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—— Abstract

The problem of computing the marginal probability of a tuple in th
probabilistic databases (PDBs) is a fundamental problem in set-PD
the analog problem for bag semantics: computing a tuple’s expect

e result of a query over set-
Bs. In this work, we study
ed multiplicity exactly and

approximately. We are specifically interested in the fine-grained complexity and how it compares to

the complexity of deterministic query evaluation algorithms — if these

it opens the door to practical deployment of probabilistic databases.

complexities are comparable,
Unfortunately, our results

imply that computing expected multiplicities for Bag-PDBs based on the results produced by such

query evaluation algorithms introduces super-linear overhead (unde
hardness assumptions/conjectures). We proceed to study approximati

r parameterized complexity
on of expected multiplicities

of result tuples of positive relational algebra queries (RAT) over ¢-TIDBs and for a non-trivial

subclass of block-independent databases (BIDBs). We develop a sampl
a (1 £ €)-approximation of the expected multiplicity of an output tuple
of a comparable deterministic query for any RAT query.
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1&/ he expdctation o

This work explores the problem of comp

{o,..., c}D, which is the set of all vectors of lengt
to a distinct ¢t € D storing its rnulmpl_yplty P is tz

worlds. A given world W = {0, ..., ¢} can be interpretegd for each

ing algorithm that computes . ')\' L'}Q/
in time linear in the runtimpe 1

data

W el s tlomrotisna-thert C,—b?

Tuptetappesss—tes 1 world W fer—==f677t. The resulting product disfribution can
then be esspressed-across—+he T base—tuptesof tie encoding as pi(': Pr W { = jl|, where g ee ~
Tp g

each distribution is independent forﬁe @ Allowing for < ¢ mul
gives rise to having < (¢ + 1)" possible worlds instead of the ul
the traditional set TIDB. In this work, it is_natural to be specifia
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23:2 Bag PDB Querles 9

4 semantics.
a5 We can formally state

problem fas:

» Problem 1.1. Given a ¢-TIDB D = ({0, 3
compute the expected multiplicity of t: Ep~p (CR(D

2
L P , RAY query Q, and result tuple t, A\("
/@ 9

WA

We\upperbound the multiplicity of tuples in a ¢-TIDB since this is what typically seen in

practice\ Allowing for ynboundged c js,an interesting open problem.
Hardness, of Set Qugry gemg Query Semantics. Set query evaluation
semantics over 1-TIJBs have been studied extensively, and the data complexity of the
been shown by Dalvi and Suicu to be #P-hard [13]. For our setting,
orithm to compute problem 1.1 for any query over a ¢-TIDB due to
55 linearity of expéctio imply perform the probability computations in a ‘sum-of-products’
fashion. wade/more precise when we discuss polynomial equivalence in the following
, .z o~ be problem 1.1 in polynomial time, the interesting question
pectation using fine-grained analysis 0 re

problem in géneral

s there exists a trivi

at we explore deals\with hardne

and parameterized complexity St AN

X\
c—of-t{rain—theoretita 1nthlsworklw \

oP

set of tup

'T';\{g cﬁmg( 048 19 2? *PQW

be the set les app ‘ﬂ g a S oL possibla

e » Definition

worlds of 4

SPY

Q <

able 1-shewsowelawey bounds for gy 11D Bs. ya
Our lower bound results] i iy depending on what hardness — O

T% Lower bound on T*(Q, D) Num. s 1 Hardness Assumption (
Aéﬁ <( T5..(Q, D)) ) for some eg > 0 Single Triangle Detection hypothesis

/k %Od ((Tjet(Q,D)) ) for all Cy > 0 Multiple | #W][0] # #W][1] D,
Q <(T;€t(Q,E))CO'k) for some co > 0 Multiple Conjecture 3.2 w
Table 1 Ou@ver bounds for a specific hard query ) parameterized by k-@he D is over the
same (family of) D and those wﬁ\‘Multiple’ in the second column need the algorithm to be able to
)

. The last column states the hardness assumptions that imply

handle multiple 7% (for a give
n (€0, Co, co are constants that are independent of k).

the lower bounds in the first co

72
73 result/conjecture we assume, we get various emphatic versions of no as an answer to our
 question. To make some sense of the other lower bounds in Table 1, we note that it is not

75 too hard to show that 7%(Q,D) < O ((T;et(Q,ﬁ))k>, where k is the largest degree of the
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@[WA(Q)aﬁa t] = Z (I)[Qaﬁa t/] (I)[Ql ) Q2aﬁ, t] :@[Qlaﬁ, t] + @[Q%Ea t]
tma ()=t
_ D - ®[Q1XQ2, D, t] =®[Q1, D, Tarir(0,)t
Blog(Q). D.1] = ®[Q, D,t] if 6(¢) [Q1X Qo ] (@1 7T_tt @l
0 otherwise. - ®[Q2, D, Wattr(Qg)t]

®[R,D,t] = X,

Figure 1 Construction of the lineage/(polynomial) for an RA" query over a ¢-TIDB, where X
consists of all X; over all R in D and ¢ in R. Here D.R denotes the instance of relation R in D.

Please note, after we introduct the redug¢tion to 1-BIDB, the base case will be expressed alternatively.
() A ‘

v,

S (i w over all fesult tuples ¢ (and the parameter that defines our family
of hard qderies).

lower bound in the fhird row says is that one cannot get more than a polynomial
e trivial algorithm for problem 1.1. However, this result

¥

81

e existing 1

&3 by just Tﬁ‘ indedd these repults follow from known lower bound for deterministic query

sa  processing). Ntribution] is to then identify a family of hard queries where deterministic
computing the expected multiplicities is hard. r€&

a

by

e introduce an (1+¢€)-approximation algorithm that computes
| D)\ In contrast, known approximation techniques ([38, 30]) in
k) ($ee Appendix G). Further, we generalize the PDB data model
Kimation algorithm to a class of bag-Block Independent Disjoi@

) (BIDBs). ~ Tat nf ” “B
N0l

s considered by the app
o Databases (see Sec. 2

1.1 Polynomial Equivalence

A common encoding of probabilistic databases (e.g., in [28, 27, 5, 2] and many others) a./Q
relies on annotating tuples with lineages, propositional formulas that describe the set of
possible worlds that the tuple appears in. The bag semantics analog is a provenance/lineage : LD%.
olynomial ®[Q, D,t] [25], a polynomial with non-zero integer coefficients and exponents, C < r
ver integer variables X encoding input tuple multiplicities.

We drop @, D, and t from ®[Q, D, t] when they are clear from the context or irrelevant to

the discussion. We now specify the problem of computing the expectation of tuple multiplicit
in the language of lineage polynomials: | )

ected Multiplicity of Lineage Polynomials). Given an RAT quenfR,
tuple t, compute the expec&;ltiplicity of the polynomial ®[Q ]

](W)}, where W € {0,...,c}).

m I
c-TIDB D and re

(7’ €., EWNP [(b[Q)

We note that computing Problem 1.1 is equivalent to computing Problem 1.3 (see Proposition 2.1).

All of our results rely on oy fe with a reduced form

, it turns out that for ti IDB case, computing
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the expected multipl over bag query semantics) is ezcgg? tlgsame as evaluating this
reduced polynomial over the probabilities that define the TIDB. This is also true when the
query input(s) is a block independent disjoint probabilistice database (with tuple multiplicity
of at most 1), which we refer to as a 1-BIDB. For our results to be applicable to ¢-TIDBs,
we introduce the following reduction.

» Definition 1.4. Any ¢-TIDB D, can be reduced to an equivalent 1-BIDB D’ in the following
manner. For each t; € D, create a block of ¢+ 1 disjoint BIDB tuples in D' such that each
tuple in the newly formed block is mapped to its own boolean variable X; ; for i € |D| and
j € [c+1]. Then, given W € {0, ... 7C}D, the equivalent world in D" will set each variable
X, ; =1 for each W [i] = j, while (for ¢ # j) all other X; y € X of D" are set to 0.

» Example 1.5. Consider the Route relation of fig. 2 and query QQ = ¢y, (Route).
The output relation @ is {(Chicago, X),(Chicago,Y)} and can be represented as a c-
TIDB Q' = {(Chicago, X',2)}, where the following probabilities are true: Pr[X' =0] =
Pri-X AN=Y], PriX'=1] = Pr(XVY)A (=X VY)], and Pr[X'=2] = Pr( X AY].
Q' can then be reduced to a 1-BIDB by creating a block of the following disjoint t
Q" = {(Chicago, X{}) , (Chicago, X{) , (Chicago, X5)} such that Pr[X| = 1] = Pr[X’ =i}

Next, we motivate this reduced polynomial. Consider the query () defined as follows over
the bag relations of Fig. 2

SELECT 1 FROM OnTime a, Route r, OnTime b
WHERE a.city = r.cityl AND b.city = r.city2

It can be verified that ® (A, B,C, FE, X, Y, Z) for the sole result tuple (i.e. the count) of @ is
AXB+ BYE+ BZC. Now consider the product query Q? = @ x Q. The lipeage ng
for @ is given by &2 (A, B, C. X " u// b

oL

By exploiting linearity of expectation, further pushing expectation through independe
variables and observing that for any W € {0,1}, we have W2 = W, the expectation is
E [®*(W)] (where W, is the random variable corresponding to A, distributed by P

W~ P
E[WAE [Wx]|E[WgB]4+E [WB|E[Wy]|E [Wg]+E [WEB]E [Wz]E [Wc]+2E [WA]E [Wx]E [WB]E Wy E [Wg]
+ 2E [WA]E [Wy|E [WB|E [WZ]E [Wc] + 2E [WE]E [Wy | E [WE]E [WZ]E [Wc].

This property leads us to consider a structure related to the lineage polynomial.

» Definition 1.6. For any polynomial ®(X) corresponding to a ¢-TIDB (henceforth, c-TIDB- R
lineage polynomial), define the reduced polynomial ®(X) to be the polynomial obtained by 27\/
setting all exponents e > 1 in the standard monomial basis (SMB) 1 form of ®(X) to 1. )

With ®2 (A, B,C, E, X,Y, Z) as an example, we have: T S
®2(A,B,C,E,X,Y,Z) = AXB + BYE + BZC + 2AXBYE + 2AXBZC + 2BY EZC.

Note that we have argued that for our specific example the expectation that we want is
®2(Pr(A=1),Pr(B=1),Pr(C=1)),Pr(E=1),Pr(X=1),Pr(Y=1),Pr(Z=1)).
Lemma 1.7 generalizes the equivalence to all RAT queries op TIDBs (proof in Appendix B.5).

1 This is the representation, typically used in set-PDBs, wher e polynomial is reresented as sum of
‘pure’ products. See Definition 2.2 for a formal definition.
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w7 » Lemma 1.7. Let D be a 1-BIDB such that the probability distribution P over W &
ws {0, 1MPl (the set of all worlds) is induced by the disjoint condition and the probability
u vector p = (pl, . ,p|D|) where p; = Pr(W; =1). For any 1-BIDB-lineage polynomial
® (X) = ®[Q, D, t(X), it holds that Ew.~p [® (W)] = @ (p).

To prove our hardness result we show that for the same Q) from the example above, for
an arbitrary ‘product width’ k, the query Q* is able to encode various hard graph-counting
problems (assuming O (n) tuples rather than the O(1) tuples in Fig. 2). We do so by
considering an arbitrary graph G (analogous to the Route relation of @) and analyzing how
the coefficients in the (univariate) polynomial d (p,...,p) relate to counts of subgraphs in G
that are isomorphic to various graphs with k edges. E.g., we exploit the fact that the leading
coefficient in ® corresponding to Q¥ is proportional to the number of k-matchings in G, a

known hard problem in parameterized /fine-grained complexity literature.
For an upper bound on approximating the expected count, it is easy to check that if all the
probabilties are constant then ® (py,...,p,) (i.e. evaluating the original lineage polynomial

over the probability values) is a constant factor approximation. For example, using Q? from
above, using p4 to denote Pr[A = 1] (and similarly for the other variables), we can see that

2 2 2 2 2 2 2 2 2 2 2 2 2
D (p) = pAPXDPE + PBPYPE + PBPZPC + 2DAPXPBPYPE + 2DADXPBEPZPC + 2DBPY PEPZPC

< papxpB + PBPYPE + PBPZPC + 2PAPXDPBPY PE + 2pAPXPBPZPC + 2pBPYPEPZPC = P (D)

If we assume that all seven probability values are at least pg > 0, we get that ®2 (p) is in
the range [(p0)3 @ (p), P (p)]. To get an (1 £ €)-multiplicative approximation we uniformly
sample monomials from the SMB representation of ® and ‘adjust’ their contribution to @ (-).

1o  Upper Bound Techniques. Our negative results ?16 1) indicate that C_TIDBW
1o achieve comparable performance to deterministic databases for exact results (under cdmplexity

. 0\® i assumptions). In fact, under plausible hardness conjectures, one cannot (drastically) improve

12 upon the trivial algorithm to exactly compute the expected multiplicities for IDBs. A
13 natural followup is whether we can do better if ng to settle for an roximation
172 to the expected multiplities. In the remainder of ®his , we demonstrate that a (1 4 ¢)
175 (multiplicative) approximation with competitive performance is achievable.

OnTime City o Circuit
© ’ )
Buffal AX
Buffalo C? utaio o e
Chicago 0.5 ! ° City ‘ E[®(X)]
Bremen 0.5 \/ e e Buffalo [1.0-0.9 = 0.9
Zurich 1.0 @ @ 0510
Route B +2) e Chicago ((O 5-- 1. O))jL
i i Chicago Or Or g - .
City, | City, |®|p o =1.0
Buffalo |Chicago| X |1.0 BY + BZ
Chicago| Zurich |Y |1.0 °x°
Chicago| Bremen | Z [1.0 ° e e ~ J
— E [¢(X)]
D QD) () = ¢ (X)

Figure 2 Intensional Query Evaluation Model (Q = mcisy (RouteMCityl:CityOnTz’me)).

176 We adopt the two-step intensional model of query evaluation used in set-P
w7 illustrated in Fig. 2: (i) Lineage Computation (LC): Given input D and @, output
st that possibly satisfies (), annotated with its lineage polynomial (®(X) = @] t] (X));
o (ii) Expdillation Computation (EC): Given ®(X) for each tuple, compute E JW)]. Let
w  Trol C) denote the runtime of LC when it outputs C (which is a representation of ®

CVIT 2016
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ﬁ' SWLL] s by its correspoding arithmetic circuit C (whose size we denote by [C|). As we also show 4

23:6 Bag PDB Queries

1 as an arithmetic circuit — more on this representation shortly). Denote by Trc(C) (recall C £
1.2 is the output of LC) the runtime of EC, allowing us to formally define our objective:

w5 » Problem 1.8 (Bag-c-TIDB linear time approximation). Given ¢-TIDB D, RA" query l\[gbul g?ﬁ

w @Q, is there a (1 + €)-approzimation of Ep~p [Q (D) (t)] for all result tuples t where 3C:
s Trc(Q,D,C) +Trc(C) < O(T;,,(Q,D))?

186 We show in Appendix E.2.1 an O(T},,(Q, D)) algorithm for constructing the lineage m)&\“‘:‘;b
167 polynomial for all result tuples of an RAT query @ (or more more precisely, a single circuit

s C with one sink per tuple representing the tuple’s lineage). A key insight of this paper is 5? \Of\
189 that the representation of C matters. For example, if we insist that C represent the lineage
10 polynomial in SMB, the answer to the above question in general is no, since then we will
w1 need |C| > Q ((Tjet(Q, D))k>, and hence, just T7,¢(Q, D, C) will be too large.

192 However, systems can directly emit compact, factorized representations of ®(X) (e.g.,
3 as a consequence of the standard projection push-down optimization [23]). For example,
« in Fig. 2, B(Y + Z) is a factorized representation of the SMB-form BY + BZ. Accordingly,

'DY%% this work uses (arithmetic) circuits? as the representation system of ®(X).
S 196 Given that there exists a representation C* such that T7¢(Q, D,C*) < O(T}.,(Q, D)), we
17 can now focus on the complexity of EC. We can represent the factorized lineage polynomial

ws  Appendix E.2.2, this size is also bounded by T7;.,(Q, D) (i.e.
f,{\( 200 ,the question of approximation can be reframed g

-

? 1 ' » Problem 1.9 (Problem 1.8 reframed). Given one circuit C that encodes ®[Q, D,t] for 5
200 all result tuples t (one sink pert) for bag-PDB D and RAT query Q, does there exist an
203 algorithm that computes a (1 + €)-approximation of Ep~p- [Q (D) (t)] (for all result tuples t) b

\/20472'71 O (|q) time?

. Old Stuff

207 A probabilistic database (PDB) D is a pair (ﬁ, Ps), where Q is a set of deterministic
20s  database instances called possible worlds and Pg is a probability distribution over Q. A
20 tuple independent database (TIDB) (to which we will refer to later) is a PDB such that
20 each tuple is an independent random event. A commonly studied problem in probabilistic
. databases is, given a query @), PDB D, and possible query result tuple ¢, to compute the
22 tuple’s marginal probability of being in the query’s result, i.e., computing the expectation
2 of a Boolean random variable over Pg that is 1 for every D € €2 for which t € Q(D) and 0
aa - otherwise. In this work, we are interested in bag semantics, where each tuple is associated /‘%g '
25 with a multiplicity. Following [25], we model bag databases (resp., relations) as functions

26 from each t to the tuple’s multiplicity D(t) € N in a possible world D. -We-referto-sueh+

217 0
218 The natural generalization of the (set) problem of computing marginal probabilities of
219 query result tuples to bag semantics is to compute the expectation of a random variable over
20 Pg that is assigned value Q(D)(t) € N in world D € €, formally Ep~p. (@ (D) (¥)].

2 An arithmetic circuit is a DAG with variable and/or numeric source nodes and internal, each nodes
representing either an addition or multiplication operator.
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