% -*- root: main.tex -*- \section{Exact Results} \label{sec:exact} We turn to computing the exact values of \begin{equation} \sum\limits_{\wVec \in \pw } \sketchJParam{\sketchHashParam{\wVec}}\sketchPolarParam{\wVec} = \sum\limits_{\wVec \in \pw } \kMapParam{\wVec}\sketchPolarParam{\wVec} \sum_{\substack{\wVecPrime \in \pw\st\\ \sketchHashParam{\wVec} = \sketchHashParam{\wVecPrime}}} \sketchPolarParam{\wVecPrime}\label{eq:exact-results} . \end{equation} Starting with the latter term $\gIJ = \sum\limits_{\wVecPrime \in \pw}\sketchPolarParam{\wVecPrime}$, by the definition of the image of $\sketchPolar$ and the property of associativity in addition, we can break the sum into \begin{equation*} \gIJ = \sum_{\substack{\wVecPrime \in \pw \st\\ \sketchPolarParam{\wVecPrime} = 0}} 1 + \sum_{\substack{\wVecPrime \in \pw \st\\ \sketchPolarParam{\wVecPrime} = 1}} -1. \end{equation*} Setting the terms to $T_1 = \sum\limits_{\substack{\wVecPrime \in \pw \st\\ \sketchPolarParam{\wVecPrime} = 0}} 1$ and $T_2 = \sum\limits_{\substack{\wVecPrime \in \pw \st\\ \sketchPolarParam{\wVecPrime} = 1}} -1$ and fixing $\buck$ to a specific value, gives a system of linear equations for each term. It is a known result for a consistent matrix multiplication that the number of solutions are $| \kDom |^{\numTup - rank(\matrixH')}$, where $\kDom$ is the set being considered. This gives us an exact calculation for both terms, \begin{align*} T_1 = |\{\wVec \st \matrixH' \cdot \wVec = \buck^{(0)}\}|\rightarrow T_1 \in \{0, 2^{\numTup - rank(\matrixH')}\},\\ T_2 = |\{\wVec \st \matrixH' \cdot \wVec = \buck^{(1)}\}|\rightarrow T_2 \in \{0, 2^{\numTup - rank(\matrixH')}\}, \end{align*} where the notation $\jpbit{y}$ denotes the polarity bit $\lenB$ value of the $\buck$ bucket identifier, specifically $\buck(b)$, such that $\buck(b)\in \{0, 1\}$. \subsection{Algorithm for $\gIJ$} \begin{algorithmic} \ForAll{$\wVec \in \pw$} \If{$\sketchHashParam{\wVec} = \buck$} \If{$\sketchPolarParam{\wVec} = 1$} \State $\gIJ += 1$ \Else \State $\gIJ -= 1$ \EndIf \EndIf \EndFor. \end{algorithmic} %Non-general algorithm %\begin{algorithmic} %\If {$\matrixH' \cdot \wVec = j^{(0)}$ is consistent} % \If {$\matrixH' \cdot \wVec = j^{(1)}$ is consistent} % \State $\gIJ = 0$ % \Else % \State $\gIJ = 2^{\numTup - computeRank(\matrixH')}$ % \EndIf %\ElsIf{$\matrixH' \cdot \wVec = \buck^{(1)}$ is consistent} % \State $\gIJ = 2^{\numTup - computeRank(\matrixH')}$ %\Else % \State $\gIJ = 0$ %\EndIf. %\end{algorithmic} For examining the first term of equation \eqref{eq:exact-results}, we fix $\kMap{t}$ to be defined as \begin{equation*} \kMapParam{\wVec} = \begin{cases} 1,&\text{if } w_t = 1\\ 0, &\text{otherwise}. \end{cases} \end{equation*} %Therefore, by definition we have %\begin{equation*} %\sum_{\wVec \in \pw}\sketchJParam{\sketchHashParam{\wVec}} = \sum_{\wVec \in \pw}\kMapParam{\wVec}\sketchPolarParam{\wVec}, %\end{equation*} Using the same argument as in $\gIJ$ yields \begin{equation*} \sum_{\wVec \in \pw \st \sketchPolarParam{\wVec} = 0}\kMapParam{\wVec} - \sum_{\wVec \in \pw \st \sketchPolarParam{\wVec} = 1}\kMapParam{\wVec}. \end{equation*} Setting $T_3 = \sum\limits_{\wVec \in \pw \st \sketchPolarParam{\wVec} = 0}\kMapParam{\wVec}$, $T_4 = \sum\limits_{\wVec \in \pw \st \sketchPolarParam{\wVec} = 1}\kMapParam{\wVec}$ gives an exact calculation for each term given a fixed $\buck$: \begin{equation*} T_3 = | \{\wVec \st \matrixH \cdot \wVec = \buck^{(0)}, \kMapParam{\wVec} = 1\}\rightarrow T_3 \in [0, 2^{\numTup - rank(\matrixH')}] \end{equation*} \begin{equation*} T_4 = | \{\wVec \st \matrixH \cdot \wVec = \buck^{(1)}, \kMapParam{\wVec} = 1\}\rightarrow T_4 \in [0, 2^{\numTup - rank(\matrixH') - 1}] \end{equation*} \subsection{Algorithm for Initialization} \begin{algorithmic} \ForAll{$\wVec \in \pw \st \kMapParam{\wVec} = 1$} \State $\sketchJParam{\sketchHashParam{\wVec}} = \sketchPolarParam{\wVec}$ \EndFor. \end{algorithmic} %Non-generic Algorithm %\begin{algorithmic} %\ForAll{$\wVec \st \kMapParam{\wVec} = 1$} % \State $\buck = \matrixH' \cdot \wVec$ % \If{$\buck(\lenB) = 0$} % \State $\sketchIj += 1$ % \Else % \State$\sketchIj -= 1$ % \EndIf %\EndFor. %\end{algorithmic}