% -*- root: main.tex -*- \section{Exact Results} \label{sec:exact} We turn to computing the exact values of $\sum\limits_{\wVec \in \pw } \sketchJParam{\sketchHashParam{\wVec}} \cdot \sketchPolarParam{\wVecPrime}.$ Starting with the term $\gIJ = \sum\limits_{\wVecPrime \in \pw}\sketchPolarParam{\wVecPrime}$, by the definition of $\sketchPolar$ and the property of associativity in addition, we can break the sum into \begin{equation*} \gIJ = \sum_{\substack{\wVecPrime \in \pw \st\\ \sketchPolarParam{\wVecPrime} = 0}} 1 + \sum_{\substack{\wVecPrime \in \pw \st\\ \sketchPolarParam{\wVecPrime} = 1}} -1. \end{equation*} Setting the terms to $T_1 = \sum_{\substack{\wVecPrime \in \pw \st\\ \sketchPolarParam{\wVecPrime} = 0}} 1$ and $T_2 = \sum_{\substack{\wVecPrime \in \pw \st\\ \sketchPolarParam{\wVecPrime} = 1}} -1$ and fixing $\buck$ to a specific value, gives a system of linear equations for each term. It is a known result for a consistent multiplication that the number of solutions are $| \kDom |^{\numTup - rank(\matrixH')}$. This gives us an exact calculation for both terms, \begin{align*} T_1 \in \{0, 2^{\numTup - rank(\matrixH')}\},\\ T_1 \in \{0, 2^{\numTup - rank(\matrixH')}\}. \end{align*} \subsection{Algorithm for $\gIJ$} \begin{algorithmic} \If {$\matrixH' \cdot \wVec = j^{(0)}$ is consistent} \If {$\matrixH' \cdot \wVec = j^{(1)}$ is consistent} \State $\gIJ = 0$ \Else \State $\gIJ = 2^{\numTup - computeRank(\matrixH')}$ \EndIf \ElsIf{$\matrixH' \cdot \wVec = \buck^{(1)}$ is consistent} \State $\gIJ = 2^{\numTup - computeRank(\matrixH')}$ \Else $\gIJ = 0$ \EndIf. \end{algorithmic} For examining the first term of equation \eqref{eq:allWorlds-est}, we fix $\kMap{t}$ to be defined as \begin{equation*} \kMapParam{\wVec} = \begin{cases} 1,&\text{if } w_t = 1\\ 0, &\text{otherwise}. \end{cases} \end{equation*} Therefore, by definition we have \begin{equation*} \sum_{\wVec \in \pw}\sketchJParam{\sketchHashParam{\wVec}} = \sum_{\wVec \in \pw}\kMapParam{\wVec}\sketchPolarParam{\wVec}, \end{equation*} and using the same argument as in $\gIJ$ yields \begin{equation*} \sum_{\wVec \in \pw \st \sketchPolarParam{\wVec} = 0}\kMapParam{\wVec} - \sum_{\wVec \in \pw \st \sketchPolarParam{\wVec} = 1}\kMapParam{\wVec}. \end{equation*} Setting $T_3 = \sum_{\wVec \in \pw \st \sketchPolarParam{\wVec} = 0}\kMapParam{\wVec}$, $T_4 = \sum_{\wVec \in \pw \st \sketchPolarParam{\wVec} = 1}\kMapParam{\wVec}$, \begin{equation*} T_3 = | \{\wVec \st \matrixH \cdot \wVec = \buck^{(0)}, \kMapParam{\wVec} = 1\}\rightarrow T_3 \in [0, 2^{\numTup - rank(\matrixH')}] \end{equation*} \begin{equation*} T_4 = | \{\wVec \st \matrixH \cdot \wVec = \buck^{(1)}, \kMapParam{\wVec} = 1\}\rightarrow T_4 \in [0, 2^{\numTup - rank(\matrixH') - 1}] \end{equation*} \AH{Next: define the algorithm for initialization of $\sketchJParam{\sketchHashParam{\wVec}}$}