3 Proof of Corollary 4.101128

Proof. The result follows by first noting that by definition of γ, we have1129

Q̃(1, . . . , 1) = (1− γ) · |C| (1, . . . , 1).1130

Further, since each pi ≥ p0 and Q(X) (and hence Q̃(X)) has degree at most k, we have that1131

Q̃(1, . . . , 1) ≥ pk
0 · Q̃(1, . . . , 1).1132

The above two inequalities implies Q̃(1, . . . , 1) ≥ pk
0 · (1 − γ) · |C| (1, . . . , 1). Applying1133

this bound in the runtime bound in Theorem 4.8 gives the first claimed runtime. The final1134

runtime of Ok

(
1
ϵ2 · size(C) · log 1

δ · M
(

log
(
|C|2 (1, . . . , 1)

)
, log (size(C))

))
follows by noting1135

that depth(C) ≤ size(C) and absorbing all factors that just depend on k. ◀1136

C.4 Proof of Lemma 4.111137

We will prove Lemma 4.11 by considering the three cases separately. We start by considering1138

the case when C is a tree:1139

▶ Lemma C.9. Let C be a tree (i.e. the sub-circuits corresponding to two children of a node1140

in C are completely disjoint). Then we have1141

|C| (1, . . . , 1) ≤ (size(C))deg(C)+1
.1142

Proof. For notational simplicity define N = size(C) and k = deg(C). To prove this result,1143

we by prove by induction on depth(C) that |C| (1, . . . , 1) ≤ Nk+1. For the base case, we1144

have that depth(C) = 0, and there can only be one node which must contain a coefficient1145
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(or constant) of 1. In this case, |C| (1, . . . , 1) = 1, and size(C) = 1, and it is true that1146

|C| (1, . . . , 1) = 1 ≤ Nk+1 = 11 = 1.1147

Assume for ℓ > 0 an arbitrary circuit C of depth(C) ≤ ℓ that it is true that |C| (1, . . . , 1) ≤1148

Ndeg(C)+1.1149

For the inductive step we consider a circuit C such that depth(C) = ℓ + 1. The sink can1150

only be either a × or + gate. Consider when sink node is ×. Let kL, kR denote deg(CL) and1151

deg(CR) respectively. Then note that1152

|C| (1, . . . , 1) = |CL| (1, . . . , 1) · |CR| (1, . . . , 1)1153

≤ (N − 1)kL+1 · (N − 1)kR+1
1154

= (N − 1)k+1 (26)1155

≤ Nk+1.1156
1157

In the above the first inequality follows from the inductive hypothesis (and the fact that the1158

size of either subtree is at most N − 1) and Eq. (26) follows by nothing that for a × gate we1159

have k = kL + kR + 1.1160

For the case when the sink gate is a + gate, then for NL = size(CL) and NR = size(CR)1161

we have1162

|C| (1, . . . , 1) = |CL| (1, . . . , 1) + |CR| (1, . . . , 1)1163

≤ Nk+1
L + Nk+1

R1164

≤ (N − 1)k+1 (27)1165

≤ Nk+1.1166
1167

In the above, the first inequality follows from the inductive hypothesis (and the fact that1168

kL, kR ≤ k). Note that the RHS of this inequality is maximized when the base and exponent1169

of one of the terms is maximized. The second inequality follows from this fact as well as the1170

fact that since C is a tree we have NL + NR = N − 1 and, lastly, the fact that k ≥ 0. This1171

completes the proof.1172

The upper bound in Lemma 4.11 for the general case is a simple variant of the above1173

proof (but we present a proof sketch of the bound below for completeness):1174

▶ Lemma C.10. Let C be a (general) circuit. Then we have1175

|C| (1, . . . , 1) ≤ 22deg(C)·size(C).1176

Proof Sketch. We use the same notation as in the proof of Lemma C.9. We will prove by1177

induction on depth(C) that |C| (1, . . . , 1) ≤ 22k·N . The base case argument is similar to that1178

in the proof of Lemma C.9. In the inductive case we have that NL, NR ≤ N − 1.1179

For the case when the sink node is ×, we get that1180

|C| (1, . . . , 1) = |CL| (1, . . . , 1)× |CR| (1, . . . , 1)1181

≤ 22kL ·NL × 22kR ·NR1182

≤ 22·2k−1·(N−1)
1183

≤ 22kN .1184
1185

In the above the first inequality follows from inductive hypothesis while the second inequality1186

follows from the fact that kL, kR ≤ k − 1 and NL, NR ≤ N − 1.1187
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Now consider the case when the sink node is +, we get that1188

|C| (1, . . . , 1) = |CL| (1, . . . , 1) + |CR| (1, . . . , 1)1189

≤ 22kL ·NL + 22kR ·NR1190

≤ 2 · 22k(N−1)
1191

≤ 22kN .1192
1193

In the above the first inequality follows from the inductive hypothesis while the second1194

inequality follows from the facts that kL, kR ≤ k and NL, NR ≤ N − 1. The final inequality1195

follows from the fact that k ≥ 0. ◀1196

Finally, we consider the case when C encodes the run of the algorithm from [24] on an1197

FAQ query. We cannot handle the full generality of an FAQ query but we can handle an FAQ1198

query that has a “core” join query on k relations and then a subset of the k attributes are1199

“summed” out (e.g. the sum could be because of projecting out a subset of attributes from1200

the join query). While the algorithm [24] essentially figures out when to ‘push in’ the sums,1201

in our case since we only care about |C| (1, . . . , 1) we will consider the obvious circuit that1202

computes the “inner join” using a worst-case optimal join (WCOJ) algorithm like [27] and1203

then adding in the addition gates. The basic idea is very simple: we will argue that the there1204

are at most size(C)k tuples in the join output (each with having a value of 1 in |C| (1, . . . , 1)).1205

Then the largest value we can see in |C| (1, . . . , 1) is by summing up these at most size(C)k
1206

values of 1. Note that this immediately implies the claimed bound in Lemma 4.11.1207

We now sketch the argument for the claim about the join query above. First, we note1208

that the computation of a WCOJ algorithm like [27] can be expressed as a circuit with1209

multiple sinks (one for each output tuple). Note that annotation corresponding to t in C is1210

the polynomial
∏

e∈E R(πe(t)) (where E indexes the set of relations). It is easy to see that1211

in this case the value of t in |C| (1, . . . , 1) will be 1 (by multiplying 1 k times). The claim1212

on the number of output tuples follow from the trivial bound of multiplying the input size1213

bound (each relation has at most n ≤ size(C) tuples and hence we get an overall bound of1214

nk ≤ size(C)k. Note that we did not really use anything about the WCOJ algorithm except1215

for the fact that C for the join part only is built only of multiplication gates. In fact, we do1216

not need the better WCOJ join size bounds either (since we used the trivial nk bound). As1217

a final remark, we note that we can build the circuit for the join part by running say the1218

algorithm from [24] on an FAQ query that just has the join query but each tuple is annotated1219

with the corresponding variable Xi (i.e. the semi-ring for the FAQ query is N[X]).1220

C.5 OnePass Remarks1221

Please note that it is assumed that the original call to OnePass consists of a call on an1222

input circuit C such that the values of members partial, Lweight and Rweight have been1223

initialized to Null across all gates.1224

The evaluation of |C| (1, . . . , 1) can be defined recursively, as follows (where CL and CR are1225

the ‘left’ and ‘right’ inputs of C if they exist):1226

|C| (1, . . . , 1) =


|CL| (1, . . . , 1) · |CR| (1, . . . , 1) if C.type = ×
|CL| (1, . . . , 1) + |CR| (1, . . . , 1) if C.type = +
|C.val| if C.type = num
1 if C.type = var.

(28)1227

1228

1229
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It turns out that for proof of Lemma C.7, we need to argue that when C.type = +, we1230

indeed have1231

C.Lweight← |CL| (1, . . . , 1)
|CL| (1, . . . , 1) + |CR| (1, . . . , 1) ; (29)1232

C.Rweight← |CR| (1, . . . , 1)
|CL| (1, . . . , 1) + |CR| (1, . . . , 1) (30)1233

1234

1235

C.6 OnePass Example1236

▶ Example C.11. Let T encode the expression (X1 + X2)(X1 −X2) + X2
2 . After one pass,1237

Algorithm 2 would have computed the following weight distribution. For the two inputs of the1238

root + node T, T.Lweight = 4
5 and T.Rweight = 1

5 . Similarly, let S denote the left-subtree of1239

TL, S.Lweight = S.Rweight = 1
2 . This is depicted in Fig. 4.1240
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1
2

1
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R

TL TR

T
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Figure 4 Weights computed by OnePass in Example C.11.

C.7 OnePass1241

C.8 Proof of Lemma C.61242

Proof. We prove the correct computation of partial, Lweight, Rweight values on C by1243

induction over the number of iterations in line 2 over the topological order TopOrd of the1244

input circuit C. Note that TopOrd is the standard definition of a topological ordering over1245

the DAG structure of C.1246

For the base case, we have only one gate, which by definition is a source gate and must be1247

either var or num. In this case, as per Eq. (28), lines 4 and 6 correctly compute C.partial1248

as 1 and C.val respectively.1249

For the inductive hypothesis, assume that OnePass correctly computes S.partial,1250

S.Lweight, and S.Rweight for all gates g in C with k ≥ 0 iterations over TopOrd.1251

We now prove for k+1 iterations that OnePass correctly computes the partial, Lweight,1252

and Rweight values for each gate gi in C for i ∈ [k + 1]. Note that the gk + 1 must be in the1253

last ordering of all gates gi. It is also the case that gk+1 has two inputs. Finally, note that1254

for size(C) > 1, if gk+1 is a leaf node, we are back to the base case. Otherwise gk+1 is an1255

internal node gs.type = + or gs.type = ×.1256
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Algorithm 2 OnePass (C)

Input: C: Circuit
Output: C: Annotated Circuit
Output: sum ∈ R

1: C′ ← Reduce(C)
2: for g in TopOrd (C’) do ▷ TopOrd (·) is the topological order of C
3: if g.type = var then
4: g.partial ← 1
5: else if g.type = num then
6: g.partial ← |g.val|
7: else if g.type = × then
8: g.partial ← gL.partial× gR.partial
9: else

10: g.partial ← gL.partial + gR.partial
11: g.Lweight ← gL.partial

g.partial

12: g.Rweight ← gR.partial
g.partial

13: end if
14: sum ← g.partial
15: end for
16: return (sum, C′)

When gk+1.type = +, then by line 10 gk+1.partial = gk+1L
.partial +gk+1R

.partial,1257

a correct computation, as per Eq. (28). Further, lines 11 and 12 compute gk+1.Lweight =1258

gk+1L
.partial

gk+1.partial and analogously for gk+1.Rweight. Note that all values needed for each1259

computation have been correctly computed by the inductive hypothesis.1260

When gk+1.type = ×, then line 8 computes gk+1.partial = gk+1L.partial×gk+1R
.partial,1261

which indeed is correct, as per Eq. (28).1262

Runtime Analysis1263

It is known that TopOrd(G) is computable in linear time. Next, each of the size(C)1264

iterations of the loop in Line 2 take O
(
M (log (|C(1 . . . , 1)|), log size(C))

)
time. It is easy1265

to see that each of all the numbers which the algorithm computes is at most |C| (1, . . . , 1).1266

Hence, by definition each such operation takes M (log (|C(1 . . . , 1)|), log size(C)) time, which1267

proves the claimed runtime. ◀1268

C.9 SampleMonomial Remarks1269

We briefly describe the top-down traversal of SampleMonomial. For a parent + gate, the1270

input to be visited is sampled from the weighted distribution precomputed by OnePass.1271

When a parent × node is visited, both inputs are visited. The algorithm computes two1272

properties: the set of all variable leaf nodes visited, and the product of the signs of visited1273

coefficient leaf nodes. We will assume the TreeSet data structure to maintain sets with1274

logarithmic time insertion and linear time traversal of its elements. While we would like to1275

take advantage of the space efficiency gained in using a circuit C instead an expression tree T,1276

we do not know that such a method exists when computing a sample of the input polynomial1277

representation.1278
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Algorithm 3 SampleMonomial (C)

Input: C: Circuit
Output: vars: TreeSet
Output: sgn ∈ {−1, 1} ▷ Algorithm 2 should have been run before this one

1: vars← ∅
2: if C.type = + then ▷ Sample at every + node
3: Csamp ← Sample from left input (CL) and right input (CR) w.p. C.Lweight and

C.Rweight. ▷ Each call to SampleMonomial uses fresh randomness
4: (v, s)← SampleMonomial(Csamp)
5: return (v, s)
6: else if C.type = × then ▷ Multiply the sampled values of all inputs
7: sgn← 1
8: for input in C.input do
9: (v, s)← SampleMonomial(input)

10: vars← vars ∪ {v}
11: sgn← sgn× s
12: end for
13: return (vars, sgn)
14: else if C.type = numeric then ▷ The leaf is a coefficient
15: return ({}, sign(C.val))
16: else if C.type = var then
17: return ({C.val}, 1)
18: end if

The efficiency gains of circuits over trees is found in the capability of circuits to only1279

require space for each distinct term in the compressed representation. This saves space1280

in such polynomials containing non-distinct terms multiplied or added to each other, e.g.,1281

x4. However, to avoid biased sampling, it is imperative to sample from both inputs of a1282

multiplication gate, independently, which is indeed the approach of SampleMonomial.1283

C.10 Proof of Lemma C.71284

Proof. We first need to show that SampleMonomial indeed returns a monomial v,14 such1285

that (v, c) is in E(C), which we do by induction on the depth of C.1286

For the base case, let the depth d of C be 0. We have that the root node is either a1287

constant c for which by line 15 we return { }, or we have that C.type = var and C.val = x,1288

and by line 17 we return {x}. Both cases sample a monomial, and the base case is proven.1289

For the inductive hypothesis, assume that for d ≤ k for some k ≥ 0, that it is indeed the1290

case that SampleMonomial returns a monomial.1291

For the inductive step, let us take a circuit C with d = k + 1. Note that each input has1292

depth d ≤ k, and by inductive hypothesis both of them return a valid monomial. Then the1293

root can be either a + or × node. For the case of a + root node, line 3 of SampleMonomial1294

will choose one of the inputs of the root. By inductive hypothesis it is the case that a1295

monomial in E (C) is being returned from either input. Then it follows that for the case of +1296

root node a valid monomial is returned by SampleMonomial. When the root is a × node,1297

14 Technically it returns var(v) but for less cumbersome notation we will refer to var(v) simply by v in
this proof.
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line 10 computes the set union of the monomials returned by the two inputs of the root, and1298

it is trivial to see by Definition 4.2 that v is a valid monomial in some (v, c) ∈ E(C).1299

We will next prove by induction on the depth d of C that the (v, c) ∈ E(C) is the v1300

returned by SampleMonomial with a probability |c|
|C|(1,...,1) .1301

For the base case d = 0, by definition 2.10 we know that the root has to be either a1302

coefficient or a variable. For either case, the probability of the value returned is 1 since there1303

is only one value to sample from. When the root is a variable x the algorithm correctly returns1304

({x}, 1). When the root is a coefficient, SampleMonomial correctly returns ({ }, sign(ci)).1305

For the inductive hypothesis, assume that for d ≤ k and k ≥ 0 SampleMonomial indeed1306

samples v in (v, c) in E(C) with probability |c|
|C|(1,...,1) .1307

We prove now for d = k + 1 the inductive step holds. It is the case that the root of C has1308

up to two inputs CL and CR. Since CL and CR are both depth d ≤ k, by inductive hypothesis,1309

SampleMonomial will sample both monomials vL in (vL, cL) of E(CL) and vR in (vR, cR) of1310

E(CR), from CL and CR with probability |cL|
|CL|(1,...,1) and |cR|

|CR|(1,...,1) .1311

The root has to be either a + or × node.1312

Consider the case when the root is ×. Note that we are sampling a term from E(C).1313

Consider (v, c) in E(C), where v is the sampled monomial. Notice also that it is the case1314

that v = vL × vR, where vL is coming from CL and vR from CR. The probability that1315

SampleMonomial (CL) returns vL is |cvL |
|CL|(1,...,1) and |cvR |

|CR|(1,...,1) for vR. Since both vL and1316

vR are sampled with independent randomness, the final probability for sample v is then1317
|cvL |·|cvR |

|CL|(1,...,1)·|CR|(1,...,1) . For (v, c) in E (C), it is indeed the case that |c| = |cvL | · |cvR | and that1318

|C| (1, . . . , 1) = |CL|(1, . . . , 1)·|CR|(1, . . . , 1), and therefore v is sampled with correct probability1319
|c|

|C|(1,...,1) .1320

For the case when C.val = +, SampleMonomial will sample monomial v from one of1321

its inputs. By inductive hypothesis we know that any vL in E(CL) and any vR in E(CR) will1322

both be sampled with correct probability |cvL |
CL(1,...,1) and |cvR |

|CR|(1,...,1) , where either vL or vR will1323

equal v, depending on whether CL or CR is sampled. Assume that v is sampled from CL, and1324

note that a symmetric argument holds for the case when v is sampled from CR. Notice also1325

that the probability of choosing CL from C is |CL|(1,...,1)
|CL|(1,...,1)+|CR|(1,...,1) as computed by OnePass.1326

Then, since SampleMonomial goes top-down, and each sampling choice is independent1327

(which follows from the randomness in the root of C being independent from the randomness1328

used in its subtrees), the probability for v to be sampled from C is equal to the product of1329

the probability that CL is sampled from C and v is sampled in CL, and1330

P (SampleMonomial(C) = v) =1331

P (SampleMonomial(CL) = v) · P (SampledChild(C) = CL)1332

= |cv|
|CL|(1, . . . , 1) ·

|CL| (1, . . . , 1)
|CL|(1, . . . , 1) + |CR|(1, . . . , 1)1333

= |cv|
|C| (1, . . . , 1) ,1334

1335

and we obtain the desired result.1336

Run-time Analysis1337

It is easy to check that except for lines 10 and 3, all lines take O(1) time. For Line 10, consider1338

an execution of Line 10. We note that we will be adding a given set of variables to some set at1339

most once: since the sum of the sizes of the sets at a given level is at most deg(C), each gate1340

visited takes O(log deg(C)). For Line 3, note that we pick CL with probability a
a+b where1341
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a = C.Lweight and b = C.Rweight. We can implement this step by picking a random number1342

r ∈ [a+b] and then checking if r ≤ a. It is easy to check that a+b ≤ |C| (1, . . . , 1). This means1343

we need to add and compare log |C| (1, . . . , 1)-bit numbers, which can certainly be done in1344

time M (log (|C(1 . . . , 1)|), log size(C)) (note that this is an over-estimate). Denote Cost(C)1345

(Eq. (31)) to be an upper bound of the number of nodes visited by SampleMonomial.1346

Then the runtime is O
(
Cost(C) · log deg(C) · M (log (|C(1 . . . , 1)|), log size(C))

)
.1347

We now bound the number of recursive calls in SampleMonomial by O ((deg(C) + 1) ·1348

depth(C)), which by the above will prove the claimed runtime.1349

Let Cost(·) be a function that models an upper bound on the number of gates that can1350

be visited in the run of SampleMonomial. We define Cost(·) recursively as follows.1351

Cost(C) =


1 + Cost(CL) + Cost(CR) if C.type = ×
1 + max (Cost(CL), Cost(CR)) if C.type = +
1 otherwise

(31)1352

First note that the number of gates visited in SampleMonomial is ≤ Cost(C). To1353

show that Eq. (31) upper bounds the number of nodes visited by SampleMonomial, note1354

that when SampleMonomial visits a gate such that C.type = ×, line 8 visits each input1355

of C, as defined in (31). For the case when C.type = +, line 3 visits exactly one of the1356

input gates, which may or may not be the subcircuit with the maximum number of gates1357

traversed, which makes Cost(·) an upperbound. Finally, it is trivial to see that when C.type1358

∈ {var, num}, i.e., a source gate, that only one gate is visited.1359

We prove the following inequality holds.1360

2 (deg(C) + 1) · depth(C) + 1 ≥ Cost(C) (32)1361

Note that Eq. (32) implies the claimed runtime. We prove Eq. (32) for the number of1362

gates traversed in SampleMonomial using induction over depth(C). Recall how degree is1363

defined in Definition 4.6.1364

For the base case deg(C) = depth(C) = 0, Cost(C) = 1, and it is trivial to see that the1365

inequality 2deg(C) · depth(C) + 1 ≥ Cost(C) holds.1366

For the inductive hypothesis, we assume the bound holds for any circuit where ℓ ≥1367

depth(C) ≥ 0. Now consider the case when SampleMonomial has an arbitrary circuit C1368

input with depth(C) = ℓ + 1. By definition C.type ∈ {+,×}. Note that since depth(C) ≥ 1,1369

C must have input(s). Further we know that by the inductive hypothesis the inputs Ci for1370

i ∈ {L, R} of the sink gate C uphold the bound1371

2 (deg(Ci) + 1) · depth(Ci) + 1 ≥ Cost(Ci). (33)1372

It is also true that depth(CL) ≤ depth(C)− 1 and depth(CR) ≤ depth(C)− 1.1373

If C.type = +, then deg(C) = max (deg(CL), deg(CR)). Otherwise C.type = × and1374

deg(C) = deg(CL)+deg(CR)+1. In either case it is true that depth(C) = max(depth(CL), depth(CR))+1375

1.1376

If C.type = ×, then, substituting values, the following should hold,1377

2 (deg(CL) + deg(CR) + 2) · (max(depth(CL), depth(CR)) + 1) + 11378

≥ 2 (deg(CL) + 1) · depth(CL) + 2 (deg(CR) + 1) · depth(CR) + 3 (34)1379

≥ 1 + Cost(CL) + Cost(CR) = Cost(C). (35)1380
1381

CVIT 2016



23:40 Bag PDB Queries

To prove (34), first, the LHS expands to,1382

2deg(CL)·depthmax+2deg(CR)·depthmax+4depthmax+2deg(CL)+2deg(CR)+4+1 (36)1383

where depthmax is used to denote the maximum depth of the two input subcircuits. The1384

RHS expands to1385

2deg(CL) · depth(CL) + 2depth(CL) + 2deg(CR) · depth(CR) + 2depth(CR) + 3 (37)1386

Putting Eq. (36) and Eq. (37) together we get1387

2deg(CL) · depthmax + 2deg(CR) · depthmax + 4depthmax + 2deg(CL) + 2deg(CR) + 51388

≥ 2deg(CL) · depth(CL) + 2deg(CR) · depth(CR) + 2depth(CL) + 2depth(CR) + 3
(38)

1389

1390

Since the following is always true,1391

2deg(CL) · depthmax + 2deg(CR) · depthmax + 4depthmax + 51392

≥ 2deg(CL) · depth(CL) + 2deg(CR) · depth(CR) + 2depth(CL) + 2depth(CR) + 3,1393
1394

then it is the case that Eq. (38) is always true.1395

Now to justify (35) which holds for the following reasons. First, the RHS is the result of1396

Eq. (31) when C.type = ×. The LHS is then produced by substituting the upperbound of1397

(33) for each Cost(Ci), trivially establishing the upper bound of (35). This proves Eq. (32)1398

for the × case.1399

For the case when C.type = +, substituting values yields1400

2 (max(deg(CL), deg(CR)) + 1) · (max(depth(CL), depth(CR)) + 1) + 11401

≥ max (2 (deg(CL) + 1) · depth(CL) + 1, 2 (deg(CR) + 1) · depth(CR) + 1) + 1 (39)1402

≥ 1 + max(Cost(CL), Cost(CR)) = Cost(C) (40)1403
1404

To prove (39), the LHS expands to1405

2degmaxdepthmax + 2degmax + 2depthmax + 2 + 1. (41)1406

Since degmax · depthmax ≥ deg(Ci) · depth(Ci), the following upper bound holds for the1407

expanded RHS of (39):1408

2degmaxdepthmax + 2depthmax + 2 (42)1409

Putting it together we obtain the following for (39):1410

2degmaxdepthmax + 2degmax + 2depthmax + 31411

≥ 2degmaxdepthmax + 2depthmax + 2, (43)1412
1413

where it can be readily seen that the inequality stand and (43) follows. This proves (39).1414

Similar to the case of C.type = ×, (40) follows by equations (31) and (33).1415

This proves (32) as desired. ◀1416
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C.11 Experimental Results1417

Recall that by definition of BIDB, a query result cannot be derived by a self-join between1418

non-identical tuples belonging to the same block. Note, that by Corollary 4.10, γ must be1419

a constant in order for Algorithm 1 to acheive linear time. We would like to determine1420

experimentally whether queries over BIDB instances in practice generate a constant number1421

of cancellations or not. Such an experiment would ideally use a database instance with1422

queries both considered to be typical representations of what is seen in practice.1423

We ran our experiments using Windows 10 WSL Operating System with an Intel Core i71424

2.40GHz processor and 16GB RAM. All experiments used the PostgreSQL 13.0 database1425

system.1426

For the data we used the MayBMS data generator [1] tool to randomly generate uncertain1427

versions of TPCH tables. The queries computed over the database instance are Q1, Q2, and1428

Q3 from [4], all of which are modified versions of TPC-H queries Q3, Q6, and Q7 where all1429

aggregations have been dropped.1430

As written, the queries disallow BIDB cross terms. We first ran all queries, noting the1431

result size for each. Next the queries were rewritten so as not to filter out the cross terms.1432

The comparison of the sizes of both result sets should then suggest in one way or another1433

whether or not there exist many cross terms in practice. As seen, the experimental query1434

results contain little to no cancelling terms. Fig. 5 shows the result sizes of the queries,1435

where column CF is the result size when all cross terms are filtered out, column CI shows1436

the number of output tuples when the cancelled tuples are included in the result, and the1437

last column is the value of γ. The experiments show γ to be in a range between [0, 0.1]%,1438

indicating that only a negligible or constant (compare the result sizes of Q1 < Q2 and their1439

respective γ values) amount of tuples are cancelled in practice when running queries over a1440

typical BIDB instance. Interestingly, only one of the three queries had tuples that violated1441

the BIDB constraint.1442

To conclude, the results in Fig. 5 show experimentally that γ is negligible in practice for1443

BIDB queries. We also observe that (i) tuple presence is independent across blocks, so the1444

corresponding probabilities (and hence p0) are independent of the number of blocks, and (ii)1445

BIDBs model uncertain attributes, so block size (and hence γ) is a function of the “messiness”1446

of a dataset, rather than its size. Thus, we expect the corollary to hold in general.1447

Query CF CI γ

Q1 46, 714 46, 768 0.1%
Q2 179.917 179, 917 0%
Q3 11, 535 11, 535 0%

Figure 5 Number of Cancellations for Queries Over BIDB.

D Circuits1448

D.1 Representing Polynomials with Circuits1449

D.1.1 Circuits for query plans1450

We now formalize circuits and the construction of circuits for SPJU queries. As mentioned1451

earlier, we represent lineage polynomials as arithmetic circuits over N-valued variables with +,1452

×. A circuit for query Q and N[X]-PDB D is a directed acyclic graph ⟨VQ,D, EQ,D, ϕQ,D, ℓQ,D⟩1453
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with vertices VQ,D and directed edges EQ,D ⊂ VQ,D
2. The sink function ϕQ,D : Un → VQ,D1454

is a partial function that maps the tuples of the n-ary relation Q(D) to vertices. We require1455

that ϕQ,D’s range be limited to sink vertices (i.e., vertices with out-degree 0). A function1456

ℓQ,D : VQ,D → { +,× } ∪ N ∪X assigns a label to each node: Source nodes (i.e., vertices1457

with in-degree 0) are labeled with constants or variables (i.e., N ∪X), while the remaining1458

nodes are labeled with the symbol + or ×. We require that vertices have an in-degree of1459

at most two. For the specifics on how to construct a circuit to encode the polynomials of1460

all result tuples for a query and N[X]-PDB see Appendix D.1. Note that we can construct1461

circuits for BIDBs in time linear in the time required for deterministic query processing over1462

a possible world of the BIDB under the aforementioned assumption that |D| ≤ c · |D|.1463

D.1.2 Circuit size vs. runtime1464

We now connect the size of a circuit (where the size of a circuit is the number of vertices1465

in the corresponding DAG) for a given SPJU query Q and N[X]-PDB D to its cost(Q, D)1466

where D is one of the possible worlds of D. We do this formally by showing that the size1467

of the circuit is asymptotically no worse than the corresponding runtime of a large class of1468

deterministic query processing algorithms.1469

Each vertex v ∈ VQ,D in the arithmetic circuit for1470

⟨VQ,D, EQ,D, ϕQ,D, ℓQ,D⟩1471

encodes a polynomial, realized as1472

lin (v) =


∑

v′:(v′,v)∈EQ,D
lin (v′) if ℓ(v) = +∏

v′:(v′,v)∈EQ,D
lin (v′) if ℓ(v) = ×

ℓ(v) otherwise
1473

We define the circuit for a select-union-project-join Q recursively by cases as follows. In1474

each case, let ⟨VQi,D, EQi,D, ϕQi,D, ℓQi,D⟩ denote the circuit for subquery Qi.1475

Base Relation. Let Q be a base relation R. We define one node for each tuple. Formally,1476

let VQ,D = { vt | t ∈ R }, let ϕQ,D(t) = vt, let ℓQ,D(vt) = R(t), and let EQ,D = ∅. This1477

circuit has |R| vertices.1478

Selection. Let Q = σθ (Q1). We re-use the circuit for Q1. Formally, let VQ,D = VQ1,D, let
ℓQ,D(v0) = 0, and let ℓQ,D(v) = ℓQ1,D(v) for any v ∈ VQ1,D. Let EQ,D = EQ1,D, and define

ϕQ,D(t) = ϕQ1,D(t) for t s.t. θ(t).

Dead sinks are iteratively removed, and so this circuit has at most |VQ1,D| vertices.1479

Projection. Let Q = πAQ1. We extend the circuit for Q1 with a new set of sum vertices
(i.e., vertices with label +) for each tuple in Q, and connect them to the corresponding sink
nodes of the circuit for Q1. Naively, let VQ,D = VQ1,D ∪ { vt | t ∈ πAQ1 }, let ϕQ,D(t) = vt,
and let ℓQ,D(vt) = +. Finally let

EQ,D = EQ1,D ∪ { (ϕQ1,D(t′), vt) | t = πAt′, t′ ∈ Q1, t ∈ πAQ1 }

This formulation will produce vertices with an in-degree greater than two, a problem that1480

we correct by replacing every vertex with an in-degree over two by an equivalent fan-in tree.1481
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The resulting structure has at most |Q1| − 1 new vertices. The corrected circuit thus has at1482

most |VQ1,D|+ |Q1| vertices.1483

Union. Let Q = Q1 ∪ Q2. We merge graphs and produce a sum vertex for all tuples1484

in both sides of the union. Formally, let VQ,D = VQ1,D ∪ VQ2,D ∪ { vt | t ∈ Q1 ∩Q2 }, let1485

ℓQ,D(vt) = +, and let1486

EQ,D = EQ1,D ∪ EQ2,D ∪ { (ϕQ1,D(t), vt), (ϕQ2,D(t), vt) | t ∈ Q1 ∩Q2 }1487

1488

ϕQ,D(t) =


vt if t ∈ Q1 ∩Q1

ϕQ1,D(t) if t ̸∈ Q2

ϕQ2,D(t) if t ̸∈ Q1

1489

This circuit has |VQ1,D|+ |VQ2,D|+ |Q1 ∩Q2| vertices.1490

k-ary Join. Let Q = Q1 ▷◁ . . . ▷◁ Qk. We merge graphs and produce a multiplication1491

vertex for all tuples resulting from the join Naively, let VQ,D = VQ1,D ∪ . . . ∪ VQk,D ∪1492

{ vt | t ∈ Q1 ▷◁ . . . ▷◁ Qk }, let1493

1494

EQ,D = EQ1,D ∪ . . . ∪ EQk,D ∪
{

(ϕQ1,D(πsch(Q1)t), vt),1495

. . . , (ϕQk,D(πsch(Qk)t), vt) | t ∈ Q1 ▷◁ . . . ▷◁ Qk }14961497

Let ℓQ,D(vt) = ×, and let ϕQ,D(t) = vt As in projection, newly created vertices will have an1498

in-degree of k, and a fan-in tree is required. There are |Q1 ▷◁ . . . ▷◁ Qk| such vertices, so the1499

corrected circuit has |VQ1,D|+ . . . + |VQk,D|+ (k − 1)|Q1 ▷◁ . . . ▷◁ Qk| vertices.1500

▶ Lemma D.1. Given a N[X]-PDB D and query plan Q, the runtime of Q over D has the1501

same or better complexity as the size of the lineage of Q(D). That is, we have |VQ,D| ≤1502

(k − 1)cost(Q), where k is the maximal degree of any polynomial in Q(D).1503

The proof is shown in in Appendix D.2. We now have all the pieces to argue that using our1504

approximation algorithm, the expected multiplicities of a SPJU query can be computed in1505

essentially the same runtime as deterministic query processing for the same query.1506

D.2 Proof for Lemma D.11507

Proof. Proof by induction. The base case is a base relation: Q = R and is trivially true1508

since |VR,D| = |R|. For the inductive step, we assume that we have circuits for subplans1509

Q1, . . . , Qn such that |VQi,D| ≤ (ki − 1)cost(Qi, D) where ki is the degree of Qi.1510

Selection. Assume that Q = σθ(Q1). In the circuit for Q, |VQ,D| = |VQ1,D| vertices,1511

so from the inductive assumption and cost(Q, D) = cost(Q1, D) by definition, we have1512

|VQ,D| ≤ (k − 1)cost(Q, D). Projection. Assume that Q = πA(Q1). The circuit for Q has1513

at most |VQ1,D|+ |Q1| vertices.1514

|VQ,D| ≤ |VQ1,D|+ |Q1|1515
1516

(From the inductive assumption)1517

≤ (k − 1)cost(Q1, D) + |Q1|1518
1519

(By definition of cost(Q, D))1520

≤ (k − 1)cost(Q, D).1521
1522
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Union. Assume that Q = Q1 ∪ Q2. The circuit for Q has |VQ1,D| + |VQ2,D| + |Q1 ∩ Q2|1523

vertices.1524

|VQ,D| ≤ |VQ1,D|+ |VQ2,D|+ |Q1|+ |Q2|1525
1526

(From the inductive assumption)1527

≤ (k − 1)(cost(Q1, D) + cost(Q2, D)) + (b1 + b2)1528
1529

(By definition of cost(Q, D))1530

≤ (k − 1)(cost(Q, D)).1531
1532

k-ary Join. Assume that Q = Q1 ▷◁ . . . ▷◁ Qk. The circuit for Q has |VQ1,D| + . . . +1533

|VQk,D|+ (k − 1)|Q1 ▷◁ . . . ▷◁ Qk| vertices.1534

|VQ,D| = |VQ1,D|+ . . . + |VQk,D|+ (k − 1)|Q1 ▷◁ . . . ▷◁ Qk|1535
1536

From the inductive assumption and noting ∀i : ki ≤ k − 11537

≤ (k − 1)cost(Q1, D) + . . . + (k − 1)cost(Qk, D)+1538

(k − 1)|Q1 ▷◁ . . . ▷◁ Qk|1539

≤ (k − 1)(cost(Q1, D) + . . . + cost(Qk, D)+1540

|Q1 ▷◁ . . . ▷◁ Qk|)1541
1542

(By definition of cost(Q, D))1543

= (k − 1)cost(Q, D).1544
1545

The property holds for all recursive queries, and the proof holds. ◀1546

E Parameterized Complexity1547

In Sec. 3, we utilized common conjectures from fine-grained complexity theory. The notion of1548

#W [1]− hard is a standard notion in parameterized complexity, which by now is a standard1549

complexity tool in providing data complexity bounds on query processing results [18]. E.g.1550

the fact that k-matching is #W [1] − hard implies that we cannot have an nΩ(1) runtime.1551

However, these results do not carefully track the exponent in the hardness result. E.g.1552

#W [1]− hard for the general k-matching problem does not imply anything specific for the1553

3-matching problem. Similar questions has led to intense research into the new sub-field1554

of fine-grained complexity (see [38]), where we care about the exponent in our hardness1555

assumptions as well– e.g. Conjecture 3.2 is based on the popular Triangle detection hypothesis1556

in this area (cf. [25]).1557
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