23:4

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

Bag PDB Queries ?O A (ﬂd\f:[ﬁ “

é}

already imply the claimed lower bounds if we were to replace the Ty.; (OPT — c
by just n (indeed these results follow from known lower bounds for deterministic query & -S
processing). Our contribution is to then identify a family of hard queries where deterministic
query processing is ‘easy’ but computing the expected multiplicities is hard.

Our upper bound results. We introduce a (1 £ €)-approximation algorithm that
computes Problem 1.1 in time O, (Tyet (OPT (Q), D, c)). This means, when we are okay
with approximation, that we solve Problem 1.1 in time linear in the size of the deterministic
query and bag PDBs are deployable in practice. In contrast, known approximation techniques
([40, 32]) in set-PDBs need time Q(Tye: (OPT (Q), D, ¢)**) (see Appendix G). Further, our
approximation algorithm works for a more general notion of bag PDBs beyond ¢-TIDBs (see
Sec. 2.2).

1.1 Polynomial Equivalence %MM

A common encoding of probabilistic databases (e.g., in [30, 29, 5, 2] and many others) g
relies on annotating tuples with lineages or propositional formulas that describe the set of
possible worlds that the tuple appears in. The bag semantics analog is a provenance/lineage

polynomial (see Fig. 1) ®[Q, D,] [27], a polynomial with non-zero integer coefficients and \f&&‘
exponents, over integer variables X encoding input tuple multiplicities.

We drop @, D, and ¢ from ®[Q, D, t] when they are clear from the context or irrelevant to obpn_/
the discussion. We now specify the problem of computing the expectation of tuple iplici /

myltiplicity
in the language of lineage polynomials: \IS&I\Q\,\ ,\){Q 7(

database D that counts the number of k-cliques, the results show a deterministic runtime of € (n)
implying our lower bounds would hold. \D\

®lra(@), Dyt = > ®Q,D.t] D[Q1UQ2, D, 1] =2[Q1, D, 1] + ©[Q2, D, 1 V’J ('C(,

tma(t)=t
— P ,ﬁ,t if 9(t (I)[QlNQ27D7t] [Ql:Daﬂ-att'r Q1 t]
¥loy(Q). Do) = T DI EI (@)
0 otherwise. - ®[Q2, D, Tarir(0s)1t]
®[R,D,t] = X;

Figure 1 Construction of the lineage (polynomial) for an RA" query @Q over an arbitrary
deterministic database 5, where X consists of all X; over all R in D and t in R. Here D.R denotes
the instance of relation R in D. Please note, after we introduce the reduction to 1-BIDB, the base
case will be expressed alternatively.

122
123

124

125

126
127

128
129
130
131
132
133

134
135
136

e

139

140
141
142
143
144
145

146

147
148
149
150

151

152
153
154

155

156

157
158

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra

» Problem 1.2 (Expected Multiplicity of Lineage Polynomials). Given an RAT query Q,
¢-TIDB D and result tuple t, compute the expected multiplicity of the polynomial ®[Q, D, t]
(i.e., Ew~p [®[Q, D, t](W)], where W € {0,...,c}").

We note that computing Problem 1.1 is equivalent (yields the same result as) to computing
Problem 1.2 (see Proposition 2.8).

All of our results rely on working with a reduced form (&)) of the lineage polynomial ®.

In fact, it turns out that for the 1-TIDB case, computing the expected multiplicity (over
bag query semantics) is ezactly the same as evaluating this reduced polynomial over the
probabilities that define the 1-TIDB. This is also true when the query input(s) is a block
independent disjoint probabilistic database [40] (bag query semantics with tuple multiplicity
at most 1), for which the proof of Lemma 1.4 (introduced shortly) holds . Next, we motivate
this reduced polynomial. Consider the query @)1 defined as follows over the bag relations of
Fig. 2:

SELECT DISTINCT 1 FROM T ¢;, R r, T t2

WHERE ¢;.Point = r.Point; AND {¢2.Point = r.Points

It can be verified that ® (A, B,C, E, X,Y, Z) for the sole result tuple of)1 is AXB +
BYE + BZC. Now consider the product query Q% = Q; x Q1. The lineage polynomial for
Q? is given by ®? (A4, B,C,E, X,Y, Z)

= A2X?B? + B*Y?E? + B*Z?C? + 2AXB?YE + 2AXB*ZC + 2B*YEZC.
To compute E [@ﬂ we can use linearity of expectation and push the expectation through

each summand. To keep things simple, let us focus on the monomial <I>§ABX)2 = A2X?B?
as the procedure is the same for all other monomials of ®%. Let Wx be the random
variable corresponding to a lineage variable X. Because the distinct variables in the
product are independent, we can push expectation through them yielding E [WiW)zf Wé} =
E[W3]E[W2]E[W3]. Since W4, Wp € {0,1} we can further derive E [WA]E [W%] E [W5]
by the fact that for any W € {0,1}, W? = W. Observe that if X € {0,1}, then we
further would have E [W4]E [Wx]|E[Wg] = pa - px - pp (denoting Pr[W4 =1] = pa)
= 5§ABX)2 (pa,px,pB) (see ii) of Definition 1.3). However, in this example, we get stuck
with E [W)z(], since Wy € {0,1,2} and for Wx «+ 2, W% # Wy.

Denote the variables of ® to be VARS (®) . In the ¢-TIDB setting, ® (X) has an equivalent
reformulation (® (Xgr)) that is of use to us, where | Xgr| = ¢-|X]| . Given X; € VARS (®), by

definition X; € {0,...,c}. We can replace X; by > .4 7X: ; where the variables (X; ;)

j€le] Jeld

are disjoint and each X;; € {0,1}. Then for any W € {0,... ,c}D and corresponding
reformulated world Wg € {0,1}7¢, we set Wg,, = 1 for W, = j, while Wg, , =0 for
all j/ # j € [c]. By construction then ® (X) = &p (Xr) (Xr = VARS (Pr)) since for any
valuation X; € [c¢] we have the equality X; = j = zje[c] JX;.

Considering again our example,

23:5

CVIT 2016

23:6 Bag PDB Queries

ABX)? AXB)? . . .
159 (I)E,R) (A,X, B) = <I>§) Z]1Aj17 Z]2Xj27 Z]3Bj3

J1€[c] J2€[c] Js€ld]
2 2 2
= | D a4 > X, > isBj,
161 J1€lc] j2€[c] Jjs€lc]

12 Since the set of multiplicities for tuple ¢ by nature are disjoint we can drop all cross terms
13 and have @%’R = Zjl,jz,jse[c] j%A?lngfzngf-a. Computing expectation we get E [@%,R] =
8 D0 sele] JLi3I3E [Wa, | E[Wx, | E[W,,], since we now have that all Wy, € {0,1}.
s This leads us to consider a structure related to the lineage polynomial.

s » Definition 1.3. For any polynomial ® ((Xt)teD) define the reformulated polynomial
w7 Dp ((Xt:j)teD,je[c]) to be the polynomial ®p = ® ((Zje[c] j- Xt’j)teD) and i) define the

s reduced polynomial ® ((Xt:j)teD je[c]> to be the polynomial resulting from converting ®r
w0 into the standard monomial basis (SMB), * removing all monomials containing the term
w Xy ;X fort € D,j# 3 €lc], and setting all variable exponents e > 1 to 1.

in Continuing with the example ® ®? (A, B,C, E, X1, X»,Y, Z) we have

172

173 ®2(A,B,C,E, X1,X2,Y, Z) =

- A" j*X; | B¥BYE+BZC+2A | Y j°X; | BYE+24 | Y j°X, | BZC+2BYEZC =
JEld] j€lc] JElc]
ABX,4AB (2)* Xo+BY E+BZC+2AX,BY E+2A (2)* XoBY E4+2AX, BZC+2A (2)* XoBZC+2BY EZC.

e
)
o

177 liIote that we have argued that for our specific example the expectation that we want is
s ®2(Pr(A=1),Pr(B=1),Pr(C=1),Pr(E=1),Pr(X;=1),Pr(Xo=1),Pr(Y =1),Pr(Z =1)).
1o Lemma 1.4 generalizes the equivalence to all RA™ queries on ¢-TIDBs (proof in Appendix B.5).
w » Lemma 1.4. For any c-TIDB D, RAT query Q, and lineage polynomial ® (X) =

s @[Q,D,1](X), it holds that Ew.p [®r (W)] = & (p), where p = ((pt,j)teD’je[c] .

w2 1.2 Our Techniques

113 Lower Bound Proof Techniques.

184

Cars . Loofs Uk of APs]

4 This is the representation, typically used in set-PDBs, where the polynomial is reresented as sum of :
‘pure’ products. See Definition 2.1 for a formal definition.

5 To save clutter we do not show the full expansion for variables with greatest multiplicity = 1 since e.g.

for variable A, the sum of products itself evaluates to 1% - A% = A.

23:8

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

Bag PDB Queries

However, systems can directly emit compact, factorized representations of ®(X) (e.g.,
as a consequence of the standard projection push-down optimization [25]). For example,
in Fig. 2, B(Y + Z) is a factorized representation of the SMB-form BY + BZ. Accordingly,
this work uses (arithmetic) circuits® as the representation system of ®(X).

Given that there exists a representation C* such that 71, (Q, D,C*) < O (Tyet (OPT (Q), D, ¢)),

we can now focus on the complexity of the EC step. We can represent the factorized lineage
polynomial by its correspoding arithmetic circuit C (whose size we denote by |C|). As
we also show in Appendix E.2.2; this size is also bounded by Ty.: (OPT (Q), D,c) (i.e.,
|IC*| < O (Tyet (OPT (Q), D,c))). Thus, the question of approximation can be stated as the
following stronger (since Problem 1.5 has access to all equivalent C representing Q@ (W) (1)),
but sufficient condition:

» Problem 1.6. Given one circuit C that encodes ®[Q, D, t] for all result tuples t (one sink
per t) for ¢-TIDB D and RAT query Q, does there exist an algorithm that computes a
(1 + €)-approxzimation of Ew~p [Q (W) ()] (for all result tuples t) in O (|C]) time?

For an upper bound on approximating the expected count, it is easy to check that if all the
probabilties are constant then ® (p1,...,p,) (i.e. evaluating the original lineage polynomial

over the probability values) is a constant factor approximation. For example, using Q% from
above (with ¢ = 1) and p4 to denote Pr[A = 1], we can see that

o (p) = PAPXPE + PEPY PE + PEPZPE + 2APXPEPYPE + 2P APXPEPZPC + 2 BPY PEPZDC

< PAPXDB + PBDPYDE + PBPzPC + 2DAPXPBEPYPE + 2DAPXDPBDZPC + 2DBDPYDPEDZPC = D1 (D)
If we assume that all seven probability values are at least pg > 0, we get that ®% (p) is in the
range [(p0)3 . ZIS% (p) ,CT)% (p)], which is not a tight approzimation. In sec. 4 we demonstrate
that a (1 £ €) (multiplicative) approximation with competitive performance is achievable.
To get an (1 + €)-multiplicative approximation and solve Problem 1.6, using C we uniformly
sample monomials from the equivalent SMB representation of ® (without materializing the
SMB representation) and ‘adjust’ their contribution to @ (-).

Applications. Recent work in heuristic data cleaning [51, 45, 42, 8, 45] emits a PDB when
insufficient data exists to select the ‘correct’ data repair. Probabilistic data cleaning is a
crucial innovation, as the alternative is to arbitrarily select one repair and ‘hope’ that queries
receive meaningful results. Although PDB queries instead convey the trustworthiness of
results [37], they are impractically slow [19, 18], even in approximation (see Appendix G).
Bags, as we consider, are sufficient for production use, where bag-relational algebra is already
the default for performance reasons. Our results show that bag-PDBs can be competitive,
laying the groundwork for probabilistic functionality in production database engines.
Paper Organization. We present relevant background and notation in Sec. 2. We then
prove our main hardness results in Sec. 3 and present our approximation algorithm in Sec. 4.
Finally, we discuss related work in Sec. 5 and conclude in Sec. 6. All proofs are in the
appendix.

6 An arithmetic circuit is a DAG with variable and/or numeric source nodes and internal, each nodes
representing either an addition or multiplication operator.

Tl ¢ s WMt el It Pt oL
PVYP 2L rey nsfis o&m ac«)”%
TVS % Feng, B. Glavic, A. Hubgr, 0. Kennedy, A;7Igudr§|>\g ‘&(‘(\N‘f : 23:17

g;w - EID@ -"'%/

~ . i W ¥ iS a,_ s 1IgorithmAfor the above sum: we Y‘ (’C/>

UD E(C) with probability proportional to |c| and ‘ (&—'6
ompute Y = Lisinn(v,) I x,ev Di- Repgating the sampling an appropriate number of times C [— (' C"’()

Q \» S and computing the average of Y gives/us our final estimate. ONEPASS is used to compute the

samphng probabilities needed in SAMPLEMONOMIAL (details are in Appendix D).

Runtlme analysis. We can argu followin runtlme for the algorithny outlined above: _Jq
M\Y 9 53/ oz Ted V‘Q ao
)

heorem 4.7. Let C be an arbitrary Binary- DB czrcuzt de e (

POLY(let
= DEG(C), and let v = v(C). Further let it be the case that p; > po for alli € [n]. Then an ‘7%
si6 estimate E of ®(py,...,pn) satisfying

547 Pr(‘é’ <I>p1,...,pn > D pl,...
=) I’vn ZINS

s can be computed ¢ zme

1 k log k - DEPTH
549 O ((SIZE(C o8 5 g

ss0 In partz’cular if po > 0 and v < 1 are absolute constants then the above runtime s

1 ok((Ly - suzp()-log%>-/V(log(\q(1,...,1)),10g(SIZE(C)))>.

552 The restriction on = is satisfied by any 1-TIDB (where v = 0 in the equivalent 1-BIDB \

s5 of Proposition 2.4) as well as for all three queries of the PDBench BIDB benchmark (see é\) x‘
sss - Appendix D.10 for experimental results). Further, we can alo argue the following result: \ /"t’

> Lemmaﬂ.(& Given Binary-BIDB computed from the reduction of Proposition 2.4, (E‘) <
556 1 — (C —+ 1)_(k

5!

o

‘“

550 By Proposition 2.4, D’ is a Binary-BIDB. By Definition 2.3, a block B;|of D’ has the VC' (I\(.n

o property that Zte D.je[e Pt < 1. Then, if we consider the case of strict inequality, we have O\.L ﬂ&l ‘YC
s61 an extra possible outcome in block By, the outcome when no tuple is present in a possible

B;. We argue Q‘{"WW
t.0)te D jelo.e] erd ’{;j((‘)w"

51

Is)

s world. Let us denote this as tg. Then there are at most ¢+ 1 disjoint tuples i
563 ter that the case when ty is a possibility produces the worst case .

Let ®' (X) be an aribitrary polynomial produced by @ (D) with X = (
the set of variables in D’. Let m be an arbitrary monomial in ®' (X) and v,
variables appearing in m. We define a cross term to be any monomial m su
exists j # j' € [0, ¢] such that Xy j, X; j» € vyy,.

x operator of RA' queries. Further, a cross term may only be produced speci
the join is a self join. The highest number of terms that can be produced by a

Xy k - for j € [0,¢]. Then there are exactly (c + 1)¥ — (c+ 1) cross terms (cancellations).

1mphes that v (C) =1 — (CC+11),€ for this case.

We now show that the case above is indeed the worst case. First, given a self join, it is

s, always the case that X k~ will be in the output since all tuples join with themselves. Then,

/\ﬁ? 577 t.h_egnoz I}‘umber of cancellatlons occur er{e‘nb v:e;élavet at all Xy,]JSY_.;léZnth ali X, for O\I\%
/““Qch pp 2-h % n ol ZKMY\\?\{
(ﬁJ:a e ta w%‘ Loye P ,W%\[(c%g«g
2 YIL e ¢l 2 tC - PoVI(c) & Y(C
2) A C@Weﬁ(wue(’a e g)

(&\Mzm g TCEO) o phf § od appodA

-

Bag PDB Queries [/)N\Vornasto C-TI1DF OFV =
L) Fin ok mowv@/\'e‘/m in C. 70 (T y

s j # j €[0,c]. Finally, it is the case that & — ¢ < (c+ 1)k —(c+1) = Zle (/IZ)(‘Z —(c—1) .
so for ¢, k € N, which implies that the worst case is when we have the ‘extra’ tuple #y and all ?Q.’/ [X’b
so0 tuples joining, which is exactly the case above, producing the greatest « (C) ratio. .

Since the size of any block B is ¢ + 1, it follows that (C) ratio for block B, is the same 2 E’{f—?ﬁw Q@A(
when taken across all blocks of @ (D), since the number of blocks n cancels out of the ratio R
calculations. m™Mmd WO M\‘d% “N E CC_/]% . NI "'(4 -f—ﬁy(P[:
(

We briefly connect the runtime in Eq. (4) to the algorithm outline earlier (where we Ny co

) ses ignore the dependence on M (+,+), which is needed to handle the cost of arithmetic operations g }\b) /WQ
M s.6 over integers). The SIZE(C) comes from the time take to run ONEPASS once (ONEPASS [éé (:
s essentially computes |C| (1,...,1) using the natural circuit evaluation algorithm on C). W g

e
sss make m% many calls to SAMPLEMONOMIAL (each of which essentially traces O(k) MYV’E%
0

s.0 random sink to source paths in C all of which by definition have length at most DEPTH(C)). I”’J%" ef

590 Finally, we address the M (log (|C| (1,...,1)),log (s1zE(C))) term in the runtime. 2 \(‘; +7 e
sn » Lemma 4.9. For any Binary-BIDB circuit C with DEG(C) = k, we have |C| (1,...,1) < Qporet b) (,\/e
s 22" DEPTH(C) Further, if Cis a tree, then we have || (1,...,1) < size(¢)9®). "6 .{ l/\ﬁuc

d

one @M, -

503 Note that the above implies that with the assumption pg > 0 and v < 1 are absolute

soa copstants from Theorem 4.7, then the runtime there simplifies to Oy, 6—,15 -s1zE(C)? - log +
SR " AL g s simelies 0 O (22O Jogz)
o

)«/Q f ZDU Y £)’ (¢ d&' D
sos for general circuits C. ILC is a tree, then the runtime simplifies to Oy <—1; - S1ZE(C) - log %)C,

(¢)
s which then answers Problem 1.6 with yes for such circuits.

507 Finally, note that by Proposition E.1 and Lemma E.2 for any RA™" query Q, there exists a
s circuit C* for ®[Q, D, t] such that DEPTH(C*) < Oq|(logn) and S1ZE(C) < O (Tyaet (Q, Dq)).
s Using this along with Lemma 4.9, Theorem 4.7 and the fact that n < Ty (Q, Do), we have

600 \ﬂ;cll\l:e oallowing Poé?g?-ry: KQ;WMY\ C@(MW’ WWM '€ Y E— - [4«()
.10.

s » Corollary Let Q be an RAT query and D be a Binary-BIDB with py > 0 and v < 1 \ - (er’\>

02 (where po,vy as in Theorem 4.7) are absolute constants. Let ®(X) = ®[Q, D, t] for any result L <

o3 tuple t with deg(®) = k. Then one can compute an approximation satisfying Eq. (3) in time - p‘:D
s Opq|,e,0 (Taet (OPT(Q), D, c)) (given Q, D and p; for each i € [n] that defines P). ‘; (— ((r}’r)

605 Next, we note that the above result along with Lemma 4.8 answers Problem 1.5 in the

es aflirmative as follows:

«r » Corollary 4.11. Let Q be an RAT query and D be a c-TIDB with py > 0 (where po
oz as in Theorem 4.7) is an absolute constant. Let ®(X) = ®[Q, D,t] for any result tuple
oot with deg(®) = k. Then one can compute an approximation satisfying Eq. (3) in time
0 Ok ql,e,0,c (Taet (OPT(Q),D,c)) (given Q, D and py ; for eacht € D, j € [c] that defines

P P L) ver e 7p’)
emma 4.8, and Corollary 4.10.

eif Proof of Corollary 4.11. The proof follows{by Proposition 2.4
<

613

614 If we want to approximate the expected multiplicities of all Z = O(n*) result tuples
eis t simultaneously, we just need to run the above result with § replaced by %. Note this
s16 increases the runtime by only a logarithmic factor.

ar D Related Work

as Probabilistic Databases (PDBs) have been studied predominantly for set semantics.
so Approaches for probabilistic query processing (i.e., computing marginal probabilities of

