
Parameterized and Fine-Grained Analysis of Query1

Evaluation Over Bag PDBs2

Su Feng �3

Illinois Institute of Technology, Chicago, USA4

Boris Glavic �5

Illinois Institute of Technology, USA6

Aaron Huber �7

University at Bu�alo, USA8

Oliver Kennedy �9

University at Bu�alo, USA10

Atri Rudra �11

University at Bu�alo, USA12

Abstract13

The problem of computing the marginal probability of a tuple in the result of a query over set-14

probabilistic databases (PDBs) is a fundamental problem in set-PDBs. In this work, we study15

the analog problem for bag semantics: computing a tuple’s expected multiplicity exactly and16

approximately. We are specifically interested in the fine-grained complexity and how it compares to17

the complexity of deterministic query evaluation algorithms — if these complexities are comparable,18

it opens the door to practical deployment of probabilistic databases. Unfortunately, our results19

imply that computing expected multiplicities for Bag-PDBs based on the results produced by such20

query evaluation algorithms introduces super-linear overhead (under parameterized complexity21

hardness assumptions/conjectures). We proceed to study approximation of expected multiplicities22

of result tuples of positive relational algebra queries (RA+) over c-TIDBs and for a non-trivial23

subclass of block-independent databases (BIDBs). We develop a sampling algorithm that computes24

a (1 ± ‘)-approximation of the expected multiplicity of an output tuple in time linear in the runtime25

of a comparable deterministic query for any RA+ query.26

2012 ACM Subject Classification Information systems æ Incomplete data27

Keywords and phrases PDB, bags, polynomial, boolean formula, etc.28

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2329

1 Introduction30

This work explores the problem of computing the expectation of a tuple’s multiplicity in a31

bag TIDB. Our analysis specifically considers a restricted form of bag TIDB which we call a32

c-TIDB. A c-TIDB, D =
1

{0, . . . , c}
D , P

2
encodes a bag of uncertain tuples such that each33

tuple models c disjoint events, where each such set of disjoint events is itself independent of34

the others. A tuple in D has a multiplicity of at most c. The set of all worlds is encoded in35

{0, . . . , c}
D, which is the set of all vectors of length |D| such that each index corresponds36

to a distinct t œ D storing its multiplicity. P is the product distribution over the set of all37

worlds. A given world W = {0, . . . , c} can be interpreted for each W [i] = j as denoting that38

tuple ti appears j times in world W for j œ [0, c]. The resulting product distribution can39

then be expressed across the n base tuples of the encoding as pi,j = Pr [W [i] = j], where40

each distribution is independent for i œ [n]. Allowing for Æ c multiplicities across all tuples41

gives rise to having Æ (c + 1)n possible worlds instead of the usual 2n possible worlds of42

the traditional set TIDB. In this work, it is natural to be specifically considering bag query43

© Aaron Huber, Oliver Kennedy, Atri Rudra, Su Feng, Boris Glavic;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:64

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

23:2 Bag PDB Queries

semantics.44

We can formally state this problem as:45

I Problem 1.1. Given a c-TIDB D =
1

{0, . . . , c}
D , P

2
, RA

+ query Q, and result tuple t,46

compute the expected multiplicity of t: ED≥P [Q (D) (t)].47

Aaron says: I think we use D to denote something di�erent in one of the proofs. Have
to keep an eye open for this to avoid overloading notation.

48

We upperbound the multiplicity of tuples in a c-TIDB since this is what typically seen in49

practice. Allowing for unbounded c is an interesting open problem.50

Hardness of Set Query Semantics and Bag Query Semantics. Set query evaluation51

semantics over 1-TIDBs have been studied extensively, and the data complexity of the52

problem in general has been shown by Dalvi and Suicu to be #P-hard [13]. For our setting,53

there exists a trivial algorithm to compute problem 1.1 for any query over a c-TIDB due to54

linearity of expection. Simply perform the probability computations in a ‘sum-of-products’55

fashion. This is made more precise when we discuss polynomial equivalence in the following56

subsection. Since we can compute problem 1.1 in polynomial time, the interesting question57

that we explore deals with hardness of computing expectation using fine-grained analysis58

and parameterized complexity.59

One of the main theoretical points in this work is to discern whether or not bag c-TIDB60

query semantics are indeed linear in the runtime of an equivalent deterministic query. If this is61

true, then this would open up the way for deployment of c-TIDBs in practice. Unfortunately,62

we prove that this is not the case. To analyze this question we denote by T ú(Q, D) the63

optimal runtime complexity of computing problem 1.1 over c-TIDB D. Let D denote the64

set of tuples in D, i.e.,65

I Definition 1.2 (D). Define D to be the set of tuples appearing across all the possible66

worlds of a c-TIDB, formally D =
Ó

ti | ’W œ {0, . . . , c}
D , ’i œ |D| : W [i] > 0

Ô
. When a67

specific D =
1

{0, . . . , c}
D , P

2
is being referred to, we will use D to denote the set of tuples.68

Let T ú
det

(Q, D) be the optimal runtime (with some caveats; discussed in sec. 2.4) of query69

Q on a comparable deterministic database D defined next.70

Table 1 shows our lower bounds for computing problem 1.1 on c-TIDBs.71

Our lower bound results. In table 1 we show that depending on what hardness

Lower bound on T ú(Q, D) Num. P�s Hardness Assumption
�

1!
T ú

det
(Q, D)

"1+‘0
2

for some ‘0 > 0 Single Triangle Detection hypothesis

Ê
1!

T ú
det

(Q, D)
"C0

2
for all C0 > 0 Multiple #W[0] ”= #W[1]

�
1!

T ú
det

(Q, D)
"c0·k2

for some c0 > 0 Multiple Conjecture 3.2
Table 1 Our lower bounds for a specific hard query Q parameterized by k. The D is over the

same (family of) D and those with ‘Multiple’ in the second column need the algorithm to be able to
handle multiple P� (for a given D). The last column states the hardness assumptions that imply
the lower bounds in the first column (‘o, C0, c0 are constants that are independent of k).

72

result/conjecture we assume, we get various emphatic versions of no as an answer to our73

question. To make some sense of the other lower bounds in Table 1, we note that it is not74

too hard to show that T ú(Q, D) Æ O
1!

T ú
det

(Q, D)
"k

2
, where k is the largest degree of the75

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:3

�[fiA(Q), D, t] =
ÿ

tÕ:fiA(tÕ)=t

�[Q, D, tÕ] �[Q1 fi Q2, D, t] =�[Q1, D, t] + �[Q2, D, t]

�[‡◊(Q), D, t] =
I

�[Q, D, t] if ◊(t)
0 otherwise.

�[Q1onQ2, D, t] =�[Q1, D, fiattr(Q1)t]

· �[Q2, D, fiattr(Q2)t]

�[R, D, t] = Xt

Figure 1 Construction of the lineage (polynomial) for an RA+ query over a c-TIDB, where X
consists of all Xt over all R in D and t in R. Here D.R denotes the instance of relation R in D.
Please note, after we introduct the reduction to 1-BIDB, the base case will be expressed alternatively.

query Q (i.e., join width) over all result tuples t (and the parameter that defines our family76

of hard queries).77

What our lower bound in the third row says is that one cannot get more than a polynomial78

improvement over essentially the trivial algorithm for problem 1.1. However, this result79

assumes a hardness conjecture that is not as well studied as those in the first two rows of the80

table (see Sec. 3 for more discussion on the hardness assumptions). Further, we note that81

existing results already imply the claimed lower bounds if we were to replace the T ú
det

(Q, D)82

by just
--D

-- (indeed these results follow from known lower bound for deterministic query83

processing). Our contribution is to then identify a family of hard queries where deterministic84

query processing is ‘easy’ but computing the expected multiplicities is hard.85

Our upper bound results. We introduce an (1±‘)-approximation algorithm that computes86

problem 1.1 in O‘ (T ú
det

(Q, D)). In contrast, known approximation techniques ([38, 30]) in87

set-PDBs need time �(|C|
2k) (see Appendix G). Further, we generalize the PDB data model88

considered by the approximation algorithm to a class of bag-Block Independent Disjoint89

Databases (see Sec. 2.1.1) (BIDBs).90

1.1 Polynomial Equivalence91

A common encoding of probabilistic databases (e.g., in [28, 27, 5, 2] and many others)92

relies on annotating tuples with lineages, propositional formulas that describe the set of93

possible worlds that the tuple appears in. The bag semantics analog is a provenance/lineage94

polynomial �[Q, D, t] [25], a polynomial with non-zero integer coe�cients and exponents,95

over integer variables X encoding input tuple multiplicities.96

We drop Q, D, and t from �[Q, D, t] when they are clear from the context or irrelevant to97

the discussion. We now specify the problem of computing the expectation of tuple multiplicity98

in the language of lineage polynomials:99

I Problem 1.3 (Expected Multiplicity of Lineage Polynomials). Given an RA
+ query Q,100

c-TIDB D and result tuple t, compute the expected multiplicity of the polynomial �[Q, D, t]101

(i.e., EW≥P
#
�[Q, D, t](W)

$
, where W œ {0, . . . , c}).102

We note that computing Problem 1.1 is equivalent to computing Problem 1.3 (see Proposition 2.1).103

104

1.2 Our Machinery105

Lower Bound Proof Techniques. All of our results rely on working with a reduced form106

of the lineage polynomial �. In fact, it turns out that for the 1-c-TIDB case, computing107

CVIT 2016

23:4 Bag PDB Queries

the expected multiplicity (over bag query semantics) is exactly the same as evaluating this108

reduced polynomial over the probabilities that define the TIDB. This is also true when the109

query input(s) is a block independent disjoint probabilistice database (with tuple multiplicity110

of at most 1), which we refer to as a 1-BIDB. For our results to be applicable to c-TIDBs,111

we introduce the following reduction.112

I Definition 1.4. Any c-TIDB D, can be reduced to an equivalent 1-BIDB D
Õ in the following113

manner. For each ti œ D, create a block of c + 1 disjoint BIDB tuples in D
Õ such that each114

tuple in the newly formed block is mapped to its own boolean variable Xi,j for i œ |D| and115

j œ [c + 1]. Then, given W œ {0, . . . , c}
D, the equivalent world in D

Õ will set each variable116

Xi,j = 1 for each W [i] = j, while (for ¸ ”= j) all other Xi,¸ œ X of D
Õ are set to 0.117

I Example 1.5. Consider the Route relation of fig. 2 and query Q = fiCity1 (Route).118

The output relation Q is {ÈChicago, XÍ , ÈChicago, Y Í} and can be represented as a c-119

TIDB QÕ = {ÈChicago, X Õ, 2Í}, where the following probabilities are true: Pr [X Õ = 0] =120

Pr [¬X · ¬Y], Pr [X Õ = 1] = Pr [(X ‚ Y) · (¬X ‚ ¬Y)], and Pr [X Õ = 2] = Pr [X · Y].121

QÕ can then be reduced to a 1-BIDB by creating a block of the following disjoint tuples:122

QÕÕ = {ÈChicago, X Õ
0Í , ÈChicago, X Õ

1Í , ÈChicago, X Õ
2Í} such that Pr [X Õ

i
= 1] = Pr [X Õ = i].123

Next, we motivate this reduced polynomial. Consider the query Q defined as follows over124

the bag relations of Fig. 2:125
126

SELECT 1 FROM OnTime a, Route r, OnTime b127

WHERE a.city = r. city1 AND b.city = r.city2128129

It can be verified that � (A, B, C, E, X, Y, Z) for the sole result tuple (i.e. the count) of Q is
AXB + BY E + BZC. Now consider the product query Q2 = Q ◊ Q. The lineage polynomial
for Q2 is given by �2 (A, B, C, E, X, Y, Z)

= A2X2B2 + B2Y 2E2 + B2Z2C2 + 2AXB2Y E + 2AXB2ZC + 2B2Y EZC.

By exploiting linearity of expectation, further pushing expectation through independent130

variables and observing that for any W œ {0, 1}, we have W 2 = W , the expectation is131

E
W≥P

#
�2 (W)

$
(where WA is the random variable corresponding to A, distributed by P).132

133

E [WA]E [WX]E [WB]+E [WB]E [WY]E [WE]+E [WB]E [WZ]E [WC]+2E [WA]E [WX]E [WB]EWY E [WE]134

+ 2E [WA]E [WY]E [WB]E [WZ]E [WC] + 2E [WB]E [WY]E [WE]E [WZ]E [WC] .135136

This property leads us to consider a structure related to the lineage polynomial.137

I Definition 1.6. For any polynomial �(X) corresponding to a c-TIDB (henceforth, c-TIDB-138

lineage polynomial), define the reduced polynomial Â�(X) to be the polynomial obtained by139

setting all exponents e > 1 in the standard monomial basis (SMB) 1 form of �(X) to 1.140

With �2 (A, B, C, E, X, Y, Z) as an example, we have:141

Ê�2(A, B, C, E, X, Y, Z) = AXB + BY E + BZC + 2AXBY E + 2AXBZC + 2BY EZC.142143

Note that we have argued that for our specific example the expectation that we want is144

Ê�2(Pr (A = 1) , P r (B = 1) , P r (C = 1)), P r (E = 1) , P r (X = 1) , P r (Y = 1) , P r (Z = 1)).145

Lemma 1.7 generalizes the equivalence to all RA
+ queries on TIDBs (proof in Appendix B.5).146

1 This is the representation, typically used in set-PDBs, where the polynomial is reresented as sum of
‘pure’ products. See Definition 2.2 for a formal definition.

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:5

I Lemma 1.7. Let D be a 1-BIDB such that the probability distribution P over W œ147

{0, 1}
|D| (the set of all worlds) is induced by the disjoint condition and the probability148

vector p =
!
p1, . . . , p|D|

"
where pi = Pr (Wi = 1). For any 1-BIDB-lineage polynomial149

� (X) = �[Q, D, t](X), it holds that EW≥P [� (W)] = Â� (p) .150

To prove our hardness result we show that for the same Q from the example above, for151

an arbitrary ‘product width’ k, the query Qk is able to encode various hard graph-counting152

problems (assuming O (n) tuples rather than the O(1) tuples in Fig. 2). We do so by153

considering an arbitrary graph G (analogous to the Route relation of Q) and analyzing how154

the coe�cients in the (univariate) polynomial Â� (p, . . . , p) relate to counts of subgraphs in G155

that are isomorphic to various graphs with k edges. E.g., we exploit the fact that the leading156

coe�cient in � corresponding to Qk is proportional to the number of k-matchings in G, a157

known hard problem in parameterized/fine-grained complexity literature.158
For an upper bound on approximating the expected count, it is easy to check that if all the159

probabilties are constant then � (p1, . . . , pn) (i.e. evaluating the original lineage polynomial160

over the probability values) is a constant factor approximation. For example, using Q2 from161

above, using pA to denote Pr [A = 1] (and similarly for the other variables), we can see that162

�2 (p) = p
2
Ap

2
Xp

2
B + p

2
Bp

2
Y p

2
E + p

2
Bp

2
Zp

2
C + 2pApXp

2
BpY pE + 2pApXp

2
BpZpC + 2p

2
BpY pEpZpC163

Æ pApXpB + pBpY pE + pBpZpC + 2pApXpBpY pE + 2pApXpBpZpC + 2pBpY pEpZpC = Â� (p)164165

If we assume that all seven probability values are at least p0 > 0, we get that �2 (p) is in166

the range [(p0)3
· Â� (p) , Â� (p)]. To get an (1 ± ‘)-multiplicative approximation we uniformly167

sample monomials from the SMB representation of � and ‘adjust’ their contribution to Â� (·).168

Upper Bound Techniques. Our negative results (table 1) indicate that c-TIDBs can not169

achieve comparable performance to deterministic databases for exact results (under complexity170

assumptions). In fact, under plausible hardness conjectures, one cannot (drastically) improve171

upon the trivial algorithm to exactly compute the expected multiplicities for c-TIDBs. A172

natural followup is whether we can do better if we are willing to settle for an approximation173

to the expected multiplities. In the remainder of this work, we demonstrate that a (1 ± ‘)174

(multiplicative) approximation with competitive performance is achievable.175

OnT ime

City � p
Bu�alo A 0.9
Chicago B 0.5
Bremen C 0.5
Zurich E 1.0

Route

City1 City2 � p
Bu�alo Chicago X 1.0
Chicago Zurich Y 1.0
Chicago Bremen Z 1.0

D

LC

Q

City � Circuit

Bu�alo AX
◊

A X

Chicago
B(Y + Z)

Or
BY + BZ

Y Z

B +

◊

Or

Y B Z

◊ ◊

+

Q(D) (t) © � (X)

EC

City E[�(X)]
Bu�alo 1.0 · 0.9 = 0.9

Chicago
(0.5 · 1.0)+
(0.5 · 1.0)

= 1.0

E [�(X)]

Figure 2 Intensional Query Evaluation Model (Q = fiCity
!
RouteonCity1=CityOnT ime

"
).

We adopt the two-step intensional model of query evaluation used in set-PDBs, as176

illustrated in Fig. 2: (i) Lineage Computation (LC): Given input D and Q, output every tuple177

t that possibly satisfies Q, annotated with its lineage polynomial (�(X) = �[Q, D, t] (X));178

(ii) Expectation Computation (EC): Given �(X) for each tuple, compute E [�(W)]. Let179

TLC(Q, D�, C) denote the runtime of LC when it outputs C (which is a representation of �180

CVIT 2016

23:6 Bag PDB Queries

as an arithmetic circuit — more on this representation shortly). Denote by TEC(C) (recall C181

is the output of LC) the runtime of EC, allowing us to formally define our objective:182

I Problem 1.8 (Bag-c-TIDB linear time approximation). Given c-TIDB D, RA
+ query183

Q, is there a (1 ± ‘)-approximation of ED≥P�
[Q (D) (t)] for all result tuples t where ÷C :184

TLC(Q, D, C) + TEC(C) Æ O‘(T ú
det

(Q, D))?185

We show in Appendix E.2.1 an O(T ú
det

(Q, D)) algorithm for constructing the lineage186

polynomial for all result tuples of an RA
+ query Q (or more more precisely, a single circuit187

C with one sink per tuple representing the tuple’s lineage). A key insight of this paper is188

that the representation of C matters. For example, if we insist that C represent the lineage189

polynomial in SMB, the answer to the above question in general is no, since then we will190

need |C| Ø �
1

(T ú
det

(Q, D))k
2

, and hence, just TLC(Q, D, C) will be too large.191

However, systems can directly emit compact, factorized representations of �(X) (e.g.,192

as a consequence of the standard projection push-down optimization [23]). For example,193

in Fig. 2, B(Y + Z) is a factorized representation of the SMB-form BY + BZ. Accordingly,194

this work uses (arithmetic) circuits2 as the representation system of �(X).195

Given that there exists a representation Cú such that TLC(Q, D, Cú) Æ O(T ú
det

(Q, D)), we196

can now focus on the complexity of EC. We can represent the factorized lineage polynomial197

by its correspoding arithmetic circuit C (whose size we denote by |C|). As we also show in198

Appendix E.2.2, this size is also bounded by T ú
det

(Q, D) (i.e., |Cú
| Æ O(T ú

det
(Q, D))). Thus,199

the question of approximation can be reframed as:200

I Problem 1.9 (Problem 1.8 reframed). Given one circuit C that encodes �[Q, D, t] for201

all result tuples t (one sink per t) for bag-PDB D and RA
+ query Q, does there exist an202

algorithm that computes a (1 ± ‘)-approximation of ED≥P�
[Q (D) (t)] (for all result tuples t)203

in O (|C|) time?204

205

Old Stu�206

A probabilistic database (PDB) D is a pair
!
�, P�

"
, where � is a set of deterministic207

database instances called possible worlds and P� is a probability distribution over �. A208

tuple independent database (TIDB) (to which we will refer to later) is a PDB such that209

each tuple is an independent random event. A commonly studied problem in probabilistic210

databases is, given a query Q, PDB D, and possible query result tuple t, to compute the211

tuple’s marginal probability of being in the query’s result, i.e., computing the expectation212

of a Boolean random variable over P� that is 1 for every D œ � for which t œ Q(D) and 0213

otherwise. In this work, we are interested in bag semantics, where each tuple is associated214

with a multiplicity. Following [25], we model bag databases (resp., relations) as functions215

from each t to the tuple’s multiplicity D(t) œ N in a possible world D. We refer to such a216

probabilistic database as a bag-probabilistic database or bag-PDB for short.217

The natural generalization of the (set) problem of computing marginal probabilities of218

query result tuples to bag semantics is to compute the expectation of a random variable over219

P� that is assigned value Q(D)(t) œ N in world D œ � , formally ED≥P�
[Q (D) (t)].220

2 An arithmetic circuit is a DAG with variable and/or numeric source nodes and internal, each nodes
representing either an addition or multiplication operator.

